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Abstract. In this paper, we classify all finite solvable groups satisfying
the following property P5: their orders of representatives are set-wise
relatively prime for any 5 distinct non-central conjugacy classes.
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1. Introduction

Let G be a finite group and let V be the set of all non-central conjugacy
classes of G. From lengths of conjugacy classes, the following class graph
Γ(G)′ was introduced in [1]: its vertex set is the set V and two distinct vertices
xG and yG are connected with an edge if (|xG|, |yG|) > 1. The class graph
Γ(G)′ has been studied in some details: see for example [1–3] and [5]. In [5],
the authors have studied the structure of a finite group G with the following
property: for every prime p, G has at most n − 1 conjugacy classes whose
sizes are multiples of p. In particular, they have classified the finite groups
when n = 5, extending the result of Fang and Zhang [3]. Similarly, in terms
of orders of elements, the authors in [7] have attached a graph Γ(G) to G
as follows: its vertex set is also the set V and two distinct vertices xG and
yG are connected with an edge if (o(x), o(y)) > 1. Thus a new conjugacy
class graph is defined. A finite group G satisfies the property Pn if for every
prime integer p, G has at most n − 1 non-central conjugacy classes whose
orders of representatives are multiples of p. Thus Γ(G) does not have a
subgraph Kn if and only if G satisfies the property Pn. The authors in [7]
classified all finite groups that satisfy property P4. Also in [4], all finite
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non-solvable groups that satisfy property P5 have been classified. The objec-
tive of this paper is to classify all finite solvable groups that satisfy property P5.

Theorem 1.1. Let G be a finite solvable group that satisfies property P5. Then
G is isomorphic to one of the following groups:

(i) An abelian group;
(ii) A Frobenius group with complement of order 2 and kernel Z3, Z5,Z7,

(Z3)
2 or Z9;

(iii) A Frobenius group with complement of order 3 and kernel (Z2)
2,Z7 or

Z13;
(iv) A Frobenius group with cyclic complement of order 4 and kernel Z5,

(Z3)
2, Z13 or Z17;

(v) The Frobenius group with complement of order 5 and kernel Z11 and
(Z2)

4;
(vi) A Frobenius group with cyclic complement of order 6 and kernel Z7,

Z13, Z19 or (Z5)
2;

(vii) D20, Q20, D12, D8, Q8 or T = ⟨x, y|x3 = 1, y4 = 1, xy = yx−1⟩.
Conversely, all these groups satisfy property P5.

2. Preliminaries

Before starting the proof of Theorem 1.1, we give some preliminary results.

Lemma 2.1 ([7, Lemma 1]). Let G be a finite group. Then G satisfies property
Pn if and only if Γ(G) has no subgraph Kn.

Lemma 2.2 ([7, Lemma 2]). Let G be a finite group that satisfies property Pn.
Then property Pn is inherited by quotient groups of G.

Lemma 2.3 ([6, Lemma 1.3]). If G possesses an element x with |CG(x)| = 4,
then a Sylow 2-subgroup P of G is the dihedral, semi-dihedral or generalized
quaternion group. In particular | P

P ′ | = 4 and P has a cyclic subgroup of order
|P |
2 .

Proposition 2.4 ([6, Proposition 2.1]). Let N be a normal subgroup of a non-
abelian group G. Then kG(G − N) = 1 if and only if G is a Frobenius group

with the kernel N of odd order |G|
2 .

Theorem 2.5 ([6, Theorem 2.2]). Let N be a normal subgroup of a non-abelian
group G. Then kG(G−N) = 2 if and only if G is one of the following solvable
groups.

(1) N = 1 and G ∼= S3.
(2) |GN | = 3 and G is a Frobenius group with the kernel N .
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(3) |GN | = 2 and |CG(x)| = 4 for all x ∈ G−N . In particular, P ∈ Syl2(G)

has a cyclic subgroup of order |P |
2 ; furthermore, one of the following

holds:

(3.a) G has a normal and abelian 2-complement.
(3.b) G has a normal 2-complement and P is a quaternion group.
(3.c) G has an abelian 2-complement and P ∼= D8, the dihedral group of order
8.

