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Abstract. In this paper, we use a complete pivoting strategy to com-

pute the IUL preconditioner obtained as the by-product of the Back-
ward Factored APproximate INVerse process. This pivoting is based on
the complete pivoting strategy of the Backward IJK version of Gaussian
Elimination process. There is a parameter α to control the complete piv-

oting process. We have studied the effect of different values of α on the
quality of the IUL preconditioner. For the numerical experiments sec-
tion, the IUL factorization which is coupled with the complete pivoting
is compared to the ILUTP and to the left-looking version of RIF which

is coupled with the complete pivoting strategy. As the preprocessing, we
have applied the maximum weighted matching coupled with the Reverse
Cuthill-Mckee (RCM) and multilevel nested dissection reordering.
Keywords: Backward factored APproximate INVerse, IUL precondi-

tioner, backward IJK version of Gaussian elimination, complete pivoting,
ILUTP, left-looking RIF with pivoting.
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1. Introduction

One can use the explicit and implicit preconditioner M for the linear system
of equations of the form

(1.1) Ax = b,

where the coefficient matrix A ∈ Rn×n is nonsingular, large, sparse and non-
symmetric and also x, b ∈ Rn. An explicit preconditioner M for system (1.1) is
an approximation of the matrix A−1. We can use this preconditioner to change
the original system (1.1) to the right or left preconditioned systems and then,
solve the preconditioned system by one of the Krylov subspace methods [17].
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In this case, we only need matrix-vector products which is really suitable for
parallel architecture.

In 1993, Luo presented the Backward Factored INVerse or BFINV algo-
rithm which computes the inverse factorization of A in the form of

A−1 = Z̄D̄−1W̄ ,(1.2)

where W̄ and Z̄T are unit upper triangular matrices and D̄ is a diagonal matrix
[11]. By applying a dropping rule for the entries of the W̄ and Z̄ matrices in
the BFINV algorithm, the explicit preconditioner M is computed as

A−1 ≈ M = ZD−1W,(1.3)

where W ≈ W̄ , D ≈ D̄, Z ≈ Z̄ and the process is termed as the Backward
Factored APproximate INVerse or BFAPINV. The implementation details to
compute this explicit preconditioner can be found in [23].

In 1999, Zhang presented the Forward Factored INVerse or FFINV algo-
rithm which computes the factorization (1.2). In this case, matrices Z̄ and
W̄ are unit upper and unit lower triangular, respectively and D̄ is again a di-
agonal matrix [22]. Using a dropping rule in this algorithm will compute the
explicit preconditioner (1.3) and the process is termed as the Forward Factored
APproximate INVerse or FFAPINV [13].

In [20], the authors could find a relation between the FFINV algorithm and
the left-looking version of the A-biconjugation process of Benzi and Tůma [1].
Based on this relation they showed that the explicit preconditioner (1.3) which
is computed from the FFAPINV algorithm is exactly the left-looking version
of the AINV preconditioner.

An implicit preconditioner for the system (1.1) is an approximation of matrix
A. This preconditioner can also be used as the right or left preconditioner.
When using the Krylov subspace methods to solve this preconditioned system,
we face the forward and backward solving which are the bottle necks in the
parallel implementation of implicit preconditioners in recent years. Solving
such a problem is so crutial to apply an implicit preconditioner on parallel
machines [9]. In [13], we could compute an implicit preconditioner M as the
by-product of the BFAPINV process. This preconditioner is in the form of

A ≈ M = UDL,(1.4)

where U and LT are unit upper triangular matrices and D is a diagonal matrix.
This preconditioner is an incomplete UDL factorization. We have merged the
factors D and L of this factorization and then, have termed it as the IULBF.
This notation refers to the IUL factorization obtained from Backward Factored
approximate inverse process. In the factorizations (1.3) and (1.4), L−1 ≈ Z
and U−1 ≈ W .
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Working with the FFAPINV process also gives us the chance to have an
implicit preconditioner

A ≈ M = LDU,(1.5)

as the by-product. In [19], we have termed this preconditioner as the ILUFF
which refers to the ILU preconditioner obtained from the Forward Factored ap-
proximate inverse process. In [2,15], the authors showed that one can compute
an ILU preconditioner in the form of (1.5) as the by-product of the AINV
preconditioner. This preconditioner was called RIF or Robust Incomplete
Factorization and has the left- and the right-looking versions. From the re-
sults presented in [20], one can easily verify that the ILUFF can be converted
to the left-looking version of RIF and vice versa. In [16], we have implemented
a type of complete pivoting strategy for the left-looking version of RIF which
can also be considered as the complete pivoting strategy for the ILUFF pre-
conditioner.

By applying the dropping strategy in the Forward form of the IJK version of
Gaussian Elimination process one can compute an implicit ILU preconditioner
for the system (1.1) [14, 16]. In a sequential architecture, the preconditioning
time of this ILU is less than the preconditioning time of the explicit precon-
ditioners BFAPINV, FFAPINV and AINV. There is also a backward form of
the IJK version of Gaussian elimination process. If we apply dropping in this
backward form, then we compute an implicit IUL preconditioner M as in (1.4).
Since the whole parts of the Schur-Complement matrices are explicitly avail-
able, then it is possible to apply the complete pivoting strategy in the backward
form of this version of Gaussian elimination process.

As in [20], can we find a relation between the BFINV and the right-looking
A-biconjugation process? Or more precisely, is the BFAPINV preconditioner
another version of right-looking AINV preconditioner? The answer is no, since
the factors of these two preconditioners are computed in a completely different
way.There is a version of right-looking AINV in which the factors can be com-
puted independently, but this is not possible in the BFAPINV preconditioner
and the computation of the factors of this preconditioner can not be seper-
ated [12, 13]. This indicates that the right-looking version of RIF is also quite
different from the IULBF preconditioner. In [12], we have implemented the
complete pivoting strategy for the right-looking RIF preconditioner. The main
purpose of this paper is to apply a complete pivoting strategy for the IULBF
preconditioner. This pivoting will be based on the complete pivoting strategy
of the Backward IJK version Gaussian elimination process.

In section 2 of this paper, we first review the Backward form of the IJK
version of Gaussian elimination process and then, present its complete pivoting
strategy. In section 3, we recall the BFINV algorithm and show that the
computed W̄ , D̄ and Z̄ factors in this algorithm can implicitly generate the
last column and the last row of the Schur-Complement matrices which are



Complete pivoting strategy for the IUL preconditioner 1420

Algorithm 1 (Backward IJK version of Gaussian Elimination process)

Input: A ∈ Rn×n.
Output: A = ŪD̄L̄.

1. Ū = L̄ = In , S̄(n) = A
2. for i = n to 1 do
3. d̄ii = q̄

(i−1)
i = p̄

(i−1)
i = (S̄(i))ii

4. for j = i − 1 to 1 do

5. q̄
(j−1)
i = (S̄(i))ij , p̄

(j−1)
i = (S̄(i))ji

6. L̄ij =
q̄
(j−1)
i
d̄ii

, Ūji =
p̄
(j−1)
i
d̄ii

7. end for
8. for j = i − 1 to 1 do
9. for k = i − 1 to 1 do
10. (S̄(i−1))jk = (S̄(i))jk − Ūjid̄iiL̄ik

11. end for
12. end for
13. end for
14. Return Ū = (Ūji)1≤j,i≤n, D̄ = diag(d̄ii)1≤i≤n and L̄ = (L̄ij)1≤i,j≤n.

computed in the Backward form of the IJK version of Gaussian elimination
process. Based on this connection, a complete pivoting strategy for the IULBF
preconditioner is proposed in section 4. In section 5, we have reported the
numerical results and the implementation details.

2. Backward IJK version of Gaussian elimination process

Algorithm 1, computes the exact factorization

A = ŪD̄L̄,(2.1)

where Ū and L̄T are unit upper triangular matrices and D̄ is a diagonal matrix.
In this algorithm, matrices Ū and L̄ are computed column-wise and row-wise,
respectively. This algorithm is termed as a backward form since at the end
of its i-th step, the columns n to i of matrix Ū , the rows n to i of matrix
L̄ and the diagonal entries d̄jj , for j ≥ i, are computed. At the end of this

step, the relation (2.2) holds. For j ≥ i, the vectors [h̄T
j , 1,

n−j︷ ︸︸ ︷
0, · · · , 0]T and

[ḡj , 1,

n−j︷ ︸︸ ︷
0, · · · , 0] in (2.2), are the j-th column of matrix Ū and the j-th row of

matrix L̄, respectively. In this relation, h̄j ∈ R(j−1)×1 and ḡj ∈ R1×(j−1),

for j ≥ i. The submatrix (S̄(i−1))j,k≤i−1 is the associated Schur-Complement
matrix. The computing pattern of matrices Ū , D̄, L̄ and Schur-Complement
can be found in Figure 1. Since the whole Schur-Complement matrices are
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Figure 1. Computing matrices Ū , D̄, L̄ and Schur-Complement
in the Backward IJK version of Gaussian Elimination process

available in this algorithm, then we can apply the complete pivoting strategy.

