Bulletin of the

Iranian Mathematical Society

Vol. 43 (2017), No. 5, pp. 1237-1244

Title:
On pm^{+}and finite character bi-amalgamation
Author(s):

M. Tamekkante and E.M. Bouba

Published by the Iranian Mathematical Society

ON PM^{+}AND FINITE CHARACTER BI-AMALGAMATION

M. TAMEKKANTE* AND E.M. BOUBA

(Communicated by Mohammad-Taghi Dibaei)

$$
\begin{aligned}
& \text { AbStract. Let } f: A \rightarrow B \text { and } g: A \rightarrow C \text { be two ring homomor- } \\
& \text { phisms and let } J \text { and } J^{\prime} \text { be two ideals of } B \text { and } C \text {, respectively, such that } \\
& f^{-1}(J)=g^{-1}\left(J^{\prime}\right) \text {. The bi-amalgamation of } A \text { with }(B, C) \text { along }\left(J, J^{\prime}\right) \\
& \text { with respect of }(f, g) \text { is the subring of } B \times C \text { given by } \\
& \qquad A \bowtie^{f, g}\left(J, J^{\prime}\right)=\left\{\left(f(a)+j, g(a)+j^{\prime}\right) / a \in A,\left(j, j^{\prime}\right) \in J \times J^{\prime}\right\} \text {. } \\
& \text { In this paper, we study the transference of } p m^{+}, p m \text { and finite character } \\
& \text { ring-properties in the bi-amalgamation. } \\
& \text { Keywords: Bi-amalgamated algebras, } p m^{+} \text {rings, pm rings, rings with } \\
& \text { finite character. } \\
& \text { MSC(2010): Primary: } 13 A 15 \text {; Secondary: } 13 B 02 \text {. }
\end{aligned}
$$

1. Introduction

Throughout, all rings considered are commutative with unity. A ring R is called a pm ring (also called Gefland ring) if each prime ideal is contained in exactly one maximal ideal. This class of rings has been introduced in [10] by G. De Marco and A.Orsatti, and studied in [4, 5, 17]. It contains the class of Von Neumann regular rings, local rings, zero-dimensional rings, rings of functions, etc... . In particular, any ring of the form $C(X)$, the ring of continuous real valued functions on a (completely regular) topological space X is $p m([11,7.15])$. However, this last class of rings have a stronger property than $p m$; in fact in a ring $C(X)$ where X is a topological space, the prime ideals containing a given prime ideal form a chain. In [2], W.D. Burgess and R. Raphael introduced a $p m^{+}$rings as a rings with this last stronger property. Any local domain is a $p m$ ring but would be $p m^{+}$only if all its prime ideals formed a chain, as, for example, in a valuation domain. It is also proved that a ring R is $p m^{+}$if and only if, for each multiplicative subset set S of $R, S^{-1} R$ a $p m$ ring (see [2] for more details).

[^0]A ring R has finite character if each non-zero ideal of R is contained in at most finitely many maximal ideals of R. The notion of the finite character domain has been introduced by Griffin [12]. While the concept of finite character ring was been extended to the rings with zero-divisors in 1971 by Larsen [14], where he characterized the prüfer finite character rings. A ring R is called h-local if it is a $p m$ ring and has finite character. Thus, R is h-local if and only if modulo any non-zero prime ideal it is a local ring and modulo any non-zero ideal it is a semi-local ring. In $[15,16]$, Matlis studied the h-local domains and gave some further characterizations. In [19], Olberding shows how diverse examples of h-local Prüfer domains arise as overrings of Noetherian domains and polynomial rings in finitely many variables.