Theorem 2.6 ([6, Theorem 3.6]). Let N be a normal subgroup of a non-abelian
solvable group G. Then G −N = xG ∪ yG ∪ zG is a union of three conjugacy
classes if and only if one of the following is true:

(1) N = 1 and G ∼= A4 or D10.
(2) G

N
∼= S3 and G ∼= S4.

(3) G is a Frobenius group with the kernel N and a cyclic complement of
order 4.

(4) G ∼= D8 or Q8.
(5) |GN | = 2, |CG(x)| = |CG(y)| = |CG(z)| = 6. And in this case, N is of

odd order and N has a normal and abelian 3-complement.
(6) |GN | = 2, |CG(x)| = 4, |CG(y)| = 6 and |CG(z)| = 12. And in this case,

either G has a normal 2-complement or G
O

2
′ (G)

∼= S4.

(7) |GN | = 2, |CG(x)| = 4, |CG(y)| = |CG(z)| = 8. And in this case, either
G

O
2
′ (G)

∼= GL(2, 3) with abelian O2′ (G), or G
O

2
′ (G) is isomorphic to a

non-abelian group of order 16.

3. The proof of Theorem 1.1

It is easy to see that the groups listed in Theorem 1.1 satisfy property P5.
For a finite group G and A ⊆ G, let kG(A) be the number of classes of G
contained in A and πe(G) denotes the set of all orders of elements in G. If
G is abelian, then G satisfies property P5. Now suppose that G is a finite
non-abelian solvable group that satisfies property P5 and M = G

′
Z(G). It is

easy to see that M < G. Take xM ∈ G
M such that o(xM) = p. Since G

M is

abelian, there are at least p− 1 classes of elements of order p in G
M . Note that

o(xM)|o(x) and xM , when viewed as a subset of G, is a union of some classes
of G. Thus we conclude that G has at least p − 1 non-central classes whose
orders of representatives are multiples of p. Therefore, p− 1 ≤ 4, i.e., p = 2, 3
or 5. Furthermore, | GM | = 2, 3, 4, 5 or 6 and kG(G−M) ≤ 6.

1. Suppose that kG(G−M) = 1.
It follows from Proposition 2.4 that G is a Frobenius group with kernel M

and M is abelian of odd order |G|
2 . This implies that Z(G) = 1 and M =

G
′
. Since G satisfies property P5, we conclude that M ∈ Sylp(G) and thus
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kG(M − {1}) ≤ 4. It follows that |M |−1
2 ≤ 4 and hence |M | ≤ 9. Therefore G

is a Frobenius group with complement of order 2 and kernel Z3, Z5,Z7, (Z3)
2

or Z9.

2. Suppose that kG(G−M) = 2.
Applying Theorem 2.5, we get the following three cases.
(2.a) M = 1 and G ∼= S3. In this case G

M
∼= S3. Therefore G

M is a non-abelian
group, a contradiction.
(2.b) | GM | = 3 and G is a Frobenius group with kernel M .