A =



1 .. .. ..

.
.
. h̄i h̄i+1 h̄n

1 . · · ·
1 .

1

.
.
. .

1


︸ ︷︷ ︸

Ū

×



(S̄(i−1))j,k≤i−1
d̄ii

d̄i+1,i+1

.
.
.

d̄nn


︸ ︷︷ ︸

S̄(i−1)

×



1

.
.
.

1
.. ḡi. 1
.. ḡi+1 . 1

.

.

.
.
.
.

.. ḡn . 1


︸ ︷︷ ︸

L̄

,(2.2)

Algorithm 2, is the Backward form of the IJK version of Gaussian elimination
process which is coupled with the complete pivoting and dropping. At the end
of step i+1 of this algorithm, the incomplete factorization 2.4 is computed. For
j ≥ i+1, matrices Πj and Σj are the row and the column permutation matrices
associated to step j. Also, Π = Πi+1 Πi+2 ... Πn and Σ = Σn ... Σi+2 Σi+1.
The submatrix (S(i))j,k≤i is the approximate Schur-Complement matrix. At
the end of this algorithm, the matrices U , D, L, Π and Σ will be computed
such that

ΠAΣ ≈ UDL.(2.3)
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For j ≥ i+ 1, the vectors [hT
j , 1,

n−j︷ ︸︸ ︷
0, · · · , 0]T and [gj , 1,

n−j︷ ︸︸ ︷
0, · · · , 0] in (2.4), are the

already computed columns and rows of matrices U and L, respectively and the
entries djj are the diagonal elements of D.

Πi+1 Πi+2 ... Πn︸ ︷︷ ︸
Π

A Σn ... Σi+2 Σi+1︸ ︷︷ ︸
Σ

≈



1 .. .. ..

. .
. hi+1 hi+2 hn

1 . · · ·
1 .

1

.
. . .

1


︸ ︷︷ ︸

U

×



(S(i))j,k≤i
di+1,i+1

di+2,i+2

.
.
.

dnn


︸ ︷︷ ︸

S(i)



1

.
.
.

1
.. gi+1. 1
.. gi+2 . 1

.

.

.
.
.
.

.. gn . 1


︸ ︷︷ ︸

L

,(2.4)

In this relation, hj ∈ R(j−1)×1 and gj ∈ R1×(j−1), for j ≥ i+ 1.
Here, we explain the i-th step of Algorithm 2. At the beginning of this

step, the elements mi and ni are set equal to zero. These two elements will
be the number of row and column pivoting at the end of this step. The two
logical parameters satisfied p and satisfied q are initialized as false in
line 4 of the algorithm. When satisfied p (satisfied q) is false, then this
indicates that we should apply the row (column) pivoting. Since satisfied p
is false, then the internal while loop will be run. In lines 6-8 of the algorithm,

the vector (p
(0)
i , p

(1)
i , · · · , p(i−1)

i )T is obtained which is the last column of the

approximate Schur-Complement matrix (S(i))j,k≤i. Suppose that |p(k−1)
i | =

maxm≤i |p(m−1)
i |. In line 9 of the algorithm, we check whether the row pivoting

criterion

|p(i−1)
i | < α|p(k−1)

i |,(2.5)

is satisfied for α ∈ (0, 1]. In (2.5), α is a parameter which controls the pivoting
process. If this criterion is satisfied, then the lines 10-14 of the algorithm will

be run. In these lines, mi is incremented by one, π
(i)
mi is set equal to the identity

matrix and satisfied q is set to false which means that after the row pivoting
one should also apply the column pivoting. Also, the rows i and k of matrices

U − I and π
(i)
mi and the entries p

(i−1)
i and p

(k−1)
i are interchanged in these lines

and matrices S(i) and Π are updated. After the row pivoting, satisfied p

is set to true in line 16 of the algorithm. The vector (q
(0)
i , q

(1)
i , · · · , q(i−1)

i )

which is the last row of the approximate Schur-Complement matrix (S(i))j,k≤i
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is obtained in lines 17-19. Since the parameter satisfied q is false, then the

lines 21-27 of the algorithm are run. Suppose that |q(l−1)
i | = maxm≤i |q(m−1)

i |.
In line 21 of the algorithm, the column pivoting criterion

|q(i−1)
i | < α|q(l−1)

i |,(2.6)

is checked. In (2.6), α ∈ (0, 1] is again the pivoting parameter. If this criterion

is satisfied, then the parameter ni is incremented by one, the matrix σ
(i)
ni is

initialized as the identity matrix and satisfied p is set to false which indicates
that after the column pivoting we should again apply the row pivoting strategy.

Also, the columns i and l of matrices L−I and σ
(i)
ni and the elements q

(i−1)
i and

q
(l−1)
i are interchanged and matrices S(i) and Σ are updated. After the column
pivoting strategy, the parameter satisfied q is set to true in line 29 of the
algorithm and the internal while loop will be run again. This will be continued
until a desired pivot element will be obtained. In line 31 of the algorithm, the
(i, i) entry of the approximate Schur-Complement matrix (S(i))j,k≤i is defined
as the (i, i) entry of matrix D. In lines 32-35 of the algorithm, the i-th column
of matrix U and the i-th row of matrix L are computed and dropped. The
dropping criterion is checked in line 34 of the algorithm. In lines 36-40 of the
algorithm, the new approximate Schur-Complement matrix (S(i−1))j,k≤i−1 is
obtained.

If we define Πi = π
(i)
miπ

(i)
mi−1 · · ·π

(i)
1 , Σi = σ

(i)
1 · · ·σ(i)

ni−1σ
(i)
ni and if we consider

[hT
i , 1,

n−i︷ ︸︸ ︷
0, · · · , 0]T and [gi, 1,

n−i︷ ︸︸ ︷
0, · · · , 0] as the i-th column of matrix U and the i-

th row of matrix L, respectively, then at the end of step i of Algorithm 2, the
relation

Πi Πi+1 ... Πn︸ ︷︷ ︸
Π

A Σn ... Σi+1 Σi︸ ︷︷ ︸
Σ

≈



1 .. .. ..

.
.
. hi hi+1 hn

1 . · · ·
1 .

1

.
.
. .

1


︸ ︷︷ ︸

U

×



(S(i−1))j,k≤i−1
dii

di+1,i+1

.
.
.

dnn


︸ ︷︷ ︸

S(i−1)



1

.
. .

1
.. gi. 1
.. gi+1 . 1

.

.

.
.
.
.

.. gn . 1


︸ ︷︷ ︸

L

,

holds.
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Algorithm 2 (Backward IJK version of Gaussian Elimination process
with complete pivoting and dropping)

Input: A ∈ Rn×n , τl and τu ∈ (0, 1) be the drop tolerances for L and U matrices and prescribe
a pivoting tolerance α ∈ (0, 1]
Output: ΠAΣ ≈ UDL

1. U = L = Π = Σ = In , S(n) = A
2. for i = n to 1 do
3. mi = ni = 0
4. satisfied p = false, satisfied q = false
5. while not satisfied p do
6. for j = i to 1 do

7. p
(j−1)
i = eTj S(i) ei

8. end for
9. if |p(i−1)

i | < α maxm≤i |p
(m−1)
i | then

10. mi = mi + 1, π(i)
mi

= In

11. satisfied q = false, choose k such that |p(k−1)
i | = maxm≤i |p

(m−1)
i |

12. Interchange the rows i and k of U − I and π(i)
mi

and the elements p
(i−1)
i and p

(k−1)
i

13. S(i) = π(i)
mi

S(i)

