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SOME RESULTS IN GENERALIZED ŠERSTNEV
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Abstract. In this paper, we show that D-compactness in

Generalized Šerstnev spaces implies D-boundedness and as in

the classical case, a D-bounded and closed subset of a char-

acteristic Generalized Šerstnev is not D-compact in general.

Finally, in the finite dimensional Generalized Šerstnev spaces

a subset is D-compact if and only if it is D-bounded and closed.

1. Preliminaries

Probabilistic normed spaces (PN spaces henceforth) were intro-

duced by Šerstnev in 1963 [9]. In the sequel, we adopt the new

definition of Generalized Šerstnev PN spaces given in the paper by
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Lafuerza-Guillén and Rodŕiguez [7]. The notations and concepts

used are those of [2, 3, 4, 5, 7] and [10].

In the sequel, the space of probability distribution functions is

denoted by ∆+ = {F : R ∪ {−∞, +∞} −→ [0, 1] : F is left-

continuous and non-decreasing on R, F (0) = 0 and F (+∞) = 1}
and D+ ⊆ ∆+ is defined as follows D+ = {F ∈ ∆+ : l−F (+∞) =

1}. Here l−f(x) denotes the left limit of the function f at the point

x, l−f(x) = limt→x− f(t). The space ∆+ is partially ordered by

the usual point-wise ordering of functions i.e., F ≤ G if and only if

F (x) ≤ G(x) for all x in R. The maximal element for ∆+ in this

order is ε0 , a distribution defined by

ε0 =

 0, if x ≤ 0,

1, if x > 0.

A triangle function is a binary operation on ∆+, namely a func-

tion τ : ∆+ × ∆+ −→ ∆+ that is associative, commutative,

non-decreasing and which has ε0 as unit. Typical continuous trian-

gle functions are τT (F, G)(x) = sups+t=x T (F (s), G(t)) and

τT ∗(F, G) = infs+t=x T ∗(F (s), G(t)). Here, T is a continuous t-norm,

i.e. a continuous binary operation on [0, 1] that is commutative, as-

sociative, non-decreasing in each variable and has 1 as identity,

and T ∗ is a continuous t-conorm, namely a continuous binary oper-

ation on [0, 1] which is related to the continuous t-norm T through

T ∗(x, y) = 1− T (1− x, 1− y).

Definition 1.1. A probabilistic normed (briefly, PN) space is a

quadruple (V, ν, τ, τ ∗), where V is a real vector space, τ and τ ∗ are

continuous triangle functions, and ν is a mapping from V into ∆+

such that, for all p, q in V , the following conditions hold:
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(N1) νp = ε0 if and only if p = θ, where θ is the null vector in V ;

(N2) ν−p = νp for each p ∈ V ;

(N3) νp+q ≥ τ(νp, νq) for all p, q ∈ V ;

(N4) νp ≤ τ ∗(ναp, ν(1−α)p) for all α in [0, 1].

If the inequality (N4) is replaced by the equality νp = τM(ναp,

ν(1−α)p), then the PN space is called Šerstnev space and, as a con-

sequence, a condition stronger than (N2) holds, namely, νλp(x) =

νp(
x
|λ|) for all p ∈ V, λ 6= 0 and x ∈ R.

Following [1, 7], for 0 < b ≤ +∞, let Mb be the set of m-

transforms consisting of all continuous and strictly increasing func-

tions from [0, b] onto [0, +∞]. More generally, let M̃ be the set of

non-decreasing left-continuous functions φ : [0, +∞] −→ [0, +∞],

φ(0) = 0, φ(+∞) = +∞ and φ(x) > 0 for x > 0. Then Mb ⊆ M̃

once m is extended to [0, +∞] by m(x) = +∞ for all x ≥ b. Note

that a function φ ∈ M̃ is bijective if and only if φ ∈ M+∞. Some-

times, the probabilistic norms ν and ν ′ of two given PN spaces

satisfy ν ′ = νφ for some φ ∈ M+∞, not necessarily bijective. Let φ̂

be the (unique) quasi-inverse of φ which is left-continuous. Recall

from [10] page 49, that φ̂ is defined by φ̂(0) = 0, φ̂(+∞) = +∞
and φ̂(t) = sup{u : φ(u) < t} for all 0 < t < +∞. It follows that

φ̂(φ(x)) ≤ x and φ(φ̂(y)) ≤ y for all x and y.