Similarly, we have M ∈ Sylp(G) and kG(M − {1}) ≤ 4. If M is abelian,

then |M |−1
3 ≤ 4 and hence |M | ≤ 13. Therefore G is a Frobenius group with

complement of order 3 and kernel (Z2)
2,Z7 or Z13. If M is non-abelian, then

kG(Z(M) − {1}) ≤ 3. Assume first that kG(Z(M) − {1}) = 3. From this
we can deduce that |Z(M)| = 10, which is not possible. Also assume that
kG(Z(M)−{1}) = 2. We have |Z(M)| = 7 and M is a 7-group. Let |M | = 7r.
If M−Z(M) = αG, then it implies successively |αG| = 3.7k, 7r = 3.7k+7. This
equality has no solution. If M − Z(M) = αG ∪ βG, then |αG| = 3.7k ≤ |βG| =
3.7s and so 7r = 3.7k +3.7s+7, which forces (pk, ps, pr) = (7, 7, 49). Therefore
G is a Frobenius group with complement of order 3 and kernel of order 49. Since
this group has at least five non-central conjugacy classes which their orders of
representatives are multiples of 7, it does not satisfy property P5. Now assume
that kG(Z(M) − {1}) = 1. We have |Z(M)| = 4 and M is a 2-group. Let
|M | = 2r. If M − Z(M) = αG, then |αG| = 3.2k and hence 2r = 3.2k + 4,
which forces (pk, pr) = (4, 16). We conclude that there is an element such
that its centralizer in G is of order 4. By Lemma 2.3, M is the dihedral,
semi-dihedral or generalized quaternion group. This forces |Z(M)| = 2, a
contradiction. If M − Z(M) = αG ∪ βG, then |αG| = 3.2k ≤ |βG| = 3.2s and
so 2r = 3.2k + 3.2s + 4, which forces (pk, ps, pr) = (2, 2, 16) or (4, 16, 64). If
(pk, ps, pr) = (2, 2, 16), then G is a Frobenius group with complement of order
3 and kernel of order 16. Now since this group has exactly five non-central
conjugacy classes which their orders of representatives are multiples of 2, it
does not satisfy property P5. If (p

k, ps, pr) = (4, 16, 64), then we conclude that
there is an element such that its centralizer in G is of order 4. By Lemma 2.3,
M is the dihedral, semi-dihedral or generalized quaternion group. This forces
|Z(M)| = 2, a contradiction. If M − Z(M) = αG ∪ βG ∪ γG, then it implies
successively |αG| = 3.2k ≤ |βG| = 3.2s ≤ |γG| = 3.2l, 2r = 3.2k+3.2s+3.2l+4,
which forces (pk, ps, pl, pr) = (4, 8, 8, 64). Therefore G is a Frobenius group
with complement of order 3 and kernel of order 64. Now since this group has
at least five non-central conjugacy classes which their orders of representatives
are multiples of 2, it does not satisfy property P5.
(2.c) | GM | = 2 and |CG(x)| = 4 for any x ∈ G−M .

Applying Lemma 2.3 and Theorem 2.5, we can see that Z(G) > 1. Since
|CG(x)| = 4 for any x ∈ G − M , we have |Z(G)| = 2. Take x ∈ G − M ,
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we conclude that o(xZ(G)) = 2 and |C G
Z(G)

(xZ(G))| = 2. Thus xZ(G) acts

fixed point freely on M
Z(G) , so G

Z(G) is a Frobenius group with kernel M
Z(G) .

Since M
Z(G) is a p-group, we have

| M
Z(G)

|−1

2 ≤ 4 and hence | M
Z(G) | = 3, 5, 7 or

9. Therefore |G| = 12, 20, 28 or 36 and G is one of the following groups: D12,
T = ⟨x, y|x3 = 1, y4 = 1, xy = yx−1⟩, D20 or Q20.

3. Suppose that kG(G−M) = 3. Let G−M = xG ∪ yG ∪ zG.
Applying Theorem 2.6, we get the following seven cases.
(3.a) M = 1 and G ∼= A4 or D10. In this case G

M is a non-abelian group, that
is not possible.
(3.b) G

M
∼= S3 and G ∼= S4. In this case G

M is a non-abelian group, a contradic-
tion.
(3.c) G ∼= D8 or Q8.
(3.d) G is a Frobenius group with kernel M and a cyclic complement of order 4.
In this case, arguing as in (1), we have M ∈ Sylp(G) and kG(M −{1}) ≤ 4. It

follows that |M |−1
4 ≤ 4 and hence |M | ≤ 17. We conclude that G is a Frobenius

group with cyclic complement of order 4 and kernel Z5, (Z3)
2,Z13 or Z17.