14. Π = π(i)
mi

Π

15. end if
16. satisfied p = true
17. for j = i to 1 do

18. q
(j−1)
i = eTi S(i) ej

19. end for
20. if not satisfied q then

21. if |q(i−1)
i | < α maxm≤i |q

(m−1)
i | then

22. ni = ni + 1, σ(i)
ni

= In

23. satisfied p = false, choose l such that |q(l−1)
i | = maxm≤i |q

(m−1)
i |

24. Interchange the columns i and l of L − I and σ(i)
ni

and the elements q
(i−1)
i and

q
(l−1)
i

25. S(i) = S(i) σ(i)
ni

26. Σ = Σ σ(i)
ni

27. end if
28. end if
29. satisfied q = true
30. end while
31. dii = eTi S(i) ei {Consider that eTi S(i) ei = p

(i−1)
i = q

(i−1)
i }

32. for j = i − 1 to 1 do

33. Lij =
q
(j−1)
i
dii

, Uji =
p
(j−1)
i
dii

34. If |Lij | < τl, then set Lij = 0. Also if |Uji| < τu, then set Uji = 0
35. end for
36. for j = i − 1 to 1 do
37. for k = i − 1 to 1 do
38. (S(i−1))jk = (S(i))jk − UjidiiLik

39. end for
40. end for
41. end for
42. Return L = (Lij)1≤i,j≤n, D = diag(dii)1≤i≤n, U = (Uji)1≤j,i≤n, Π and Σ

3. Backward Factored APproximate INVerse process

Algorithm 3, computes the factorization (1.2). This algorithm is termed as

a backward form since at the end of its i-th step, for j ≥ i, the vectors w̄
(n−j)
j
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(a) (b)

Figure 2. (a) Pattern of the update for the rows of matrix W̄ in
Algorithm 3. (b) Pattern of the update for the columns of matrix Z̄
in Algorithm 3

which are the rows n to i of matrix W̄ , the vectors z̄
(n−j)
j which are the columns

n to i of matrix Z̄ and the entries d̄jj are computed.

Algorithm 3 (BFINV algorithm)

Input: A ∈ Rn×n

Output: A−1 = Z̄D̄−1W̄

1. for i = n to 1 do
2. w̄

(0)
i = eTi , z̄

(0)
i = ei.

3. for j = i + 1 to n do

4. p̄
(i−1)
j = eTi Az̄

(n−j)
j q̄

(i−1)
j = w̄

(n−j)
j Aei

5. z̄
(j−i)
i = z̄

(j−i−1)
i −

q̄
(i−1)
j
d̄jj

z̄
(n−j)
j , w̄

(j−i)
i = w̄

(j−i−1)
i −

p̄
(i−1)
j
d̄jj

w̄
(n−j)
j

6. end for
7. d̄ii = w̄

(n−i)
i Aei

8. end for
9. Return W̄ = [(w̄

(n−1)
1 )T , (w̄

(n−2)
2 )T , . . . , (w̄(0)

n )T ]T , D̄ = diag(d̄ii)1≤i≤n and Z̄ =

[z̄
(n−1)
1 , z̄

(n−2)
2 , . . . , z̄(0)

n ].

Consider step i of Algorithm 3. In the internal j loop of this step, a linear

combination of the already obtained columns z̄
(n−j)
j , for j ≥ i+1, will compute

the column z̄
(n−i)
i of matrix Z̄. Also, a linear combination of the already

obtained rows w̄
(n−j)
j , for j ≥ i + 1, are used to compute the row w̄

(n−i)
i of

matrix W̄ . In Figure 2, we have drawn a pattern for computing the rows of
matrix W̄ and the columns of matrix Z̄ in this algorithm.
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Figure 3. Computing pattern of the U , D and L factors in Algo-
rithm 4

Recall that at the beginning of step i+1 of Algorithm 1, the Schur-Complement
matrices (S̄(j))k,l≤j , for j ≥ i+1, were already obtained. There is the relation

(S̄(j))ij = eTi Az̄
(n−j)
j , (S̄(j))ji = (w̄

(n−j)
j )Aei, j ≥ i+ 1,

which connects the Schur-Complement matrices in Algorithm 1 to the columns
and rows of matrices Z̄ and W̄ of Algorithm 3. More details can be found
in [13]. Therefore, we can use the relation

Ūij =
eTi Az̄

(n−j)
j

d̄jj
, L̄ji =

(w̄
(n−j)
j )Aei

d̄jj
, j ≥ i+ 1,(3.1)

to compute the i-th row and the i-th column of matrices Ū and L̄ in (2.1).
Since we use the dropping strategy in line 8 of Algorithm 4, then the

matrices W = [(w
(n−1)
1 )T , · · · , (w(0)

n )T ]T , Z = [z
(n−1)
1 , · · · , z(0)n ] and D =

diag(dii)1≤i≤n are computed which are the approximations of the matrices

W̄ = [(w̄
(n−1)
1 )T , · · · , (w̄(0)

n )T ]T , Z̄ = [z̄
(n−1)
1 , · · · , z̄(0)n ] and D̄ = diag(d̄ii)1≤i≤n

computed in Algorithm 3. The incomplete factorization in (1.4) is also com-
puted as the by-product of Algorithm 4. Based on the two relations in (3.1),
the entries of matrices U and L are computed in lines 4 and 5 of this algorithm.
After merging the factors D and L, this incomplete factorization is termed as
the IULBF preconditioner [13]. The factors U and L of this preconditioner are
computed row-wise and column-wise, respectively. The computation of these
two factors does not depend on each other. Figure 3, shows the pattern of the
computation for matrices U , D and L of this preconditioner.
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Algorithm 4 (IULBF preconditioner obtained from BFAPINV pro-
cess)

Input: A ∈ Rn×n and τl, τu, τz, τw ∈ (0, 1) be drop tolerance parameters
Output: A ≈ UDL

1. for i = n to 1 do
2. w

(0)
i = eTi , z

(0)
i = ei.

3. for j = i + 1 to n do

4. p
(i−1)
j = eTi Az

(n−j)
j q

(i−1)
j = w

(n−j)
j Aei

5. Uij =
p
(i−1)
j
djj

Lji =
q
(i−1)
j
djj

6. If |Lji| < τl, then set Lji = 0. Also if |Uij | < τu, then set Uij = 0

7. z
(j−i)
i = z

(j−i−1)
i −

q
(i−1)
j
djj

z
(n−j)
j , w

(j−i)
i = w

(j−i−1)
i −

p
(i−1)
j
djj

w
(n−j)
j

8. For all l ≥ j, if |z(j−i)
li | < τz and |w(j−i)

il | < τw, then set z
(j−i)
li = 0 and w

(j−i)
il = 0

9. end for
10. dii = w

(n−i)
i Aei

11. end for
12. Return U = (Uij)1≤i,j≤n, D = diag(dii)1≤i≤n and L = (Lji)1≤j,i≤n.

At the beginning of step i of Algorithm 1, the Schur-Complement matrix

(S̄(i))j,k≤i is available. Also, at the end of step i of Algorithm 3, the row w̄
(n−i)
i

and the column z̄
(n−i)
i have been computed. The relation

(3.2) (S̄(i))ji = p̄
(j−1)
i = eTj Az̄

(n−i)
i , (S̄(i))ij = q̄

(j−1)
i = (w̄

(n−i)
i )Aej , j ≤ i,

enables us to only obtain the last column and the last row of the Schur-
Complement matrix (S̄(i))j,k≤i [7]. Therefore, this relation also connects the
two Algorithms 1 and 3. This relation will help us in Algorithm 5 to extend
the complete pivoting strategy of the Backward form of the IJK version of
Gaussian Elimination process to the complete pivoting strategy for the IULBF
preconditioner.

4. Complete pivoting strategy for the IULBF preconditioner

In Algorithm 5, we use a complete pivoting strategy to obtain the incom-
plete factorization (2.3). We term this incomplete factorization as the IULBF
preconditioner with complete pivoting strategy. The pivoting strategy of this
algorithm is based on the complete pivoting strategy of the Backward IJK
version of Gaussian elimination process.

