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Abstract. We consider the complex dynamics of a one para-

metric family of polynomials fc(z) = zd+1+cz, where d ≥ 1 is a

given integer and c ∈ C. The critical set of the symmetric poly-

nomial fc has d points and is stable under the symmetric group

Σd. In the dynamics of quadratic polynomials Pc(z) = z2 + c,

Douady and Hubbard have proved that the Mandelbrot set is

connected [5]. This result has been extended to the dynamics

of uni-critical polynomials gc(z) = zd+c [7, 11]. We extend the

Douady-Hubbard’s Theorem to the symmetric polynomials.
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1. Introduction

We first recall some terminology and definitions in holomorphic

dynamics (see [1, 2, 9, 12]). Let f : C → C be a polynomial self-map

of the complex plane. For each z ∈ C, the orbit of z is

Orbf (z) = {z, f(z), f(f(z)), · · · , fn(z), · · · }.

The dynamical plane C is decomposed into two complementary sets:

the filled Julia set

K(f) = {c ∈ C : Orbf (z) is bounded},

and its complementary, the basin of infinity

Af (∞) = C−K(f).

The boundary of K(f), called the Julia set, is denoted by J(f).

When f is a quadratic polynomial, say f(z) = Pc = z2 + c, the

Mandelbrot set M2 is defined as the set of parameter values c, for

which K(Pc) is connected, that is

M2 = {c ∈ C : K(Pc) is connected},

or equivalently, as the set of parameters for which the orbit of 0 is

bounded. In fact (see [1, 2]),

M2 = {c ∈ C : ∀n, |P n
c (c)| ≤ 2}.

More generally, for the family gc(z) = zd + c, the connectedness

locus, called the Mandelbrot set Md, is defined by

Md = {c ∈ C : K(gc) is connected}.

In the last decades, the topological and measure theoretical prop-

erties of these sets have been extensively studied. Using techniques
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and notions based on the quasi-conformal surgery, polynomial-like

map, renormalizability, Yoccoz puzzle, Hubbard’s tableau, etc., the

following substantial results have been obtained.

Theorem A. (Douady-Hubbard [5]) The Mandelbrot set M2 is

connected.

Theorem B. (Yoccoz [6]) If Pc has no indifferent periodic points

and is not infinitely renormalizable, then the Julia set J(Pc) is lo-

cally connected.

Theorem C. (Lyubich [8]) If Pc has no irrational indifferent peri-

odic points and is not infinitely renormalizable, then the Lebesgue

measure of the Julia set J(Pc) is equal to zero.

The extension of these theorems to other classes of polynomi-

als constitutes part of today’s research in this area. For instance,

Theorems A and B have been extended to uni-critical polynomials

gc(z) = zd + c (see [11, 7]).

The aim of this paper is to extend theorem A to the class of

symmetric polynomials fc(z) = z(zd + c). Theorems B and C are

extended to this class in [4, 13].

For the family fc(z) = zd+1 + cz, the connectedness locus Cd, or

what is the same, the Mandelbrot set, is defined by

Cd = {c ∈ C : K(fc) is connected}.

Our main result now reads as:

Theorem 1.1. (Extension of Douady-Hubbard’s Theorem) The

Mandelbrot set Cd is connected.
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The techniques used to prove it, are similar to those used in the

quadratic case, repeated in the uni-critical one, with a slight differ-

ence. In the uni-critical case gc, using the Böttcher function φc, a

conformal isomorphism ΦMd
: C −Md → C − D, Φ(c) = φc(c) is

defined, from which one concludes the connectedness of Md. This

method works because the parameter c in gc coincides with the

critical value. In the case of symmetric polynomials fc, we apply

the Böttcher function to one of the critical values fc(c0), which is

a function of c, to get a new function Φ(c) = φc(fc(c0). Then it is

shown that Φ : C− Cd → C−D is a conformal map (see the proof

of Theorem 1, §4).

Another analogy (see §3, Proposition 2) consists of the characteri-

zation of Cd by a boundedness condition:

Cd = {c ∈ C; |fn
c (c0)| ≤ (1 +

d + 1

d
α)1/d for every n ∈ N}.