(3.e)| GM | = 2, |CG(x)| = |CG(y)| = |CG(z)| = 6, o(x) = 2, o(y) = 6 and

z = y−1. In this case, M is of odd order and M has a normal and abelian
3-complement, say N . Then N is a normal and abelian {2, 3}-complement of
G. Let |MN | = 3n, where n ≥ 1. We claim that |MN | = 3. Otherwise, the number

of conjugacy classes of M
N is at least 9. Since |CG(x)| = 6, we have |CM (x)| = 3

and thus M
N has at least 6 conjugacy classes which lift to conjugacy classes

not contained in Z(G). Since | GM | = 2, the subgroup M contains at least 3
non-central conjugacy classes of G, such that their elements have order divis-
ible by 3. Since also yG and zG are such conjugacy classes, which contradicts
property P5. Thus |MN | = 3. If Z(G) ̸= 1, then G =< y > N . So G

′ ⊆ N

and y2 ∈ Z(G). For any a ∈ N \ 1 we get two further non-central conjugacy
classes of 3-elements, namely (y2a)G = {y2a, y2ax} and (y4a)G = {y4a, y4ax}.
Since N ̸= 1, we have N \ 1 = {a, ax} and |N | = 3, which is not possible. Thus
Z(G) = 1. Now we show that N = 1. Suppose in contrary that N > 1 and
M = HN , where H ∼= M

N . Since (|MN |, |N |) = 1, we see that all elements in
M − N have the same order 3. It implies that for any element h ∈ H − {1},
CM (h) = H. Therefore, M is a Frobenius group with kernel N and cyclic
complement H of prime order 3. It implies that G

N
∼= S3 and thus G is 2-

Froubenius. This forces 6 /∈ πe(G), a contradiction. Hence N = 1 and |G| = 6,
that is not possible.
(3.f) | GM | = 2, |CG(x)| = 4, |CG(y)| = 6 and |CG(z)| = 12. In this case, M is

of even order and either G has a normal 2-complement or G
O

2
′ (G)

∼= S4. Let

P ∈ Syl2(G) and P ∩M = P1. By Lemma 2.3, P is dihedral, semi-dihedral or
generalized quaternion. Since | GM | = 2, every element of G −M has an order
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divisible by 2. Now since kG(G−M) = 3, therefore G−M has at least three
non-central conjugacy classes, such that the order of representative of each of
which is a multiple of 2. Also since |Z(G)|||CG(x)|, we have |Z(G)| ≤ 2. Let
|Z(G)| = 1. If kG(P1 − {1}) = 1, then P1 = 1 ∪ uG, for some u ∈ P1 and
P1 is an elementary abelian normal 2-subgroup of G. Since P1 has index 2 in
P , we conclude that |P1| = 4 and |P | = 8. Also, since P has more than one
element of order 2, it must be dihedral. This implies that conjugacy class of u
is P1 − {1}, so the conjugacy class of u would have size 3. If G has a normal
2-complement N , then M = P1 ×N . In particular, N centralizes the element
u. This implies that the conjugacy class of u in G has size that is a power of
2, this is a contradiction. Therefore, P1 has at least two non-central conjugacy
classes of G, which contradicts property P5. Now suppose that G/O2′ (G) ∼= S4.
In this case G has a normal subgroup A such that A/O2′ (G) ∼= P1. Therefore,
A = P1 ×O2′ (G). In particular, O2′ (G) and P1 centralize the element u. Also
P is not a subgroup of CG(u). This implies that the conjugacy class of u in
G has size 2 or 6, which is not possible. Therefore, P1 has at least two non-
central conjugacy classes of G, contradicts by the property P5. Now suppose
that |Z(G)| = 2 and a ∈ Z(G) be of order 2. If |G′ ∩ Z(G)| = 1, then there