At the end of step i+1 of this algorithm, suppose that Π = Πi+1Πi+2 · · ·Πn

and Σ = Σn · · ·Σi+2Σi+1 where Πj and Σj , for j ≥ i + 1, are the row and
the column permutation matrices associated to step j of this algorithm. Also,
consider that the columns n to i+1 of matrix L, the rows n to i+1 of matrix U
and the entries djj , for j ≥ i+1, have already been computed. Here, we explain
the step i of this algorithm. In line 2, we initialize the parameters mi, ni and
iter. At the end of this step, mi and ni will be the number of row and column
pivoting strategies, respectively. The parameter iter will help us in line 12 to
compute the pivot entry. In line 3, the two logical variables satisfied p and
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satisfied q are set equal to false. When satisfied p (satisfied q) is false,
then we need to apply the row (column) pivoting. Since satisfied p is false,
then the algorithm will enter the internal while loop. In line 5, the parameter
iter is incremented by one. In lines 6-11 of the algorithm, the column vector

z
(n−i)
i is computed. As we explained before, at the end of step i+1 of Algorithm
2, the relation (2.4) holds and therefore, the approximate Schur-Complement
matrix (S(i))j,k≤i is available. In lines 12-15 of Algorithm 5, the relation

(S(i))ji ≈ p
(j−1)
i = eTj (ΠAΣ)z

(n−i)
i , j ≤ i,(4.1)

enables us to implicitly approximate the last column of the approximate Schur-
Complement matrix (S(i))j,k≤i. This relation has been written based on the
first part of relation (3.2). We have mentioned in line 12 that if only iter
is equal to 1, then (S(i))ii can be approximated from (4.1). In lines 16-22
of the algorithm, we are applying the row pivoting strategy. Suppose that

|p(k−1)
i | = maxm≤i |p(m−1)

i |. In these lines, we first check whether the row
pivoting criterion (2.5) is satisfied. If yes, then mi is incremented by one, the

matrix π
(i)
mi is initialized as the identity matrix and then, the rows i and k of this

matrix will be interchanged. Also, satisfied q is set to false, the entries p
(i−1)
i

and p
(k−1)
i are interchanged and the matrix Π is updated by π

(i)
mi . The lines

16-22 of Algorithm 5 are the same as the lines 9-15 of Algorithm 2, except that
in Algorithm 5, there is no need to update the matrix S(i) and to interchange
the rows i and k of matrix U − I. After the row pivoting strategy, we set
satisfied p to true in line 23 of Algorithm 5. In line 24 of this algorithm,
we check whether the column pivoting is needed. Since satisfied q is false,
then the lines 25-43 of the algorithm will be run. In lines 25-30, the row vector

w
(n−i)
i is computed. In line 31, we set the pivot entry q

(i−1)
i equal to the entry

p
(i−1)
i which was an approximation for the (i, i) entry of (S(i))j,k≤i. In lines

32-34, we use the relation

(S(i))ij ≈ q
(j−1)
i = w

(n−i)
i (ΠAΣ)ej , j < i,

to implicitly approximate the rest of the entries of the last row of the approx-
imate Schur-Complement matrix (S(i))j,k≤i. This relation is proposed based
on the second part of relation (3.2). The column pivoting strategy is applied

in lines 35-41 of the algorithm. Suppose that |q(l−1)
i | = maxm≤i |q(m−1)

i |. In
these lines, we first test whether the column pivoting criterion (2.6) is satis-

fied. If yes, then ni is incremented by one, σ
(i)
ni is initialized as the identity

matrix and then, the columns i and l of this matrix will be interchanged. Also,

the parameter satisfied p is set to false, the elements q
(i−1)
i and q

(l−1)
i are

interchanged and the matrix Σ will be updated by σ
(i)
ni . Comparing the lines

35-41 of Algorithm 5 by the lines 21-27 of Algorithm 2 indicates that there are
differences between the column pivoting strategies of the two algorithms.
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Algorithm 5 (IULBF preconditioner coupled with complete pivoting strategy)

Input: Let A ∈ Rn×n, U = L = Π = Σ = In, τw, τz, τl, τu ∈ (0, 1) be drop tolerances and
prescribe a pivoting tolerance α ∈ (0, 1].
Output: ΠAΣ ≈ UDL.

1. for i = n to 1 do
2. mi = ni = iter = 0
3. satisfied p = satisfied q = false
4. while not satisfied p do
5. iter = iter + 1

6. z
(0)
i = ei

7. for j = i + 1 to n do

8. q
(i−1)
j = w

(n−j)
j (ΠAΣ)ei

9. z
(j−i)
i = z

(j−i−1)
i − (

q
(i−1)
j
djj

)z
(n−j)
j

10. For all l ≥ j, if |z(j−i)
li | < τz , then set z

(j−i)
li = 0

11. end for
12. If iter = 1, then set p

(i−1)
i = eTi (ΠAΣ)z

(n−i)
i . Otherwise set p

(i−1)
i = q

(i−1)
i

13. for j = i − 1 to 1 do

14. p
(j−1)
i = eTj (ΠAΣ)z

(n−i)
i

15. end for
16. if |p(i−1)

i | < α maxm≤i |p
(m−1)
i | then

17. mi = mi + 1, π(i)
mi

= In.

18. satisfied q = false

19. Choose k such that |p(k−1)
i | = maxm≤i |p

(m−1)
i |.

20. Interchange the rows i and k of π(i)
mi

and the elements p
(i−1)
i and p

(k−1)
i

21. Π = π(i)
mi

Π

22. end if
23. satisfied p = true
24. if not satisfied q then

25. w
(0)
i = eTi

26. for j = i + 1 to n do

27. p
(i−1)
j = eTi (ΠAΣ)z

(n−j)
j

28. w
(j−i)
i = w

(j−i−1)
i − (

p
(i−1)
j
djj

)w
(n−j)
j

29. For all l ≥ j, if |w(j−i)
il | < τw, then set w

(j−i)
il = 0

30. end for
31. q

(i−1)
i = p

(i−1)
i

32. for j = i − 1 to 1 do

33. q
(j−1)
i = w

(n−i)
i (ΠAΣ)ej

34. end for
35. if |q(i−1)

i | < α maxm≤i |q
(m−1)
i | then

36. ni = ni + 1, σ(i)
ni

= In

37. satisfied p = false

38. Choose l such that |q(l−1)
i | = maxm≤i |q

(m−1)
i |

39. Interchange the columns i and l of σ(i)
ni

and the elements q
(i−1)
i and q

(l−1)
i

40. Σ = Σσ(i)
ni

41. end if
42. satisfied q = true
43. end if
44. end while
45. dii = p

(i−1)
i

46. for j = i + 1 to n do

47. Lji =
q
(i−1)
j
djj

, Uij =
p
(i−1)
j
djj

48. If |Lji| < τl, then set Lji = 0. Also if |Uij | < τu, then set Uij = 0.
49. end for
50. end for
51. Return L = (Lji)1≤j,i≤n, D = diag(dii)1≤i≤n, U = (Uij)1≤i,j≤n, Π and Σ.
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Figure 4. Row and column pivoting strategies in step i of Algo-
rithm 5

Despite the column pivoting strategy of Algorithm 2, there is no need to
interchange the columns i and l of matrix L − I and to update matrix S(i)

in the column pivoting strategy of Algorithm 5. After the column pivoting
strategy, the parameter satisfied q is set to true in line 42 of Algorithm 5.
Since satisfied p is false, then the internal while loop should be run one
more time. At the end of this loop, we set the (i, i) entry of matrix D equal

to the element p
(i−1)
i in line 45 of the algorithm. The i-th column of matrix L

and the i-th row of matrix U are computed as the by-products in lines 46-49
of the algorithm.

In Figure 4, we have drawn a pattern for the row and the column pivoting
strategies in step i of Algorithm 5.

5. Numerical results and implementation details

In this section, we report the results of numerical experiments to study the
effectiveness of complete pivoting on the quality of the IULBF preconditioner.
We have also presented some comparison between the three preconditioners
ILUTP [17], left-looking RIF with complete pivoting [16] and IULBF with
complete pivoting. This comparison is based on the results for 165 artificial
linear systems where the coefficient matrices have been downloaded from [4].
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We have proposed the names of these matrices in Table 1. The solution of
the systems are the vectors e = [1, · · · , 1]T and the right hand side vectors are
b = Ae. We have applied all the preconditioners as the right preconditioner
for these linear systems and then have solved the preconditioned systems by
the GMRES(30) method. The code of GMRES can be found in [18]. For all
the systems, the initial solution is taken as the zero vector and the stopping
criterion is satisfied when the relative residual is less than 10−8. For the original
linear systems we have considered 5000 as the maximum number of iterations
of the GMRES(30) method while for the preconditioned systems this value has
been set to 2500. We have written the codes of plain IULBF and IULBF with
complete pivoting strategy in Fortran 77.

We have considered the following details in the implementation of Algo-
rithms 4 and 5.

• Matrix A is stored in CSR and CSC formats.
• Matrices Z and W are stored in CSC and CSR formats, respectively.
This item is associated to line 7 of Algorithm 4 and to lines 9 and 28
of Algorithm 5.