Let $f: A \rightarrow B$ and $g: A \rightarrow C$ be two commutative ring homomorphisms and let J and J^{\prime} be two ideals of B and C, respectively, such that $f^{-1}(J)=g^{-1}\left(J^{\prime}\right)$. The bi-amalgamation of A with (B, C) along $\left(J, J^{\prime}\right)$ with respect to (f, g) is the subring of $B \times C$ given by

$$
A \bowtie^{f, g}\left(J, J^{\prime}\right)=\left\{\left(f(a)+j, g(a)+j^{\prime}\right) \mid a \in A,\left(j, j^{\prime}\right) \in J \times J^{\prime}\right\}
$$

This construction was introduced in [13] as a natural generalization of duplications $[8,9]$ and amalgamations $[6,7]$. Given a ring homomorphism $f: A \rightarrow B$ and an ideal J of B, the bi-amalgamation $A \bowtie^{\mathrm{id}_{A}, f}\left(f^{-1}(J), J\right)$ coincides with the amalgamated algebra introduced in 2009 by D'Anna, Finocchiaro, and Fontana [6, 7] as the following subring of $A \times B$:

$$
A \bowtie^{f} J=\{(a, f(a)+j) \mid a \in A, j \in J\} .
$$

When $A=B$ and $f=\operatorname{id}_{A}$, the amalgamated $A \bowtie^{\mathrm{id}_{A}} I$ is called amalgamated duplication of a ring A along the ideal I, and denoted $A \bowtie I$ (introduced in 2007 by D'Anna and Fontana, [9]). This construction can be presented as a bi-amalgamation algebra as follows:

$$
A \bowtie I=A \bowtie \bowtie^{\operatorname{id}_{A}, \mathrm{id}_{A}}(I, I) .
$$

In this paper, we investigate the transfer of $p m, \mathrm{pm}^{+}$, finite character and h local properties to bi-amalgamation algebras. Our main goal is to provide new classes of rings which satisfied these properties.

2. Results

Let $f: A \rightarrow B$ and $g: A \rightarrow C$ be two ring homomorphisms and let J and J^{\prime} be two ideals of B and C, respectively, such that $I:=f^{-1}(J)=g^{-1}\left(J^{\prime}\right)$. Throughout this paper, $A \bowtie^{f, g}\left(J, J^{\prime}\right)$ will denote the bi-amalgamation of A with (B, C) along $\left(J, J^{\prime}\right)$ with respect to (f, g).

In our study of the transfer of properties defined in the introduction, we need the description of the prime and maximal spectrums of the bi-amalgamation
construction. For thus, let's adopt the following notations:
For $L \in \operatorname{Spec}(f(A)+J)$ and $L^{\prime} \in \operatorname{Spec}\left(g(A)+J^{\prime}\right)$, consider the prime ideals of $A \bowtie^{f, g}\left(J, J^{\prime}\right)$ given by:

$$
\begin{aligned}
\bar{L} & :=\left(L \times\left(g(A)+J^{\prime}\right)\right) \cap\left(A \bowtie^{f, g}\left(J, J^{\prime}\right)\right) \\
& =\left\{\left(f(a)+j, g(a)+j^{\prime}\right) \mid a \in A,\left(j, j^{\prime}\right) \in J \times J^{\prime}, f(a)+j \in L\right\} \\
\overline{L^{\prime}} & :=\left((f(A)+J) \times L^{\prime}\right) \cap\left(A \bowtie^{f, g}\left(J, J^{\prime}\right)\right) \\
& =\left\{\left(f(a)+j, g(a)+j^{\prime}\right) \mid a \in A,\left(j, j^{\prime}\right) \in J \times J^{\prime}, g(a)+j^{\prime} \in L^{\prime}\right\}
\end{aligned}
$$

Using [13, Lemmas 5.1, 5.2 and Propositions 5.3, 5.7], we deduce the following lemma.
Lemma 2.1. Under the above notation, let P be a prime (resp. maximal) ideal of $A \bowtie^{f, g}\left(J, J^{\prime}\right)$. Then
(1) $J \times J^{\prime} \subseteq P \Leftrightarrow \exists!\mathfrak{p} \supseteq I$ in $\operatorname{Spec}(A)($ resp. $\operatorname{Max}(A))$ such that $P=$ $\mathfrak{p} \bowtie^{f, g}\left(J, J^{\prime}\right)$.
In this case, $\exists L \supseteq J$ in $\operatorname{Spec}(f(A)+J)(r e s p . \operatorname{Max}(f(A)+J))$ and $\exists L^{\prime} \supseteq J^{\prime}$ in $\operatorname{Spec}\left(g(A)+J^{\prime}\right)\left(\right.$ resp. $\left.\operatorname{Max}\left(g(A)+J^{\prime}\right)\right)$ such that $P=$ $\bar{L}=\overline{L^{\prime}}$.
(2) $J \times J^{\prime} \nsubseteq P \Leftrightarrow \exists$! L in $\operatorname{Spec}(f(A)+J)$ or in $\operatorname{Spec}(g(A)+J)$ (resp. in $\operatorname{Max}(f(A)+J)$ or in $\operatorname{Max}(f(A)+J))$ such that $J \nsubseteq L$ or $J^{\prime} \nsubseteq L$ and $P=\bar{L}$.