are two elements b, c ∈ G
′ − Z(G), such that o(b) = 2 and o(c) = 3. So bG

and (ac)G are non-central conjugacy classes of G contained in M , this contra-

dicts property P5. Now suppose that |G′ ∩ Z(G)| = 2. Thus Z(G) ≤ G
′
. If

Z(G) = G
′
, then |G| = 4, a contradiction. Suppose that Z(G) < G

′
. There-

fore, there is c ∈ G
′ − Z(G), such that o(c) = 3. So (ac)G is a non-central

conjugacy class of G contained in M . Since P1 ∈ Syl2(M), Z(G) is contained
in P1. Also since P1 is a normal subgroup of G, it is a union of some classes of
G and so it has a non-central conjugacy class, which contradicts property P5.
(3.g) | GM | = 2, |CG(x)| = 4, |CG(y)| = |CG(z)| = 8. Let P ∈ Syl2(G) and
P ∩ M = P1. In this case, P is a non-abelian group of order 16 and P1 is
a non-abelian group of order 8. Since | GM | = 2, every element of G − M has
an order divisible by 2. Now since kG(G − M) = 3, G − M has at least 3
non-central conjugacy classes such that the order of representative of each of
which is a multiple of 2. Also since |Z(G)|||CG(x)|, |Z(G)| ≤ 2. Suppose that

|Z(G)| = 1. Thus M = G
′
. If kG(P1 − {1}) = 1, then P1 is abelian, which

is not possible. Therefore, P1 has at least two non-central conjugacy classes,
this contradicts property P5. So assume that |Z(G)| = 2 and a ∈ Z(G) be of

order 2. If |G′ ∩Z(G)| = 1, then there are two elements b, c ∈ G
′ −Z(G), such

that o(b) = 2 and o(c) = p, where p is an odd prime. So bG and (ac)G are
non-central conjugacy classes of G contained in M , this contradicts property
P5. Now suppose that |G′ ∩ Z(G)| = 2. Thus Z(G) ≤ G

′
. If Z(G) = G

′
, then

|G| = 4, a contradiction. If Z(G) < G
′
, then there is c ∈ G

′ − Z(G), such
that o(c) = p, where p is an odd prime. So (ac)G is a non-central conjugacy
class of G contained in M . Since P1 ∈ Syl2(M), Z(G) is contained in P1. Also
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since P1 is a normal subgroup of G, it is a union of some classes of G and has
a non-central conjugacy class that contradicts property P5.

4. Suppose that kG(G−M) = 4 and G−M = xG ∪ yG ∪ zG ∪ wG.
In this case | GM | ≤ 5. Let | GM | = 5. So all of the elements in each of the four
non-trivial cosets of M in G are conjugate. Hence they all have centralizers
of order 5. Let g ∈ G such that gM generates G

M . Then g is of order 5 and
G is a Frobenius group with kernel M and complement ⟨g⟩. This implies that

Z(G) = 1 and M = G
′
. Since G satisfies property P5, we have M ∈ Sylp(G)

and kG(M − {1}) ≤ 4. If M is abelian, then |M |−1
5 ≤ 4 and hence |M | ≤ 21.

Therefore, G is a Frobenius group with complement of order 5 and kernel
Z11 or (Z2)