Definition 1.2. A quadruple (V, ν, τ, τ ∗) satisfying the φ-Šerstnev

condition

νλp(x) = νp(φ̂(
φ(x)

|λ|
)),

for all x ∈ R+ , p ∈ V and λ ∈ R− {0} is called a φ-Šerstnev PN

space (generalized Šerstnev space).
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Lemma 1.3. [2] If |α| ≤ |β|, then νβp ≤ ναp for every p in V .

Definition 1.4. Let (V, ν, τ, τ ∗) be a PN space. For each p in V

and λ > 0, the strong λ− neighborhood of p is the set

Np(λ) = {q ∈ V : νp−q(λ) > 1− λ},

and the strong neighborhood system for V is the union
⋃

p∈V Np

where Np = {Np(λ) : λ > 0}. The strong neighborhood system for

V determines a Hausdorff topology for V .

Definition 1.5. Let (V, ν, τ, τ ∗) be a PN space, a sequence {pn}n

in V is said to be strongly convergent to p in V if for each λ > 0,

there exists a positive integer N such that pn ∈ Np(λ), for n ≥ N .

Also the sequence {pn}n in V is called strongly Cauchy sequence if

for every λ > 0 there is a positive integer N such that νpn−pm(λ) >

1 − λ, whenever m, n > N . A PN space (V, ν, τ, τ ∗) is said to be

strongly complete in the strong topology if every strongly Cauchy

sequence in V is strongly convergent to a point in V .

Definition 1.6. Let (V, ν, τ, τ ∗) be a PN space and A be the non-

empty subset of V . The probabilistic radius of A is the function RA

defined on R+ by

RA(x) =

 l− inf{νp(x) : p ∈ A}, if x ∈ [0, +∞),

1, if x = +∞.

A nonempty set A in a PN space (V, ν, τ, τ ∗) is said to be

(a) certainly bounded, if RA(x0) = 1 for some x0 ∈ (0, +∞);

(b) perhaps bounded, if one has RA(x) < 1 for every x ∈ (0, +∞)

and l−RA(+∞) = 1;
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(c) perhaps unbounded, if RA(x0) > 0 for some x0 ∈ (0, +∞) and

l−RA(+∞) ∈ (0, 1);

(d) certainly unbounded, if l−RA(+∞) = 0 i.e., if RA = ε∞.

Moreover, A is said to be D-bounded if either (a) or (b) holds, i.e.

RA ∈ D+. If RA ∈ ∆+ \D+ , A is called D-unbounded.

Theorem 1.7. [5] A subset A in the PN space (V, ν, τ, τ ∗) is D-

bounded if and only if there exists a d.f. G ∈ D+ such that νp ≥ G

for every p ∈ A.

Definition 1.8. A subset A of Topological Vector Space (briefly,

TVS) V is said to be topologically bounded if for every sequence

{αn} of real numbers that converges to zero as n −→ +∞ and for

every {pn} of elements of A, one has αnpn −→ θ, in the strong

topology.

Theorem 1.9. [3] Suppose (V, ν, τ, τ ∗) is a PN space, endowed with

the strong topology induced by the probabilistic norm ν. Then it is a

TVS if and only if for every p ∈ V the map from R into V defined

by

α 7−→ αp

is continuous. The PN space (V, ν, τ, τ ∗) is called characteristic

whenever ν(V ) ⊆ D+.

Theorem 1.10. [7] Let φ ∈ M̃ such that limx−→∞ φ̂(x) = ∞.

Then a φ-Šerstnev PN space (V, ν, τ, τ ∗) is a TVS if and only if it

is characteristic.
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2. Results

In this section we study D-bounded and D-compact sets in φ-

Šerstnev PN spaces.

Proposition 2.1. Let φ ∈ M̃ such that limx−→∞ φ̂(x) = ∞. Let

(V, ν, τ, τ ∗) be a characteristic φ-Šerstnev PN space. Then for a

subset A of V the following are equivalent.

(a) For every n ∈ N, there is a k ∈ N such that A ⊂ kNθ(1/n).

(b) A is D-bounded.

(c) A is topologically bounded .

Proof. From [7], (a) and (b) are equivalent. For (b) =⇒ (c), let A

be any D-bounded subset of V , {pn} be any sequence in A and {αn}
any sequence of real numbers that converges to zero. Without loss

of generality we may assume that αn 6= 0 for every n ∈ N. Then

for every x > 0 and n ∈ N

ναnpn(x) = νpn(φ̂(
φ(x)

αn

)) ≥ RA(φ̂(
φ(x)

αn

)) −→ 1

as n −→∞. Thus αnpn −→ θ.

(c) =⇒ (b). Let A be a subset of V which is not D-bounded.