• To break the complexity of these two algorithms, we need to access
matrices Z and W row-wise and column-wise, respectively. For this
aim, we have also stored matrices Z and W in dynamic sparse row and
dynamic sparse column formats, respectively. For more details about
these two formats see [1].

• The arrays invpermw and permw are used to store the information
of matrices Π and ΠT , respectively. Also, the arrays sigmaz and
invsigmaz are used to consider the information of the matrices Σ and
ΣT , respectively.

The first, third and fourth items are essential for the efficient implementation
of line 4 of Algorithm 4 and lines 8 and 27 of Algorithm 5. These items will
shorten the running time of these two algorithms.

The code of left-looking RIF with complete pivoting is also in Fortran 77.
The code of ILUTP is available in [18]. All the numerical experiments have
been run on a computing server with 30 GB of RAM. For plain IULBF, IULBF
with complete pivoting and left-looking RIF with complete pivoting we have
applied the multilevel nested dissection reordering [3, 10] while for ILUTP the
RCM [3, 8] has been used as the reordering. This is why we have used the
notations Metis and RCM in the title of Figures 5-13 and 17-25. For all the
linear systems the maximum weighted matching process [6] has been coupled
with the reorderings. This is the reason we have mentioned MC64 in the
title of all figures. This process is available in the MC64 package of the HSL
library [21].
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The density of all preconditioners is defined as

density =
nnz(L) + nnz(U)

nnz(A)
,

where nnz(L), nnz(U) and nnz(A) are the number of nonzero entries of ma-
trices L, U and A, respectively.

We have seperated the numerical experiments of this paper to two parts. In
the next subsection we explain the first part.

5.1. First part of experiments. For all 165 linear systems we have con-
sidered τw = τz = 0.1 and τl = τu = 0.001 and have computed the plain
IULBF preconditioner. In Tables 3 and 4, and in Figures 5 and 6, the notation
IULBF(0.1,0.001) refers to this case.

For all the linear systems, we have set τw = τz = 0.1 and τl = τu = 0.001
and then computed the IULBF with complete pivoting for α =0.01, 0.1, 0.25,
0.5, 0.75, 1.0. In Tables 3 and 4 and in Figures 5-7 and 14-16, we have used
the notation IULBFP(α,0.1,0.001) for these cases. For these preconditioners we
have plotted the number of iterations, density, preconditioning time, total time,
total number of row and total number of column pivoting performance profiles
in Figures 5-7. As in [5], we here review the concept of performance profile for
these parameters. Consider S as the set of all preconditioners IULBF(0.1,0.001)
and IULBFP(α,0.1,0.001), for α =0.01, 0.1, 0.25, 0.5, 0.75, 1.0. Also let p be
one of the 165 test linear systems. If s ∈ S, then the performance ratio rp,s is
defined as

rp,s =
tp,s

min{tp,s|s ∈ S}
,(5.1)

where tp,s is the required preconditioning time to compute the preconditioner
s for system p. The distributed function for the performance ratio is

ρs(τ) =
1

165
size({p ∈ P |rp,s ≤ τ}),(5.2)

where P is the set of all linear systems. This distributed function is known as
the performance profile of the preconditioning time associated to s. As it is
claimed in [5], if P is suitably large, then the preconditioners with larger ρs(τ)
need the less preconditioning time than the other preconditioners.
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(a) (b)

Figure 5. (a) Number of iterations performance profile for

IULBFP(α,0.1,0.001) and IULBF(0.1,0.001). (b) Density performance
profile for IULBFP(α,0.1,0.001) and IULBF(0.1,0.001)

(a) (b)
Figure 6. (a) Preconditioning time performance profile for
IULBFP(α,0.1,0.001) and IULBF(0.1,0.001). (b) Total time perfor-

mance profile for IULBFP(α,0.1,0.001) and IULBF(0.1,0.001)

(a) (b)
Figure 7. (a) Total number of row pivoting performance profile for

IULBFP(α,0.1,0.001). (b) Total number of column pivoting performance
profile for IULBFP(α,0.1,0.001)
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If in (5.1) we replace tp,s by the density, total time, total number of row
and total number of column pivoting, then ρs(τ) in (5.2) will be the asso-
ciated performance profile of these parameters. We define the GMRES(30)
method which is coupled with one of the preconditioners IULBF(0.1,0.001)
and IULBFP(α,0.1,0.001), for α =0.01, 0.1, 0.25, 0.5, 0.75, 1.0 as a solver.
Consider S1 as the set of these solvers. For s ∈ S1, if in (5.1) we replace the
preconditioning time tp,s by the number of iterations of the solver s, then rp,s
will be the performance ratio for the number of iterations and ρs(τ) in (5.2) will
be the performance profile associated to the number of iterations. It should be
mentioned that the larger number of iteration performance profile for a solver
s is preferred since it indicates that the less number of iterations is required.
In Figures 5-7, one can also find the associated performance profile plots for
IULBF(0.1,0.001) preconditioner.

In Figures 5 and 6, we have reported the percentage of the solved right pre-
conditioned systems by each of the preconditioners. From these figures, one can
come to the following observations. For α = 0.01, 0.1, . . . , 1.0, all of the pre-
conditioners IULBFP(α,0.1,0.001), make the GMRES(30) method convergent
in less number of iterations than the IULBF(0.1,0.001) preconditioner. The
choice of α = 0.01 gives less number of iterations of the GMRES(30) method
while it needs less total number of row and less total number of column pivoting
than the other choices of α.

The density and preconditioning time of IULBFP(α,0.1,0.001), for α =
0.01, 0.1, . . . , 1.0, are more or less the same while the IULBF(0.1,0.001) is the
most sparse preconditioner. The IULBFP(0.01,0.1,0.001) has the least total
time among all preconditioners. From these figures we can say that all of
the preconditioners IULBFP(α,0.1,0.001) for different values of α, have better
quality than the IULBF(0.1,0.001) at reducing the number of iterations while
the best choice of α is 0.01.

As it is mentioned in [16], the left-looking version of RIF preconditioner is
in the form of A ≈ M = LDU and also needs to compute the upper triangular
factors Z and W such that A−1 ≈ ZD−1WT . For all the 165 linear systems,
we have also computed this preconditioner which is coupled with complete piv-
oting strategy. To compute this preconditioner the drop tolerance parameters
τw and τz have been set equal to 0.1 and the drop tolerance parameters τl and
τu have been considered as 0.001. The complete pivoting strategy for this pre-
conditioner also depends on a parameter α. We have set this parameter equal
to α =0.01, 0.1, 0.25, 0.5, 0.75, 1.0. The preconditioning time, density, number
of iterations, total time, total number of row and column pivoting performance
profiles can be found in Figures 8-10. These performance profiles are computed
when we define S to be the set of all preconditioners LLRIFP(α,0.1,0.001), for
α = 0.01, 0.1, 0.25, 0.5, 0.75, 1.0 and S1 to be the set of all these preconditioners
which are coupled with GMRES(30).
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(a) (b)

Figure 8. (a) Number of iterations performance profile for

LLRIFP(α,0.1,0.001). (b) Density performance profile for

LLRIFP(α,0.1,0.001)

(a) (b)
Figure 9. (a) Preconditioning time performance profile for

LLRIFP(α,0.1,0.001). (b) Total time performance profile for

LLRIFP(α,0.1,0.001)

(a) (b)
Figure 10. (a) Total number of row pivoting performance profile for

LLRIFP(α,0.1,0.001). (b) Total number of column pivoting performance
profile for LLRIFP(α,0.1,0.001)
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(a) (b)

Figure 11. (a) Number of iterations performance profile for

ILUTP(permtol,0.001,10). (b) Density performance profile for

ILUTP(permtol,0.001,10)

(a) (b)
Figure 12. (a) Preconditioning time performance profile for
ILUTP(permtol,0.001,10). (b) Total time performance profile for

ILUTP(permtol,0.001,10)

Figure 13. Total number of pivoting performance profile for
ILUTP(permtol,0.001,10) preconditioner
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In Tables 3 and 4 and in Figures 8-10 and 14-16 the notation LLRIFP(α,0.1,0.001),
for α = 0.01, 0.1, 0.25, 0.5, 0.75, 1.0, indicates the left-looking version of RIF
coupled with complete pivoting which uses τz = τw = 0.1 and τl = τu = 0.001
as the drop tolerance parameters and α as the pivoting parameter. In these
figures, for each of the preconditioners we have also presented the percent-
age of the solved linear systems. Figure 8 shows that LLRIFP(0.01,0.1,0.001)
gives the less number of iterations of the GMRES(30) method. It also indi-
cates that the density of the preconditioners LLRIFP(α,0.1,0.001), for α =
0.01, 0.1, 0.25, 0.5, 0.75 are nearly the same while LLRIFP(1.0,0.1,0.001) is the
most dense preconditioner. One can observe in Figure 9 that there is not a
great difference between the preconditioning time (total time) of all of the pre-
conditioners LLRIFP(α,0.1,0.001), for α = 0.01, 0.1, · · · , 1.0. From the graphs
in Figure 10 it can be concluded that the choice of α = 0.01 generates the
less total number of row and the less total number of column pivoting than
the other choices of α. From the three Figures 8-10 it can be said that the
choice of α = 0.01 is the most effective value than the other choices of α for
the left-looking RIF with complete pivoting.