4. If M is non-abelian, then kG(Z(M) − {1}) ≤ 3. Assume first
that kG(Z(M) − {1}) = 3. We deduce that |Z(M)| = 16 and M is a 2-
group. Let |M | = 2r. Since M − Z(M) = αG and |αG| = 5.2k, we have
2r = 5.2k +16, which has no solution. Now suppose that kG(Z(M)−{1}) = 2.
We have |Z(M)| = 11 and M is a 11-group. Let |M | = 11r. If M − Z(M) =
αG, then |αG| = 5.11k and so 11r = 5.11k + 11, which has no solution. If
M − Z(M) = αG ∪ βG, then |αG| = 5.11k ≤ |βG| = 5.11s and hence 11r =
5.11k + 5.11s + 11, which forces (pk, ps, pr) = (11, 11, 121). Therefore, G is a
Frobenius group with complement of order 5 and kernel of order 121. Now
since this group has at least five non-central conjugacy classes whose their
orders of representatives are multiples of 11, it does not satisfy property P5.
Finally, assume that kG(Z(M)− {1}) = 1. Then |Z(M)| = 6, a contradiction.
If | GM | = 4, then every element of G − M has an order divisible by 2. Since
kG(G − M) = 4, G − M has at least four non-central conjugacy classes such
that the order of representative of each of which is a multiple of 2. Also among
these four non-central conjugacy classes, there are two non-central conjugacy
classes such that the centralizer of representative of each of which is of order
4. Since G −M possesses an element g with |CG(g)| = 4, Lemma 2.3 implies
that M is of even order. Also since |Z(G)|||CG(g)|, we have |Z(G)| ≤ 2. If
|Z(G)| = 1, then M contains at least one non-central conjugacy class of G, such
that its representative has order 2, which contradicts property P5. So assume
that |Z(G)| = 2 and a ∈ Z(G) be of order 2. If |G′ ∩ Z(G)| = 1, then there is

1 ̸= b ∈ G
′
, such that (ab)G is a non-central conjugacy class of G contained in

M , which contradicts property P5. Now suppose that |G′ ∩ Z(G)| = 2. Thus

Z(G) ≤ G
′
. If Z(G) = G

′
, then |G| = 8 and G is isomorphic to D8 or Q8, that

is impossible. Now let Z(G) < G
′
. Then there is b ∈ G

′ − Z(G), such that
(ab)G is a non-central conjugacy class of G contained in M , a contradiction.
Now let | GM | = 3. Note that for any g ∈ G−M , o(g) is a multiple of 3 and hence
|CG(g)| is a multiple of 3. Set |CG(x)| = 3a, |CG(y)| = 3b, |CG(z)| = 3c and
|CG(w)| = 3d. We conclude that 1

3a +
1
3b +

1
3c +

1
3d +

1
3 = 1. This equality holds

if a = 1 and b = c = d = 3, a = 1, b = 2 and c = d = 4 or a = b = c = d = 2. In
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the first and second case, G possesses an element x of order 3 with |CG(x)| = 3
and thus x acts fixed point freely on M . So G is a Frobenius group with kernel
M and complement of order 3. Clearly M is a p-group and kG(M − {1}) ≤ 4.

If M is abelian, then |M |−1
3 ≤ 4 and hence |M | = 4, 7 or 13, which is not

possible. Suppose that M is not abelian. Thus kG(Z(M) − {1}) ≤ 3. If
kG(Z(M)−{1}) = 3, then |Z(M)| = 10, that is not possible. Now assume that
kG(Z(M)−{1}) = 2. We have |Z(M)| = 7 and M is a 7-group. Let |M | = 7r.
If M − Z(M) = αG, then |αG| = 3.7k and so 7r = 3.7k + 7, which has no
solution. If M − Z(M) = αG ∪ βG, then |αG| = 3.7k ≤ |βG| = 3.7s and hence
7r = 3.7k+3.7s+7, which forces (pk, ps, pr) = (7, 7, 49), a contradiction. Finally
assume that kG(Z(M) − {1}) = 1. We have |Z(M)| = 4 and M is a 2-group.
Let |M | = 2r. If M−Z(M) = αG, then |αG| = 3.2k and so 2r = 3.2k+4, which
forces (pk, pr) = (4, 16). We conclude that there is an element such that its
centralizer in G is of order 4. By Lemma 2.3, M is a dihedral, semi-dihedral or
generalized quaternion group. This forces |Z(M)| = 2, a contradiction. In cases
M−Z(M) = αG∪βG orM−Z(M) = αG∪βG∪γG, by above discussion, we will
have a contradiction. In the third case, we have |CG(x)| = |CG(y)| = |CG(z)| =
|CG(w)| = 6. So |Z(G)| ≤ 3. First suppose that |Z(G)| = 1. If 3||M |, then
there is an element b ∈ M of order 3 and bG is a non-central conjugacy class
of G contained in M , a contradiction. Now suppose that 3 ∤ |M |. Then M is
a normal 3-complement of G. Since (| GM |, |M |) = 1, each element in G − M