Then

RA(x) −→ γ < 1,

as x −→ ∞. By definition of RA, for every n ∈ N there is pn ∈ A

such that

νpn(φ̂(nφ(n)) <
1 + γ

2
< 1.

Choosing αn = 1/n,

ναnpn(1) ≤ ναnpn(n) = νpn(φ̂(nφ(n)) <
1 + γ

2
< 1,
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which shows that {ναnpn} does not tend to ε0, even it has a weak

limit, i.e., {αnpn} does not tend to θ in the strong topology, so A

is not topologically bounded. �

Lemma 2.2. Let φ ∈ M̃ such that limx−→∞ φ̂(x) = ∞ and let

(V, ν, τ, τ ∗) be a characteristic φ-Šerstnev PN space. If pm −→ p0

in V and A = {pm : m ∈ N}, then A is a D-bounded subset of V .

Proof. Let pm −→ p0 and αm −→ 0. Then there exists m0 ∈ N

such that for every m ≥ m0, 0 < αm < 1; so that

ναmpm ≥ τ(ναm(pm−p0), ναmp0)

−→ τ(ε0, ε0)

= ε0,

as m tends to infinity. �

Example 2.3. The quadruple (R, ν, τπ, τ ∗π), where ν : R −→ ∆+

is defined by

νp(x) =


0 if x = 0,

exp(−|p|1/2) if 0 < x < +∞,

1 if x = +∞,

and ν0 = ε0 is a PN space but is not Šerstnev space (see [2]).

The sequence { 1
m
} is convergent but A = { 1

m
: m ∈ N} is not

D-bounded set. The only D-bounded set in this space is {0}.

Definition 2.4. The characteristic φ-Šerstnev PN space (V, ν, τ, τ ∗)

is said to be distributionally compact (simply D-compact) if every



44 Alimohammady, Lafuerza–Guillén and Saadati

sequence {pm}m in V has a convergent subsequence {pmk
}. A sub-

set A of a characteristic φ-Šerstnev PN space (V, ν, τ, τ ∗) is said to

be D-compact if every sequence {pm} in A has a subsequence {pmk
}

convergent to an element p ∈ A.

Proposition 2.5. A D-compact subset of a characteristic φ-

Šerstnev PN space (V, ν, τ, τ ∗) is D-bounded and closed.

Proof. Suppose that A ⊆ V is D-compact. From Proposition 2.1

it is enough show that A is topologically bounded. Now assume

that there is a sequence {pm} ⊆ A and a real sequence αm −→ 0

such that {αmpm} does not tend to the origin in V . Then there

is an infinite set J ⊆ N such that the sequence {αmpm}m∈J lies

in the complement of a neighborhood of the origin. Now {pm} is

a subset of D-compact set A, so it has a convergent subsequence

{pm}m∈J ′ . From Proposition 2.1 and Lemma 2.2 {pm}m∈J ′ is topo-

logically bounded and so {αmpm}m∈J ′ tends to origin which is a

contradiction. The closedness of A is trivial . �

As in the classical case, a D-bounded and closed subset of a

characteristic φ-Šerstnev is not D-compact in general, as one can

see from the next example.

Example 2.6. We consider quadruple (Q, ν, τπ, τM), where

π(x, y) = xy for every x, y ∈ [0, 1] and probabilistic norm νp(t) =
t

t+|p| . It is straightforward to check that (Q, ν, τπ, τM) is a char-

acteristic φ-Šerstnev PN space. In this space, convergence of a

sequence is equivalent to its convergence in Q. We consider the

subset A = [a, b]∩Q with a, b ∈ R−Q. Since RA(t) = t
t+max{|a|,|b|} ,
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the set A is D-bounded and since A is closed in Q classically, it is

closed in (Q, ν, τπ, τM). We know that A is not classically compact

in Q, i.e., there exists a sequence in Q with no convergent subse-

quence in the classical sense and so in (Q, ν, τπ, τM). Hence, A is

not D-compact.

We close the paper by quoting two recent results on D-compactness

and strong completeness in φ-Šerstnev PN spaces.

Theorem 2.7. [8] Consider a finite dimensional characteristic φ-

Šerstnev PN space (V, ν, τ, τ ∗) on real field (R, ν ′, τ ′, τ ′∗). Every

subset A of V is D-compact if and only if A is D-bounded and

closed.

Theorem 2.8. [4] Let (V, ν, τ, τ ∗) be a characteristic φ-Šerstnev

PN space and let S be a compact subset of V . Then S is strongly

complete.
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