The ILUTP preconditioner has three parameters to be set. They are τ
which is the drop tolerance parameter for its L and U factors, the lfil which
is the total number of elements that should be kept in each row of L and
U factors and the permtol which is the column pivoting parameter. This
preconditioner only applies the column pivoting strategy. To compute this
preconditioner we have selected τ = 0.001, lfil = 10 and permtol equal to
0.01, 0.1, 0.25, 0.5, 0.75, 1.0. In Tables 3 and 4 and in Figures 11-13 and 14-
16, the notation ILUTP(permtol,0.001,10) refer to these cases. In Figures
11-13, there are the performance profile plots for the number of iterations,
density, preconditioning time, total time and total number of column pivot-
ing associated to the preconditioners ILUTP(permtol,0.001,10), for permtol =
0.01, 0.1, 0.25, 0.5, 0.75, 1.0. These plots can be obtained when S in (5.1) con-
sists of ILUTP(permtol,0.001,10), for permtol =0.01, 0.1, 0.25, 0.5, 0.75, 1.0
and S1 to be the set of all these preconditioners which are coupled with
GMRES(30). In the legend of these figures one can also see the percent-
age of the solved right preconditioned systems associated to each precondi-
tioner. From these figures one can conclude the following information. It
is hard to see any great difference between the density of the precondition-
ers ILUTP(permtol,0.001,10), for permtol = 0.01, 0.1, 0.25, 0.75, 1.0 while the
choice of permtol = 0.5 generates the most dense ILUTP preconditioner. The
worst number of iterations and total time are due to the choice permtol = 0.5
while the least preconditioning time is associated to this value of permtol. The
choice of permtol = 0.25 seems to give the best number of iterations of the
GMRES(30) method.
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(a) (b)

Figure 14. (a) Number of iterations performance profile for ILUTP,

IULBFP and LLRIFP. (b) Density performance profile for ILUTP,
IULBFP and LLRIFP

(a) (b)
Figure 15. (a) Preconditioning time performance profile for ILUTP,
IULBFP and LLRIFP. (b) Total time performance profile for ILUTP,

IULBFP and LLRIFP

Figure 16. Total number of pivoting performance profile for ILUTP,
IULBFP and LLRIFP

Except for the value permtol = 0.5, for the other choices of permtol, the
preconditioning time of the preconditioners are more or less the same. The
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permtol = 0.5 and permtol = 1.0 need the least and the most total number of
column pivoting, respectively.

In Figures 14 and 15 we have compared the number of iterations, den-
sity, preconditioning and total time performance profiles of the preconditioners
ILUTP(0.25,0.001,10), IULBFP(0.01,0.1,0.001) and LLRIFP(0.01,0.1,0.001).
We have summed the total number of row and column pivoting for IULBF with
complete pivoting and for left-looking RIF with complete pivoting. This param-
eter is termed as the total number of pivoting associated to these precondition-
ers. In Figure 16, one can see the total number of pivoting performance profile
for these two preconditioners and also the column pivoting performance profile
for ILUTP(0.25,0.001,10). From Figures 14-16 we can consider the following
results. The ILUTP(0.25,0.001,10) gives the best number of iterations of the
GMRES(30) method than the other preconditioners. IULBFP(0.01,0.1,0.001)
makes GMRES(30) method convergent in better number of iterations than the
LLRIFP(0.01,0.1,0.001). The IULBFP(0.01,0.1,0.001) is the most dense one
while ILUTP(0.25,0.001,10) is the most sparse preconditioner.
ILUTP(0.25,0.001,10) is the fastest preconditioner in terms of precondition-
ing time while IULBFP(0.01,0.1,0.001) is the slowest one. This situation also
happens for the total time of the GMRES(30) method. The lines in Fig-
ure 16 indicate that among the three preconditioners ILUTP(0.25,0.001,10),
IULBFP(0.01,0.1,0.001) and LLRIFP(0.01,0.1,0.001), the first one is computed
by using the most number of total pivoting while the third one is obtained by
the least number of total pivoting. The line associated to the total number
of pivoting for the IULBFP(0.01,0.1,0.001) lies in between the lines associated
to the two other preconditioners. In the legend of the Figures 14-16, we have
also repeated the percentage of the solved preconditioned systems by each of
the preconditioners. From the results of these figures we can say that among
the three preconditioners ILUTP(0.25,0.001,10), IULBFP(0.01,0.1,0.001) and
LLRIFP(0.01,0.1,0.001), the first one is the most effective one at reducing the
number of iterations of GMRES(30) method while it needs the most total num-
ber of pivoting. Despite the fact that the quality of the IULBFP(0.01,0.1,0.001)
preconditioner is not as well as the first one but it needs less total number of
pivoting. Although IULBFP(0.01,0.1,0.001) is computed by using more total
pivoting than LLRIFP(0.01,0.1,0.001) but it has a better quality at reducing
the number of iterations of the GMRES(30) method.

For a better comparison of the four preconditioners ILUTP(0.25,0.001,10),
IULBFP(0.01,0.1,0.001), LLRIFP(0.01,0.1,0.001) and IULBF(0.1,0.001), we have
selected a subset of test matrices. The information of these matrices and the
results of GMRES(30) method to solve the original systems can be found in
Table 2. In this table, n and nnz are the dimension and the number of nonzero
entries of the matrix and It and Itime are the number of iterations and iter-
ation time of the GMRES(30) method. Itime is in seconds. A + sign in this
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Table 2. A subset of test matrices

Matrix Name Matrix properties GMRES(30)
n nnz It Itime

af23560 23560 484256 + +
atmosmodd 1270432 8814880 808 46.85
atmosmodj 1270432 8814880 1615 93.27

cage14 1505785 27130349 19 1.61
cavity13 2597 76367 + +
cavity19 4562 138187 + +
cavity20 4562 138187 + +

circuit5M dc 3523317 19194193 60 12.40
Freescale1 3428755 18920347 + +

hvdc2 189860 1347273 + +

hcircuit 105676 513072 + +
language 399130 1216334 30 0.72
memchip 2707524 14810202 + +
ohne2 181343 11063545 + +

para − 4 153226 5326228 + +
rajat15 37261 443573 + +
rajat28 87190 607235 + +
Raj1 263743 1302464 + +

tmt unsym 917825 4584801 + +
trans4 116835 766396 + +

trans5 116835 766396 + +
Transport 1602111 23500731 + +
venkat01 62424 1717792 + +
venkat25 62424 1717792 + +
venkat50 62424 1717792 + +
bp 1400 822 4790 + +
bp 1600 822 4841 + +
fs 760 2 760 5976 + +
fs 760 3 760 5976 + +
gemat12 4929 33111 + +

lns 3937 3937 25407 + +
lnsp3937 3937 25407 + +
sherman2 1080 23094 + +
sherman4 1104 3786 558 0.04
sherman5 3312 20793 + +
west1505 1505 5445 + +
west2021 2021 7353 + +

table is used when the stopping criterion has not been satisfied in 5000 number
of iterations. In Table 3, there are the properties of the preconditioners. In
this table, density and Prtime are the density and preconditioning time of the
preconditioners. Prtime is in seconds. In this table, Tot piv is the summation
of the total number of row and column pivoting. For ILUTP(0.25,0.001,10),
this is only the total number of column pivoting.