2. Symmetric polynomials

For convenience, in this section we provide necessary preliminar-

ies. We first give a symmetry condition on the family of polynomials

of degree ≥ 3. This condition is similar to the one investigated by

Milnor [10]. Instead of the general family of all quadratic rational

maps, Milnor introduced quadratic rational maps with symmetries

and derived the one-parameter family fk(z) = k(z + z−1), which

depends on the complex parameter k ∈ C.

From now on, d ≥ 2 will be a fixed integer. In the dynamical study
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of monic centered polynomials f(z) = zd+1 + ad−1z
d−1 + · · · + a0,

with the parameter space Cd, at a first step we can restrict ourselves

to a one-parameter family, just as Milnor did. For this purpose, by

an automorphism of f(z) = zd+1 + ad−1z
d−1 + · · · + a0, we mean

a non-constant affine map R(z) = az + b, with a 6= 0, a, b ∈ C,

satisfying R ◦ f ◦ R−1 = f . An easy calculation shows that the

collection of all automorphisms of f , denoted by Aut (f), forms a

subgroup of the finite rotation group Σd = {γ ∈ C : γd = 1}. In

some particular cases, the groups Aut(f) and Σd are equal. All

such polynomials are characterized in the following proposition.

Proposition 2.1. For a monic centered polynomial f(z) = zd+1 +

ad−1z
d−1 + · · ·+ a0, the following are equivalent.

(i) Aut(f) = Σd;

(ii) There exists c ∈ C such that f(z) = fc(z) = z(zd + c) for

all z ∈ C.

(iii) The polynomial f vanishes at the origin and the critical set

Z(f ′) = {z ∈ C : f ′(z) = 0} is stable under the action of Σd.

The proof is straightforward and is omitted. �

Definition 2.2. A d−symmetric polynomial, or symmetric poly-

nomial if there is no confusion, is a polynomial of the form fc(z) =

z(zd + c), c ∈ C.

Remark 2.3. A d−symmetric polynomial fc(z) = z(zd +c), c ∈ C
has d symmetric critical points (counting with multiplicity when

c = 0):

(2.1) c0, c1 = ωc0, · · · , cd−1 = ωd−1c0,
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where ω = e2πi/d and c0 is one of the solutions of (d + 1)zd + c = 0,

i.e.,

c0 = (
−c

d + 1
)1/d.

The property (i), or direct calculation, shows that also fc has d

symmetric critical values:

(2.2) v0, v1 = ωv0, · · · , vd−1 = ωd−1v0,

where v0 = fc(c0) = dcc0
d+1

.

3. Boundedness and symmetry

In this section, we first observe that the Mandelbrot set Cd is

bounded. Then we show that it is symmetric with respect to the

action of Σd.

Proposition 3.1. For each d ≥ 2, there exists a real number

1 < α < 2 such that

Cd = {c ∈ C : |fn
c (c0)| ≤ (1 +

d + 1

d
α)1/d for every n ∈ N}.

Proof. For |z| > (1+ |c|)1/d, we have |fc(z)| ≥ |z|(|z|d−|c|) > |z|.
It follows that

{z; |z| > (1 + |c|)1/d} ⊂ Ac(∞).

Now if α is the unique positive root of the polynomial g(t) = td+1−
(d + 1)t− d, then for |c| > d+1

d
α, we have

|fc(c0)| =
d|c|

d + 1
(
|c|

d + 1
)1/d > (1 + |c|)1/d.

Henceforth, c0 ∈ Ac(∞) . �
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Corollary 3.2. The Mandelbrot set Cd is a compact subset of the

disk {c : |c| ≤ d+1
d

α}.

Proposition 3.3. The Mandelbrot set Cd is invariant under the

action of the group Σd.

Proof. Let c ∈ Cd, ω = e2πi/d and let c0 be a critical point of

fc. Then ωc ∈ Cd. Indeed, ω1/dc0 is a critical point of fωc, the

corresponding critical values being related by

fωc(ω
1/dc0) = ω1/dc0(ωcd

0 + ωc) = ω
1
d
+1c0(c

d
0 + c) = ω

1
d
+1fc(c0).

Hence |fωc(ω
1/dc0)| = |fc(c0)|. In view of the Proposition 3.1, the

value α depends only on the degrees of the polynomials fc and fωc

which are of the same degree. This completes the proof. �

Proposition 3.4. The Mandelbrot set Cd has the following proper-

ties:

(a) Cd contains the unit closed disk {c : |c| ≤ 1}.
(b) The components of the interior of Cd are simply connected

domains. In other words, Cd is full.