Consequently, we have
$\operatorname{Spec}\left(A \bowtie^{f, g}\left(J, J^{\prime}\right)\right)=\left\{\bar{L} \mid L \in \operatorname{Spec}(f(A)+J) \cup \operatorname{Spec}\left(g(A)+J^{\prime}\right)\right\}$,
\quad and
$\operatorname{Max}\left(A \bowtie^{f, g}\left(J, J^{\prime}\right)\right)=\left\{\bar{L} \mid L \in \operatorname{Max}(f(A)+J) \cup \operatorname{Max}\left(g(A)+J^{\prime}\right)\right\}$.
The notations and the facts of the previous lemma will be used in the sequel without explicit reference.

Our first result investigate the transfer of the $p m^{+}$property to the biamalgamation construction.
Proposition 2.2. $A \bowtie^{f, g}\left(J, J^{\prime}\right)$ is $p m^{+}$ring if and only if $f(A)+J$ and $g(A)+J^{\prime}$ are pm ${ }^{+}$rings.
Proof. (\Rightarrow) Using [13, Proposition 4.1], we have the following isomorphisms of rings

$$
\frac{A \bowtie^{f, g}\left(J, J^{\prime}\right)}{0 \times J^{\prime}} \cong f(A)+J \quad \text { and } \quad \frac{A \bowtie^{f, g}\left(J, J^{\prime}\right)}{J \times 0} \cong g(A)+J^{\prime}
$$

Thus, following [2, Lemma 3.7], $f(A)+J$ and $g(A)+J^{\prime}$ are $p m^{+}$rings. (\Leftarrow) Let P be a prime ideal of $A \bowtie^{f, g}\left(J, J^{\prime}\right)$. We have to show that any two
ideals of $A \bowtie^{f, g}\left(J, J^{\prime}\right)$ which contains P are comparable. So, let $P_{1}, P_{2} \in$ $\operatorname{Spec}\left(A \bowtie^{f, g}\left(J, J^{\prime}\right)\right)$ containing P.
If $J \times J^{\prime} \subseteq P$, then $J \times J^{\prime} \subseteq P_{1}$ and $J \times J^{\prime} \subseteq P_{2}$, and hence there exist $\mathfrak{p}, \mathfrak{p}_{1}, \mathfrak{p}_{2} \in \operatorname{Spec}(A)$ containing I such that $P=\mathfrak{p} \bowtie^{f, g}\left(J, J^{\prime}\right), P_{1}=\mathfrak{p}_{1} \bowtie^{f, g}$ $\left(J, J^{\prime}\right)$ and $P_{2}=\mathfrak{p}_{2} \bowtie^{f, g}\left(J, J^{\prime}\right)$. Following [13, Proposition 4.1], we have the following isomorphism of rings:

$$
\varphi: \begin{aligned}
& \frac{A \bowtie^{f, g}\left(J, J^{\prime}\right)}{J \times J^{\prime}} \longrightarrow \frac{A}{I} \\
&\left(f(a)+j, g(a)+j^{\prime}\right) \longmapsto \\
& \bar{a}
\end{aligned}
$$