In this paragraph, we discuss about the numerical results in Table 3. What
we are concluding is something on average. From the results of this table we
can say that in terms of preconditioning time, the ILUTP(0.25,0.001,10) is
the fastest preconditioner for all the matrices while for most of the matrices,
IULBF(0.1,0.001) is the slowest one. For 22 matrices LLRIFP(0.01,0.1,0.001)
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is faster than IULBFP(0.01,0.1,0.001) in terms of preconditioning time and
for the 15 other matrices this is vice versa. For most of the test matrices,
the ILUTP(0.25,0.001,10) is the most sparse preconditioner. For all of the
test matrices, the total number of pivoting associated to ILUTP(0.25,0.001,10)
preconditioner is more than the total number of pivoting associated to the
two other preconditioners. For 11 matrices, the total number of pivoting for
IULBFP(0.01,0.1,0.001) is bigger than the total number of pivoting for LL-
RIFP(0.01,0.1,0.001) and for 8 other matrices this is vice versa. For the rest of
other matrices, there is not a total number of pivoting associated to these two
preconditioners or the total number of pivoting of these two preconditioners
are equal. All these observation emphasize the results obtained from Figures
14-16.

In Table 4, there are the information of GMRES(30) method to solve the
right preconditioned systems. In this table, It is the iteration count and Ttime
is the total time which is the summation of preconditioning time and the it-
eration time. This parameter is also in seconds. A + sign in this table,
indicates that the stopping criterion has not been satisfied in 2500 number
of iterations. From this table we can say that for most of the test matrices,
ILUTP(0.25,0.001,10) gives better number of iterations of GMRES(30) method
than the two other preconditioners. The results in this table show that for 17
matrices, the IULBFP(0.01,0.1,0.001) makes the GMRES(30) method conver-
gent in less number of iterations than the LLRIFP(0.01,0.1,0.001) and for 7
other matrices this is vice versa. For the rest of other matrices, these two pre-
conditioners can not make the GMRES(30) method convergent or the number
of iterations associated to these two preconditioners are equal. By compar-
ing the data in the columns IULBFP(0.01,0.1,0.001) and IULBF(0.1,0.001) we
can see that for almost all of the matrices, the number of iterations of the
IULBFP(0.01,0.1,0.001) is much better than the number of iterations of the
IULBF(0.1,0.001) preconditioner. If we summarize our consideration from Ta-
ble 4, we can say that on average, the quality of the IULBFP(0.01,0.1,0.001)
preconditioner is way better than the quality of the LLRIFP(0.01,0.1,0.001)
and IULBF(0.1,0.001) preconditioners but not as well as the quality of the
ILUTP(0.25,0.001,10) preconditioner. This was also a consideration we could
get from Figure 14.

5.2. Second part of experiments. In this part of the numerical experiments,
we have set τz = τw = 0.01 and τl = τu = 0.001 and α =0.01, 0.1, 0.25, 0.5,
0.75, 1.0 for the IULBF, IULBF with complete pivoting and for the left-looking
RIF with complete pivoting. For the ILUTP, τ has been set to 0.001 and
lfil = 15 and permtol will be 0.01, 0.1, 0.25, 0.5, 0.75, 1.0. In Figures 17-19 and
in Tables 5 and 6, the notations IULBF(0.01,0.001), IULBFP(α,0.01,0.001),
LLRIFP(α,0.01,0.001) and ILUTP(permtol,0.001,15) refer to these cases.
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(a) (b)
Figure 17. (a) Number of iterations performance profile for
IULBFP(α,0.01,0.001) and IULBF(0.01,0.001). (b) Density performance
profile forIULBFP(α,0.01,0.001) and IULBF(0.01,0.001)

(a) (b)
Figure 18. (a) Preconditioning time performance profile for
IULBFP(α,0.01,0.001) and IULBF(0.01,0.001). (b) Total time perfor-

mance profile for IULBFP(α,0.01,0.001) and IULBF(0.01,0.001)

(a) (b)
Figure 19. (a) Total number of row pivoting performance profile for

IULBFP(α,0.01,0.001). (b) Total number of column pivoting perfor-
mance profile for IULBFP(α,0.01,0.001)
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(a) (b)

Figure 20. (a) Number of iterations performance profile for

LLRIFP(α,0.01,0.001). (b) Density performance profile for

LLRIFP(α,0.01,0.001)

(a) (b)
Figure 21. (a) Preconditioning time performance profile for

LLRIFP(α,0.01,0.001). (b) Total time performance profile for

LLRIFP(α,0.01,0.001)

(a) (b)
Figure 22. (a) Total number of row pivoting performance profile for

LLRIFP(α,0.01,0.001). (b) Total number of column pivoting performance
profile for LLRIFP(α,0.01,0.001)
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All these preconditioners have been applied as the right preconditioner for linear
systems and then, the preconditioned systems were solved by the GMRES(30)
method. In Figures 17-19, the performance profile plots associated to the pre-
conditioners IULBF(0.01,0.001) and IULBFP(α,0.01,0.001) for α = 0.01, 0.1,
· · · , 1.0 have been compared. For the three matrices Freescale1, memchip and
rajat21, it was not possible to compute the IULBF(0.01,0.001) preconditioner.
Therefore, all the performance profile figures are due to the numerical tests on
162 matrices. In the legend of these figures, we have written the percentage of
the solved right preconditioned systems. Figure 17 indicates that the best pre-
conditioner is IULBFP(0.01,0.01,0.001) at reducing the number of iterations of
the GMRES(30) method while the worst one is IULBF(0.01,0.001). This figure
also shows that the most sparse preconditioner is IULBF(0.01,0.001) and the
other preconditioners have nearly the same density. From Figure 18, we can
not say anything special about the preconditioning time (total time). In Figure
19, one can see that the least total number of row and column pivoting are due
to the IULBFP(0.01,0.01,0.001). From Figures 17-19, we can claim that the
choice of α = 0.01 gives better preconditioner than the other choices of α.

In Figures 20-22 and for all the 165 linear systems, we have drawn the perfor-
mance profile graphs of the preconditioners LLRIFP(α,0.01,0.001) for α =0.01,
0.1, . . ., 1.0. The percentage of the solved systems have also been reported. The
(a) part of Figure 20, shows that LLRIFP(0.1,0.01,0.001) has the least number
of iterations of the GMRES(30) method than the other preconditioners. The
(b) part of this figure indicates that the most and the least dense precondi-
tioners are LLRIFP(0.01,0.01,0.001) and LLRIFP(1.0,0.01,0.001), respectively.
From Figure 21, we can see that the preconditioners LLRIFP(0.01,0.01,0.001)
and LLRIFP(1.0,0.01,0.001) are the fastest and the slowest preconditioners,
respectively in terms of preconditioning time while the second preconditioner
also has the highest total time. The (b) part of this figure shows that the
total time of the LLRIFP(0.1,0.01,0.001) preconditioner is less than the total
time of the other preconditioners. With respect to the percentage of the solved
systems, number of iterations and total time, we can conclude from Figures
20-22 that the choice of α = 0.1 gives better results of the left-looking RIF
with complete pivoting.

Figures 23-26 are due to the performance profile lines of the preconditioners
ILUTP(permtol,0.001,15) for permtol =0.01, 0.1, . . ., 1.0. In these figures,
we have also presented the percentage of the solved systems by each precon-
ditioner. From the (a) part of Figure 23 and with respect to the percent-
age of the solved systems, it is really hard to select the best preconditioner
among the three preconditioners ILUTP(0.01,0.001,15), ILUTP(0.1,0.001,15)
and ILUTP(0.25,0.001,15) in terms of the number of iterations of the GM-
RES(30) method. We have considered a parameter count for each of these
three preconditioners.
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(a) (b)
Figure 23. (a) Number of iterations performance profile for ILUTP
(permtol,0.001,15). (b) Density performance profile for ILUTP

(permtol,0.001,15)

(a) (b)
Figure 24. (a) Preconditioning time performance profile for
ILUTP(permtol,0.001,15). (b) Total time performance profile for

ILUTP(permtol,0.001,15)

Figure 25. Total number of pivoting performance profile for ILUTP
(permtol,0.001,15) preconditioner
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(a) (b)

Figure 26. (a) Number of iterations performance profile for ILUTP,

IULBFP and LLRIFP. (b) Density performance profile for ILUTP,
IULBFP and LLRIFP

(a) (b)
Figure 27. (a) Preconditioning time performance profile for ILUTP,
IULBFP and LLRIFP. (b) Total time performance profile for ILUTP,

IULBFP and LLRIFP

Figure 28. Total number of pivoting performance profile for ILUTP,
IULBFP and LLRIFP

If for a system, the number of iterations of for example ILUTP(0.25,0.001,15)
is less than the number of iterations of the two other preconditioners, then
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we have incremented the count of ILUTP(0.25,0.001,15) by one. For the two
other preconditioners ILUTP(0.01,0.001,15) and ILUTP(0.1,0.001,15) we have
done the same and we have computed their count parameter. The count of
ILUTP(0.25,0.001,15), ILUTP(0.1,0.001,15) and ILUTP(0.01,0.001,15) were
23, 5 and 19, respectively. This indicates that the best preconditioner is
ILUTP(0.25,0.001,15) at reducing the number of iterations of the GMRES(30)
method.
From the (b) part of Figure 23 we can only say that the choice of permtol = 1.0
generates the most dense preconditioner. As it is clear from Figure 24, all of
the preconditioners ILUTP(permtol,0.001,15) for permtol =0.01, 0.1, · · · , 1.0,
have more or less the same preconditioning time while ILUTP(1.0,0.001,15)
needs the highest toltal time. From the graphs in Figure 25 we see that
ILUTP(0.01,0.001,15) and ILUTP(1.0,0.001,15) are computed by using the
most and the least total number of column pivoting. All these observation
define the permtol = 0.25 as the best parameter for ILUTP preconditioner.