has order 3. Write G = HM , where H ∼= G
M . It implies that for any element

h ∈ H−{1}, CG(h) = H. Therefore, G is a Frobenius group with kernel M and
abelian complement H such that H is a cyclic group of prime order 3. Since
G satisfies property P5, M ∈ Sylp(G) and kG(M − {1}) ≤ 4. If M is abelian,

then |M |−1
3 ≤ 4 and hence |M | = 4, 7 or 13. But non of the attaining groups

satisfy in this case. Suppose that M is not abelian. Thus kG(Z(M)−{1}) ≤ 3.
If kG(Z(M)−{1}) = 3, then |Z(M)| = 10, which is not possible. Now assume
that kG(Z(M) − {1}) = 2. We have |Z(M)| = 7 and M is a 7-group. Let
|M | = 7r. If M − Z(M) = αG, then |αG| = 3.7k and so 7r = 3.7k + 7, which
has no solution. If M −Z(M) = αG ∪ βG, then |αG| = 3.7k ≤ |βG| = 3.7s and
hence 7r = 3.7k+3.7s+7, which forces (pk, ps, pr) = (7, 7, 49), a contradiction.
Finally assume that kG(Z(M)− {1}) = 1. We have |Z(M)| = 4 and M is a 2-
group. IfM−Z(M) = αG, then |αG| = 3.2k. Let |M | = 2r. Then 2r = 3.2k+4,
which forces (pk, pr) = (4, 16). We conclude that there is an element such that
its centralizer in G is of order 4. By Lemma 2.3 and above discussion, we
will have a contradiction. Now suppose that |Z(G)| = 2 and a ∈ Z(G) be of
order 2. Since for every g ∈ G − M , |CG(g)| = 6, we have o(g) = 3 or 6. If
there is an element h ∈ G −M , such that o(h) = 6, then ah /∈ CG(h) and so
CG(h) ⊂ CG(ah). Thus |CG(ah)| ≥ 12, ah /∈ G−M and (ah)G is a non-central
conjugacy class of G contained in M , a contradiction. Therefore for every
g ∈ G − M , o(g) = 3. Now since o(ag) = 6, therefore (ag)G is a non-central
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conjugacy class of G contained in M , a contradiction. Finally, suppose that
|Z(G)| = 3 and a ∈ Z(G) has order 3. Let |G′ ∩Z(G)| = 1 and 1 ̸= b ∈ G

′
be of

order 2. Then (ab)G is a non-central conjugacy class of G contained in M , this

contradicts property P5. Now suppose that |G′ ∩Z(G)| = 3. Thus Z(G) ≤ G
′
.

If Z(G) = G
′
, then |G| = 9, a contradiction. So assume that Z(G) < G

′
.

Then there is b ∈ G
′ − Z(G) of order 2, such that (ab)G is a non-central

conjugacy class of G contained in M , a contradiction. Finally, let | GM | = 2.
Note that for any g ∈ G − M , o(g) is even and hence |CG(g)| is a multiple
of 2. Set |CG(x)| = 2a, |CG(y)| = 2b, |CG(z)| = 2c and |CG(w)| = 2d. Since
kG(G−M) = 4, therefore 1