Thus, since $P \subseteq P_{1}$ and $P \subseteq P_{2}$, we have $\frac{\mathfrak{p}}{I} \subseteq \frac{\mathfrak{p}_{1}}{I}$ and $\frac{\mathfrak{p}}{I} \subseteq \frac{\mathfrak{p}_{2}}{I}$. On the other hand, by [13, Proposition 4.1], $\frac{A}{I} \cong \frac{f(A)+J}{J}$. Hence, since $f(A)+J$ is a $p m^{+}$ ring and by using [2, Lemma 3.7], $\frac{A}{I}$ is a $p m^{+}$ring. Thus, $\frac{\mathfrak{p}_{1}}{I}$ and $\frac{\mathfrak{p}_{2}}{I}$ are comparable, and so are \mathfrak{p}_{1} and \mathfrak{p}_{2}. Consequently, P_{1} and P_{2} are comparable. Now, suppose that $J \times J^{\prime} \nsubseteq P$. Then, there exist L in $\operatorname{Spec}(f(A)+J)$ or in $\operatorname{Spec}(g(A)+J)$ such that $J \nsubseteq L$ or $J^{\prime} \nsubseteq L$ and $P=\bar{L}$. In the first case, we have

$$
0 \times J^{\prime} \subseteq\left(L \times\left(g(A)+J^{\prime}\right)\right) \cap\left(A \bowtie^{f, g}\left(J, J^{\prime}\right)\right)=\bar{L}=P
$$

Thus, $\frac{P_{1}}{0 \times J^{\prime}}$ and $\frac{P_{2}}{0 \times J^{\prime}}$ are prime ideals of the $p m^{+} \operatorname{ring} \frac{A \bowtie^{f, g}\left(J, J^{\prime}\right)}{\{0\} \times J^{\prime}} \cong f(A)+J$ containing the prime ideal $\frac{P}{0 \times J^{\prime}}$. Thus, $\frac{P_{1}}{0 \times J^{\prime}}$ and $\frac{P_{1}}{0 \times J^{\prime}}$ are comparable, and so are P_{1} and P_{2}. Similarly, in the second case, we conclude that P_{1} and P_{2} are comparable. Accordingly, the ring $A \bowtie^{f, g}\left(J, J^{\prime}\right)$ is $p m^{+}$.
Corollary 2.3. (1) $A \bowtie^{f} J$ is $p m^{+}$if and only if A and $f(A)+J$ are $p m^{+}$.
(2) $A \bowtie I$ is pm^{+}if and only if A is pm^{+}.

Example 2.4. For a given prime positive integer p, let \mathbb{Z}_{p} be ring of p-adic integers. Clearly, \mathbb{Z}_{p} is a $p m^{+}$ring since it is a valuation domain. Thus, using the previous corollary, for any non zero positive integer n, the ring $\mathbb{Z}_{p} \bowtie\left(p^{n} \mathbb{Z}_{p}\right)$ is a $p m^{+}$ring.

The next result study the transfer of the $p m$ property to the bi-amalgamation construction.

Proposition 2.5. $A \bowtie^{f, g}\left(J, J^{\prime}\right)$ is pm ring if and only if $f(A)+J$ and $g(A)+J^{\prime}$ are pm rings.

Proof. (\Rightarrow). Clearly, any homomorphic image of a $p m$ ring is also $p m$. Thus, using [13, Proposition 4.1], $f(A)+J$ and $g(A)+J^{\prime}$ are $p m$ rings.
(\Leftarrow). Let P be a prime ideal of $A \bowtie^{f, g}\left(J, J^{\prime}\right)$ contained in $M_{1}, M_{2} \in \operatorname{Max}\left(A \bowtie^{f, g}\right.$ $\left.\left(J, J^{\prime}\right)\right)$. If $J \times J^{\prime} \subseteq P$, then $J \times J^{\prime} \subseteq M_{1}$ and $J \times J^{\prime} \subseteq M_{1}$, and hence there exist $\mathfrak{p} \in \operatorname{Spec}(A)$ and $\mathfrak{m}_{1}, \mathfrak{m}_{2} \in \operatorname{Max}(A)$ containing I such that $P=\mathfrak{p} \bowtie^{f, g}\left(J, J^{\prime}\right)$, $M_{1}=\mathfrak{m}_{1} \bowtie^{f, g}\left(J, J^{\prime}\right)$ and $M_{2}=\mathfrak{m}_{2} \bowtie^{f, g}\left(J, J^{\prime}\right)$. As in the proof of Proposition
2.2, we deduce that $\frac{\mathfrak{m}_{1}}{I}$ and $\frac{\mathfrak{m}_{2}}{I}$ are maximal ideals of $\frac{A}{I}$ (which is isomorphic to a homomorphic image of $f(A)+J$, by [13, Proposition 4.1], and so it is a $p m$ ring), and they contain the prime ideal $\frac{\mathfrak{p}}{I}$. Thus, $\frac{\mathfrak{m}_{1}}{I}=\frac{\mathfrak{m}_{2}}{I}$, and so $\mathfrak{m}_{1}=\mathfrak{m}_{2}$. Consequently, $M_{1}=M_{2}$.