(c) The open set C− Cd is connected.

Proof. (a) It is enough to consider the behavior of one of the crit-

ical points in (1). For |c| < 1, z0 = 0 is an attractive fixed point

and its basin domain contains at least one critical point. Similarly

for |c| = 1, there is a critical point in the basin domain or on the

Julia set. Therefore, no critical point belongs to the unbounded

Fatou domain.

(b) Assume that one of the components of the int(Cd), say D, is not
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simply connected. Then D has a bounded complementary compo-

nent X. Since the boundary ∂X is a subset of Cd, by Proposition

3.1, the sequence {|fn
c (c0)|}n∈N is bounded by (1 + d+1

d
α)1/d. Now

we can apply the Maximum Principle to the bounded domain X.

The sequence {|fn
c (c0)|}n∈N is therefore bounded by (1 + d+1

d
α)1/d

for any c ∈ X. From the Proposition 3.1, we have X ⊂ Cd, which

is a contradiction.

(c) If the assertion is false, then C− Cd has some bounded compo-

nent X, to which we can apply the same reasoning as in (b) and

get a contradiction. �

Remark 3.5. If the integer d converges to infinity, the value of

α converges to 1, and the Mandelbrot set Cd converges to the unit

disk.

4. Connectedness

As we know, the Mandelbrot set Md is full, compact and con-

nected. We have proved in §3 that the Mandelbrot set Cd is also

compact and full. Now we are going to prove that it is connected.

For this purpose, we need slight modifications of some well known

results and machinaries.

If we apply the Böttcher theorem ([2, 12]) to the symmetric poly-

nomial fc, for a sufficiently large positive number Rc, we get a

Böttcher function φc(z) on Dc = {z ∈ C; |z| ≥ Rc}, such that

φc(fc(z)) = (φc(z))d+1.
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Proposition 4.1. For the symmetric polynomial fc(z) = z(zd + d)

the Böttcher function φc satisfies

φc(fc(ωz)) = φc(fc(z)),

where ω = e
2πi
d .

Proof. We have seen that fc(ωz) = ωfc(z). Therefore,

φc(fc(ωz)) = lim
n→∞

(d+1)n
√

fn
c (ωz) = lim

n→∞
(d+1)n

√
ωfn

c (z).

It follows that φc(fc(ωz)) = φc(fc(z)). �

Let us recall (see [2, 12]) that in general a Böttcher function φc(z)

cannot be continued analytically to the whole Ac(∞). However,

since Ac(∞) =
⋃∞

n=1(f
n
c )−1(Dc), we can extend the harmonic func-

tion Gc(z) = log |φc(z)| to the whole Ac(∞) by setting

Gc(z) =
1

(d + 1)n+1
Gc(f

n
c (z)) if z ∈ (fn

c )−1(Dc).

This extension is well defined and Gc(z) is clearly harmonic on

Ac(∞). Moreover, we set Gc(z) = 0 for every z ∈ Kc. Then Gc is a

continuous subharmonic function on C, which is called the Green

function associated to K(fc).

Proposition 4.2. (Sibony’s Theorem) For every A ≥ 0 there exists

α = α(A) ≥ 0 such that the restriction of the Green function Gc to

the disk |c| ≤ A is α−Hölder.

Proof. We repeat the arguments given in the proof of Theorem

3.2, page 138 of [2] by making necessary modifications. Assume

that A ≥ 10. Let z ∈ C−K(fc) and let δ(z) = dist(z, K(fc)). Let
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us take the closest point z0 ∈ Kc to z, and let S = {z0 + t(z −
z0) : 0 ≤ t ≤ 1}. Take N = N(z) to satisfy |fn

c (w)| < A for all

w ∈ S and all n < N , while |fN
c (z1)| ≥ A for some z1 ∈ S. Using

f ′c(z) = (d + 1)zd + c and the chain rule, we see that |(fn
c )′(w)| ≤

((d + 1)Ad + A)n for all n < N and w ∈ S. Also, |fn
c (z0)| < 2 d

√
A

for all n, or else, the iterates

|fn+1
c (z0)| ≥ |fn

c (z0)|(|fn
c (z0)|d − |c|) ≥ |fn

c (z0)|(2d − 1)A > |fn
c (z0)|

would escape to ∞. The mean value theorem then implies that

|fN
c (z1)− fN

c (z0)| ≤ ((d + 1)Ad + A)Nδ(z1).