2a+
1
2b+

1
2c+

1
2d+

1
2 = 1. This equality holds for a = 2

and b = c = d = 6, a = 2, b = 4 and c = d = 8 or a = b = c = d = 4. In the
first and second case, since G possesses an element x with |CG(x)| = 4, Lemma
2.3 implies that M is of even order. Also since |Z(G)|||CG(x)|, |Z(G)| ≤ 2.
If |Z(G)| = 1, then M contains at least one non-central conjugacy class of G,
such that the order of representative of it is 2, this contradicts property P5.
Now suppose that |Z(G)| = 2 and a ∈ Z(G) be of order 2. Let |G′ ∩Z(G)| = 1

and 1 ̸= b ∈ G
′
. Then (ab)G is a non-central conjugacy class of G contained

in M , this contradicts property P5. Now suppose that |G′ ∩ Z(G)| = 2. Thus

Z(G) ≤ G
′
. If Z(G) = G

′
, then |G| = 4, which is not possible. So assume

that Z(G) < G
′
. Then there is b ∈ G

′ − Z(G), such that (ab)G is a non-
central conjugacy class of G contained in M , a contradiction. In the third
case, |CG(x)| = |CG(y)| = |CG(z)| = |CG(w)| = 8. Since |Z(G)|||CG(x)|,
|Z(G)| = 1, 2 or 4. Also since |CG(x)|||G|, |G| is a multiple of 8. If |Z(G)| = 1,

then M = G
′
and M contains at least one non-central conjugacy class of G,

such that the order of its representative is 2, this contradicts property P5. Now
assume that |Z(G)| = 2 and a ∈ Z(G) be of order 2. Let |G′ ∩ Z(G)| =

1. Then there is 1 ̸= b ∈ G
′
, such that (ab)G is a non-central conjugacy

class of G contained in M , this contradicts property P5. Now suppose that
|G′ ∩Z(G)| = 2. Thus Z(G) ≤ G

′
. Now using the argument mentioned before,

we get a contradiction. Finally suppose that |Z(G)| = 4 and a ∈ Z(G) be of

order 2. If |G′ ∩ Z(G)| = 1, then there is 1 ̸= b ∈ G
′
, such that (ab)G is a

non-central conjugacy class of G contained in M , which contradicts property
P5. Now assume that |G′ ∩ Z(G)| = 2. We know that |G′ | is a multiple of

2. If |G′ | = 2, then |G| = 8 and therefore G is isomorphic to D8 or Q8. But

non of these groups satisfy in this case. So |G′ | ≥ 4 and therefore there is

an element b ∈ G
′ − Z(G), such that (ab)G is a non-central conjugacy class

of G contained in M , which contradicts property P5. Finally suppose that
|G′ ∩ Z(G)| = 4. Thus Z(G) ≤ G

′
. Using the discussion mentioned before, we

get a contradiction again.

5. Suppose that kG(G−M) = 5. It is easy to see that | GM | = 6. In this case, all
elements in each of five non-trivial cosets of M in G are conjugate. Hence they
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all have centralizers of order 6. Let g ∈ G such that gM generates G
M . Then g

is of order 6, and G is a Frobenius group with kernel M and complement ⟨g⟩.
This implies that Z(G) = 1 and M = G

′
. Since G satisfies property P5, we

have M ∈ Sylp(G) and kG(M −{1}) ≤ 4. It follows that |M |−1
6 ≤ 4 and hence

|M | ≤ 25. Therefore, G is a Frobenius group with complement of order 6 and
kernel Z7,Z13,Z19 or (Z5)

2.

6. Finally suppose that kG(G − M) = 6. It is easy to see that | GM | = 6. In
this case, there is an element g ∈ G − M of order 6, such that |CG(g)| = 6.
It implies that g acts fixed point freely on M . Thus G is a Frobenius group
with kernel M and complement ⟨g⟩. Since G satisfies property P5, we have

M ∈ Sylp(G) and kG(M − {1}) ≤ 4. It follows that |M |−1
6 ≤ 4 and hence

|M | ≤ 25. Therefore G is a Frobenius group with complement of order 6 and
kernel Z7,Z13,Z19 or (Z5)

2, but non of these groups satisfy in this case.
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