In Figures 26-28, we have compared the number of iterations, density, pre-
conditioning time, total time and total number of pivoting performance pro-
file lines of the preconditioners ILUTP(0.25,0.001,10), ILUTP(0.25,0.001,15),
IULBFP(0.01,0.01,0.001) and LLRIFP(0.1,0.01,0.001). The (a) part of Figure
26 shows that the IULBFP(0.01,0.01,0.001) makes the GMRES(30) conver-
gent in a better number of iterations than the ILUTP(0.25,0.001,10) and LL-
RIFP(0.1,0.01,0.001) preconditioners. From this part of the figure we can see
that the number of iterations of the two preconditioners IULBFP(0.01,0.01,0.001)

and ILUTP(0.25,0.001,15) are comparable but we can not claim which one is a
better preconditioner, although the percentage of the solved systems by the
first preconditioner is less than the percentage of the solved systems by the
second one.
From the (b) part of this figure it is obvious that IULBFP(0.01,0.01,0.001) is the
most dense preconditioner while both of preconditioners ILUTP(0.25,0.001,10)
and ILUTP(0.25,0.001,15) are the most sparse ones. Figure 27 indicates that
the IULBFP(0.01,0.01,0.001) is computed by the highest preconditioning time
and it solves the systems by the highest total time than the other precondition-
ers. Both of the preconditioners ILUTP(0.25,0.001.10) and ILUTP(0.25,0.001,15)

seem to have the least preconditioning and total time. In Figure 28, the lines as-
sociated to each of the four preconditioners say that the IULBFP(0.01,0.01,0.001)

preconditioner is computed by using the least total pivoting while the precon-
ditioners ILUTP(0.25,0.001,10) and IULTP(0.25,0.001,15) need the most total
pivoting than the other preconditioners.

In Table 5, we have presented the density and preconditioning time of
ILUTP(0.25,0.001,15), IULBFP(0.01,0.01,0.001), LLRIFP(0.1,0.01,0.001) and
IULBF(0.01,0.001) for 35 of the test linear systems. For the first three precon-
ditioners, we have also reported the total number of pivoting in this table. In
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Table 6, the number of iterations of the GMRES(30) method and the total time
for each of these preconditioners have been reported. The notations density,
Prtime, Tot piv, It and Ttime in these two tables have the same definition as
in Tables 3 and 4.

We can say the following from the results of Table 5. For almost all of the
35 matrices, the preconditioning time of the ILUTP(0.25,0.001,15) is less than
the preconditioning time of the other preconditioners. For most of the test
matrices, the density of the IULBFP(0.01,0.01,0.001) preconditioner is bigger
than the density of the three other preconditioners. For 15 matrices, the pre-
conditioning time of this preconditioner is less than the preconditioning time of
the LLRIFP(0.1,0.01,0.001) while for the other test matrices this is vice versa.
For 24 matrices, the total pivoting of the ILUTP(0.25,0.001,15) is bigger than
the total pivoting of the IULBFP(0.01,0.01,0.001) and LLRIFP((0.1,0.01,0.001)
preconditioners. For the rest of 11 other matrices, all these three precondition-
ers are computed without any pivoting.

What we can observe from the information of Table 6 is presented here. For
16 matrices, the number of iterations of the ILUTP(0.25,0.001,15) is less than
the number of iterations of the IULBFP(0.01,0.01,0.001) while for 12 other ma-
trices this is vice versa. For the rest of 7 other matrices, both preconditioners
have the same effect on the number of iterations of the GMRES(30) method.
The data in this table show that for 15 matrices the IULBFP(0.01,0.01,0.001)
has a better effect than LLRIFP(0.1,0.01,0.001) at reducing the number of
iterations of GMRES(30) method while for 8 other matrices, the second pre-
conditioner gives better number of iterations than the first one. For the rest of
12 other matrices, both preconditioners have the same effect on the number of
iterations of the GMRES(30) method.

If we compare the data associated to the IULBFP(0.01,0.01,0.001) in Table
6 by the information in the column ILUTP(0.25,0.001,10) in Table 4, we see
that for 19 matrices, the number of iterations of the IULBFP(0.01,0.01,0.001)
is less than the number of iterations of the ILUTP(0.25,0.001,10) while for
8 other matrices, the second preconditioner makes the GMRES(30) method
convergent in less number of iterations than the first one. From the results of
these two tables, we can also verify that for the rest of 8 other matrices, both
of these two preconditioners behave the same on the number of iteartions of
the GMRES(30) method.

If we summarize our consideration from Figures 17-28 and by analyzing
the data in Tables 4, 5 and 6, it can be concluded that the quality of the
IULBFP(0.01,0.01,0.001) preconditioner is better than the quality of precondi-
tioners ILUTP(0.25,0.001,10), LLRIFP(0.1,0.01,0.001) and IULBF(0.01,0.001)
at reducing the number of iterations of the GMRES(30) method. We should
also mention that ILUTP(0.25,0.001,15) is somewhat better than the precon-
ditioner IULBFP(0.01,0.01,0.001).
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6. Conclusion

In this paper, we presented a complete pivoting strategy for the IUL pre-
conditioner obtained as the by-product of the backward factored approximate
inverse process. This preconditioner is termed as IULBFP. The pivoting process
for this preconditioner depends on a parameter α. We have used the values
0.01, 0.1, 0.25, 0.5, 0.75 and 1.0 as α and then have applied the computed
IULBFP as the right preconditioner for linear systems. The preconditioned
systems have been solved by the GMRES(30) method. As the preprocessing,
the multilevel nested dissection reordering has been coupled with the maximum
weighted matching. The numerical results show that when we use different drop
tolerance parameters to compute this preconditioner, the choice of α = 0.01
gives better results at reducing the number of iterations while it needs the less
total number of pivoting than the other choices of α. We have also prepared
the same atmosphere for the left-looking version of RIF with complete pivot-
ing to know if we can have the best value of α. The results show that the
choices α = 0.01 and α = 0.1 are the most effective ones for this preconditioner
when the multilevel nested dissection reordering and the maximum weighted
matching are used as the preprocessing.

In the numerical experiments we have also used the ILUTP which is coupled
with the RCM reordering and maximum weighted matching. This precondi-
tioner has also been applied as the right preconditioner for linear systems and
then the preconditioned systems have been solved by GMRES(30) method.
For this preconditioner, we have fixed the drop tolerance parameter and have
played around with the number of fill-in entries in L and U factors and have
applied the same pivoting parameters as IULBF with complete pivoting and
left-looking RIF with complete pivoting. The results show that the pivoting
parameter 0.25 is the best option for this preconditioner.

As part of the numerical experiments, we have also compared the three
preconditioners ILUTP, IULBF with complete pivoting and left-looking RIF
with complete pivoting. For each of these preconditioners its associated best
value of pivoting parameter has been used. The results show that by tuning the
drop tolerance parameters, the quality of the IULBF with complete pivoting can
be comparable to the quality of ILUTP at reducing the number of iterations
of the GMRES(30) method. But this is not true for left-looking RIF with
complete pivoting. The preconditioning time, total time and the density of
ILUTP is way better than these parameters associated to the IULBF with
complete pivoting and left-looking RIF coupled with complete pivoting. From
the numerical tests, we could find that the ILUTP needs more total number of
pivoting than the two other preconditioners. In terms of number of iterations,
IULBF with complete pivoting seems to be better than the left-looking RIF
with complete pivoting while it applies more total pivoting. The numerical
results of this paper, also show that IULBF with complete pivoting is much
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more robust than plain IULBF at reducing the number of iterations of the
GMRES(30) method.
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