Thus we have

|fN
c (z1)| ≤ 2

d
√

A + ((d + 1)Ad + A)Nδ(z1).

But |fN
c (z1)| ≥ A, hence ((d+1)Ad+A)Nδ(z1) ≥ 1, and ((d+1)Ad+

A)Nδ(z) ≥ 1. For α = log(d+1)
log((d+1)Ad+A)

we have δ(z)α > (d + 1)−N , so

that

Gc(z) = Gc(f
N
c (z))(d + 1)−N ≤ Mδ(z)α,

where M depends only on A. Consider two points z1, z2 and suppose

δ(z1) ≥ δ(z2). We would like to prove

|Gc(z1)−Gc(z2)| ≤ C|z1 − z2|α.

If |z1 − z2| > 1
2
δ(z1), this follows from the above estimate. If

|z1 − z2| ≤ 1
2
δ(z1), we use the Harnack’s inequality for the posi-

tive harmonic function Gc(z) in the disk D(z1, δ(z1)) to conclude

|Gc(z1)−Gc(z2)| ≤ C0Mδ(z1)
α |z1 − z2|

δ(z1)
≤ C|z1 − z2|α.

�
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Proposition 4.3. If cn → c, then the corresponding Green func-

tions Gcn converge uniformly on C to Gc. Thus Gc(z) is jointly

continuous in c and z.

Proof. Proposition 4.2 guarantees the equicontinuity of the se-

quence Gcn(z) and the arguments of [2], page 139, can be repro-

duced. �

Finally we have:

Theorem 4.4. The Mandelbrot set Cd is connected.

Proof. As Ĉ−D is simply connected, it is enough to find a homeo-

morphism from Ĉ−Cd onto Ĉ−D. We will indeed find a conformal

map

Φ : C− Cd → C−D.

Let Ω = {(z, c) ∈ C × C; c ∈ C − Cd, Gc(z) > Gc(c0)}. For every

n ≥ 0 the pre-critical points, (fn
c )−1(c0), and the pre-images of the

origin, (fn
c )−1(0), do not belong to Ω. Hence the Böttcher function

φ(z, c) := φc(z) is well defined and analytic on Ω. It has the follow-

ing representation

φ(z, c) = lim
n→∞

(fn
c (z))

1
(d+1)n = z

∞∏
n=1

(fn
c (z))

1
(d+1)n

(fn−1
c (z))

1
(d+1)n−1

=

z

∞∏
n=1

(
(fn−1

c (z)((fn−1
c (z))d + c))

(fn−1
c (z))d+1

)
1

(d+1)n = z

∞∏
n=0

(1 +
c

fn
c (z)

)
1

(d+1)n+1 .

We obviously have (fc(c0), c) ∈ Ω. Now we define

Φ : C− Cd → C−D,
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Φ(c) = φ(fc(c0), c),

and prove that the function Φ is well defined, onto and conformal.

By Proposition 4.1, φc(fc(ωc0)) = φc(fc(c0)). Therefore, φ(z, c)

does not depend on the choice of c0 among the critical points, and

Φ is well defined.

From the representation

φ(z, c) = z

∞∏
n=0

(1 +
c

fn
c (z)

)
1

(d+1)n+1 ,

the Böttcher function φ(z, c) is an analytic function of two variables

in Ω. It follows that Φ is analytic on C − Cd. Furthermore, for

c ∈ C− Cd we have

log |Φ(c)| = log |φc(fc(c0))| = Gc(fc(c0)) = (d + 1)Gc(c0) > 0,

and |Φ(c)| > 1. On the other hand, from Proposition 4.3, the

Green function Gc is continuous. Since Gc|Cd
= 0, we conclude that

Gc(fc(c0)) → 0 as c tends to the boundary of C−Cd. Consequently,

|Φ(c)| → 1 as c tends to the boundary of C − Cd. Near infinity

we have φc(fc(c0)) = (φc(c0))
d+1 ∼ −c

d+1
, which implies that Φ is

injective near ∞, has a simple pole at ∞, and has no zero in C−Cd.

The argument principle can apply: Φ assumes each value in C−D

exactly once on C − Cd. Hence Φ maps Ĉ − Cd conformally onto

Ĉ−D. In particular, Ĉ−Cd is simply connected, which implies the

assertion. �
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