Now, suppose that $J \times J^{\prime} \nsubseteq P$. Then, there exist L in $\operatorname{Spec}(f(A)+J)$ or in $\operatorname{Spec}(g(A)+J)$ such that $J \nsubseteq L$ or $J^{\prime} \nsubseteq L$ and $P=\bar{L}$. In the first case, as in the proof of Proposition 2.2, we have $0 \times J^{\prime} \subseteq P$. Thus, $\frac{M_{1}}{0 \times J^{\prime}}$ and $\frac{M_{2}}{0 \times J^{\prime}}$ are maximal ideals of the $p m$ ring $\frac{A \bowtie^{f, g}\left(J, J^{\prime}\right)}{\{0\} \times J^{\prime}} \cong f(A)+J$ containing the prime ideal $\frac{P}{0 \times J^{\prime}}$. Thus, $\frac{M_{1}}{0 \times J^{\prime}}=\frac{M_{2}}{0 \times J^{\prime}}$, and so $M_{1}=M_{2}$. Similarly, in the second case, we conclude that $M_{1}=M_{2}$. Accordingly, the ring $A \bowtie^{f, g}\left(J, J^{\prime}\right)$ is $p m$.

Corollary 2.6. (1) $A \bowtie^{f} J$ is pm if and only if A and $f(A)+J$ are $p m$. (2) $A \bowtie I$ is pm if and only if A is pm.

Recall that the ring R is called clean if each element in R can be expressed as the sum of a unit and an idempotent. The concept of clean rings was introduced by Nicholson [18]. Examples of clean rings include all commutative Von Neumann regular rings and local rings. A basic property of clean rings is that any homomorphic image of a clean ring is again clean. In [1], D.D. Anderson and V.P. Camillo proved that any clean ring is $p m$, and the equivalence holds when the ring has only finite number of minimal prime ideals. The notion of cleanness of bi-amalgamations is not yet performed. However, using the pm property, we can deduce the following result.

Corollary 2.7. (1) If $A \bowtie^{f, g}\left(J, J^{\prime}\right)$ is clean, then so are $f(A)+J$ and $g(A)+J^{\prime}$.
(2) If $f(A)+J$ and $g(A)+J^{\prime}$ have a finite number of minimal prime ideals, then $A \bowtie^{f, g}\left(J, J^{\prime}\right)$ is clean if and only if $f(A)+J$ and $g(A)+J^{\prime}$ are clean.
In particular, $A \bowtie^{f, g}\left(J, J^{\prime}\right)$ is Noetherian and clean if and only if $f(A)+J$ and $g(A)+J^{\prime}$ are Noetherian and clean.

Proof. (1). Follows from [13, Proposition 4.1] since every homomorphic image of a clean ring is clean (by [1, Proposition 2]).
(2). From [1, Theroem 5] and Proposition 2.5, it suffices to show that $A \bowtie^{f, g}$ $\left(J, J^{\prime}\right)$ has only a finite number of minimal ideals. Using [13, Proposition 4.1], when $J=0$ (resp. $J^{\prime}=0$), we have $A \bowtie^{f, g}\left(J, J^{\prime}\right) \cong g(A)+J^{\prime}$ (resp. $\left.A \bowtie^{f, g}\left(J, J^{\prime}\right) \cong g(A)+J^{\prime}\right)$, and so $A \bowtie^{f, g}\left(J, J^{\prime}\right)$ is satisfied the desired property. So, we may assume that $J \neq 0$ and $J^{\prime} \neq 0$.

Let P be a minimal prime ideal of $A \bowtie^{f, g}\left(J, J^{\prime}\right)$. From Lemma 2.1, there exists L in $\operatorname{Spec}(f(A)+J)$ or in $\operatorname{Spec}\left(g(A)+J^{\prime}\right)$ such that $P=\bar{L}$. Take, for example, the first case and let $K \in \operatorname{Spec}(f(A)+J)$ such that $K \subseteq L$. Then, $0 \times J^{\prime} \subseteq \bar{K} \subseteq \bar{L}=P$. Hence, $\bar{K}=\bar{L}$, and so $K=L$. Thus, L is a minimal
prime ideal of $f(A)+J$. Consequently, since $f(A)+J$ and $g(A)+J^{\prime}$ have only finite number of minimal prime ideals, $A \bowtie^{f, g}\left(J, J^{\prime}\right)$ has also only finite number of minimal prime ideals.

The last statement follows from [13, Proposition 4.2] and the fact that Noetherian rings have only finite number of minimal prime ideals.

Example 2.8. For each integer $n>1$, the Krull dimension of the Noetherian ring $\mathbb{Z} / n \mathbb{Z}$ is 0 . Thus, by [1, Corollary 11$], \mathbb{Z} / n \mathbb{Z}$ is a clean ring. By using Corollary 2.7, for each integer $1<m<n$, the ring $\mathbb{Z} / n \mathbb{Z} \bowtie(\bar{m})$ is clean.

Recall that a ring R is semi-local if it has a finite number of maximal ideals. Clearly, every semi-local ring has finite character. The converse is not true (take the ring \mathbb{Z} for example). Our next result proves that the finite character property and the semi-local property coincide over the bi-amalgamation construction. This is due to the form of maximal ideals of bi-amalgamation.

Proposition 2.9. Suppose that J and J^{\prime} are non-zero ideals of B and C, respectively. The following assertions are equivalent:
(1) $A \bowtie^{f, g}\left(J, J^{\prime}\right)$ is semi-local.
(2) $A \bowtie^{f, g}\left(J, J^{\prime}\right)$ has finite character.
(3) $f(A)+J$ and $g(A)+J^{\prime}$ are semi-local.

Proof. (1) $\Rightarrow(2)$. Clear, since every semi-local ring has finite character.
$(2) \Rightarrow(3)$. Since $J \times\{0\}$ and $\{0\} \times J^{\prime}$ are non zero ideals of $A \bowtie^{f, g}\left(J, J^{\prime}\right)$, there exist a finite number of maximal ideals of $A \bowtie^{f, g}\left(J, J^{\prime}\right)$ containing $J \times\{0\}$ and $\{0\} \times J^{\prime}$, respectively. Therefore, $\frac{A \bowtie^{f, g}\left(J, J^{\prime}\right)}{\{0\} \times J^{\prime}} \cong f(A)+J$ and $\frac{A \bowtie^{f, g}\left(J, J^{\prime}\right)}{J \times\{0\}} \cong g(A)+J^{\prime}$ are semi-local rings.
$(3) \Rightarrow(1)$. Following Lemma 2.1,

$$
\operatorname{Max}\left(A \bowtie^{f, g}\left(J, J^{\prime}\right)\right)=\left\{\bar{L} \mid L \in \operatorname{Max}(f(A)+J) \cup \operatorname{Max}\left(g(A)+J^{\prime}\right)\right\}
$$

Thus, $\operatorname{Max}\left(A \bowtie^{f, g}\left(J, J^{\prime}\right)\right)$ is finite since $\operatorname{Max}(f(A)+J)$ and $\operatorname{Max}\left(g(A)+J^{\prime}\right)$ are finite, and so $A \bowtie^{f, g}\left(J, J^{\prime}\right)$ is semi-local.

Corollary 2.10. Suppose that J and $I:=f^{-1}(J)$ are a non-zero ideals of B and A, respectively. Then, $A \bowtie^{f} J$ has finite character if and only if A and $f(A)+J$ are semi-local.

The transfer of h-local property to the bi-amalgamation algebras is easily deduced from Propositions 2.5 and 2.9 as follows:

Corollary 2.11. Suppose that J and J^{\prime} are non zero ideals of B and C respectively. Then, $A \bowtie^{f, g}\left(J, J^{\prime}\right)$ is h-local if and only if $f(A)+J$ and $g(A)+J^{\prime}$ are pm and semi-local.

Corollary 2.12. Suppose that J and $I:=f^{-1}(J)$ are a non-zero ideals of B and A, respectively. Then, $A \bowtie^{f} J$ is h-local if and only if A and $f(A)+J$ are $p m$ and semi-local.

Example 2.13. Let R be an Artinian ring (e.g., $\mathbb{Z} / n \mathbb{Z}$) and I a non-zero ideal of R. Then, since R is zero-dimensional (and so $p m$) ring and semi-local and by using the above corollary, $R \bowtie I$ is h-local.

Acknowledgements

The authors sincerely thank the reviewers for their valuable suggestions and useful comments that have led to the present improved version of the original manuscript.

References

[1] D.D. Anderson and V.P. Camillo, Commutative rings whose elements are a sum of a unit and idempotent, Comm. Algebra 30 (2002), no. 7, 3327-3336.
[2] W.D. Burgess and R. Raphael, On commutative clean rings and pm rings, in: Rings, Modules and Representations, pp. 35-55, Contemp. Math. 480, Amer. Math. Soc. Providence, RI, 2009.
[3] M. Chiti and N. Mahdou, Some homological properties of an amalgamated duplication of a ring along an ideal, Bull. Iranian Math. Soc. 38 (2012), no. 2, 507-515.
[4] M. Contessa, On pm-rings, Comm. Algebra 10 (1982), no. 1, 93-108.
[5] M. Contessa, On certain classes of pm-rings, Comm. Algebra 12 (1984), no. 11-12, 1447-1469.
[6] M. D'Anna, C. Finocchiaro and M. Fontana, Amalgamated algebras along an ideal, in: M. Fontana, S. Kabbaj, B. Olberding, I. Swanson (eds.), Commutative Algebra and its Applications, pp. 155-172, Walter de Gruyter, Berlin, 2009.
[7] M. D'Anna, C. Finocchiaro and M. Fontana, Properties of chains of prime ideals in an amalgamated algebra along an ideal, J. Pure Appl. Algebra 214 (2010), no. 9, 16331641.
[8] M. D'Anna and M. Fontana, The amalgamated duplication of a ring along a multiplicative-canonical ideal, Ark. Mat. 45 (2007), no. 2, 241-252.
[9] M. D'Anna and M. Fontana, An amalgamated duplication of a ring along an ideal: the basic properties, J. Algebra Appl. 6 (2007), no. 3, 443-459.
[10] G. De Marco and A. Orsatti, Commutative rings in which every prime ideal is contained in a unique maximal ideal, Proc. Amer. Math. Soc. 30 (1971) 459-466.
[11] L. Gillman and M. Jerison, Rings of Continuous Functions, Grad. Texts in Math. 43, Springer-Verlag, Berlin, 1976.
[12] M. Griffin, Rings of Krull type, J. Reine Angew. Math. 229 (1968) 1-27.
[13] S. Kabbaj, K. Louartiti and M. Tamekkante, Bi-amalgamation algebras along ideals, J. Commut. Algebra, to appear.
[14] M.D. Larsen, Prufer rings of finite character, J. Reine Angew. Math. 247 (1971) 92-96.
[15] E. Matlis, Cotorsion Modules, Memoirs Amer. Math. Soc. 49 (1964), 66 pages.
[16] E. Matlis, Decomposable modules, Trans. Amer. Math. Soc. 125 (1966) 147-179.
[17] C.J. Mulvey, A generalization of Gelfand duality, J. Algebra 56 (1979) 499-505.
[18] W.K. Nicholson, Lifting idempotents and exchange rings, Trans. Amer. Math. Soc. 229 (1977) 278-279.
[19] B. Olberding, Characterizations and constructions of h-local domains, in: Models, Modules and Abelian Groups, pp. 385-406, Walter de Gruyter, Berlin, 2008.
(Mohammed Tamekkante) University Moulay Ismail, Department of Mathematics, Faculty of Science, Box 11201 Zitoune Meknes, Morocco.

E-mail address: tamekkante@yahoo.fr
(El Mehdi Bouba) Department of Mathematics, Faculty of Science, Box 11201 Zitoune, University Moulay Ismail Meknes, Morocco.

E-mail address: mehdi8bouba@hotmail.fr

[^0]: Article electronically published on 31 October, 2017.
 Received: 13 March 2016, Accepted: 16 May 2016.

 * Corresponding author.

