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Abstract. The notion of (Boolean) uni-soft filters in MTL-algebras is
introduced, and several properties of them are investigated. Character-
izations of (Boolean) uni-soft filters are discussed, and some (necessary
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1. Introduction

To formalize the many-valued logics induced by continuous t-norms on the
real unit interval [0, 1], Hajek [4] introduced a very general many-valued logic,
called Basic Logic. It is a well known fact that a t-norm has a residuum if and
only if it is left-continuous, which shows that Basic Logic is not the most general
t-norm based logic. In fact a logic weaker than Basic Logic, called Monoidal
t-norm-based logic (MTL for short), was defined by Esteva and Godo in [3].
The MTL is indeed the logic of left-continuous t-norms, and MTL-algebras are
the algebraic counterpart of this logic.

To solve complicated problems in economics, engineering, and environment,
we can not successfully use the classical methods because of various uncertain-
ties which are typical for those problems. Uncertainties can not be handled
using the traditional mathematical tools but may be dealt with using a wide
range of existing theories such as probability theory, theory of (intuitionistic)
fuzzy sets, theory of vague sets, theory of interval mathematics, and theory of
rough sets. However, all of these theories have their own difficulties which are
pointed out in [7]. Maji et al. [6] and Molodtsov [7] suggested that one reason
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for these difficulties may be due to the inadequacy of the parametrization tool
of the theory.

To overcome these difficulties, Molodtsov [7] introduced the concept of soft
set as a new mathematical tool for dealing with uncertainties that is free from
the difficulties that have troubled the usual theoretical approaches. Molodtsov
pointed out several directions for the applications of soft sets. At present,
works on the soft set theory are progressing rapidly. Maji et al. [6] described
the application of the soft set theory to a decision making problem. Also, Maji
et al. [5] studied several operations on the theory of soft sets. Chen et al. [2]
presented a new definition of soft set parametrization reduction, and compared
this definition with the related concept of attributes reduction in rough set
theory.

In this paper, we introduce the notion of (Boolean) uni-soft filters in MTL-
algebras, and investigate several properties of them. We discuss character-
izations of (Boolean) uni-soft filters, and provide a necessary and sufficient
condition for a uni-soft filter to be Boolean. We establish the condensational
property for a Boolean uni-soft filter.

2. Preliminaries

By a residuated lattice we shall mean a lattice

L = (L,≤,∧,∨,⊙,→, 0, 1)

containing the least element 0 and the largest element 1, and endowed with
two binary operations ⊙ (called product) and → (called residuum) such that

• ⊙ is associative, commutative and isotone.
• (∀x ∈ L) (x⊙ 1 = x).
• The Galois correspondence holds, that is,

(∀x, y, z ∈ L) (x⊙ y ≤ z ⇐⇒ x ≤ y → z).

In a residuated lattice, the following are true (see [8]):

x ≤ y ⇒ x → y = 1.(2.1)

0 → x = 1, 1 → x = x, x → (y → x) = 1.(2.2)

y ≤ (y → x) → x.(2.3)

x → (y → z) = (x⊙ y) → z = y → (x → z).(2.4)

x → y ≤ (z → x) → (z → y), x → y ≤ (y → z) → (x → z).(2.5)

y ≤ x ⇒ x → z ≤ y → z, z → y ≤ z → x.(2.6) (∨
i∈Γ

yi

)
→ x =

∧
i∈Γ

(yi → x).(2.7)
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We define x∗ =
∨
{y ∈ L | x⊙ y = 0}, equivalently, x∗ = x → 0. Then

0∗ = 1, 1∗ = 0, x ≤ x∗∗, x∗ = x∗∗∗.

Based on the Hájek’s results [4], and the axioms and provable formulas of
MTL, Esteva and Godo [3] defined the so-called MTL-algebras corresponding
to the MTL-logic in the following way.

Definition 2.1. An MTL-algebra is a residuated lattice L = (L, ≤, ∧, ∨, ⊙,
→, 0, 1) satisfying the pre-linearity equation:

(x → y) ∨ (y → x) = 1.

In an MTL-algebra, the following are true:

x → (y ∨ z) = (x → y) ∨ (x → z).(2.8)

x⊙ y ≤ x ∧ y.(2.9)

Definition 2.2 ([3]). Let L be an MTL-algebra. A nonempty subset F of L
is called a filter of L if it satisfies

(b1) (∀x, y ∈ F ) (x⊙ y ∈ F ).
(b2) (∀x ∈ F ) (∀y ∈ L) (x ≤ y ⇒ y ∈ F ).

Since ∧ is not definable from⊙ and→ in an MTL-algebra, one could consider
that the further condition

(b3) (∀x, y ∈ F ) (x ∧ y ∈ F )

should be also required for a filter. However, the condition (b3) is indeed
redundant because it is a consequence of (b1) and (b2). Namely, since x⊙ y ≤
x ∧ y, if x, y ∈ F then x⊙ y ∈ F and thus x ∧ y ∈ F as well.

Proposition 2.3. A nonempty subset F of an MTL-algebra L is a filter of L
if and only if it satisfies:

(b4) 1 ∈ F.
(b5) (∀x ∈ F ) (∀y ∈ L) (x → y ∈ F ⇒ y ∈ F ).

A soft set theory, introduced by Molodtsov [7], and Çaǧman et al. [1],
provided new definitions and various results.

In what follows, let U be an initial universe set and L be a set of parameters.
Let P(U ) denote the power set of U and A,B,C, · · · ⊆ L.

Definition 2.4 ([1, 7]). A soft set FA of L (over U) is defined to be the set of
ordered pairs

FA :=
{(

x, f̃A(x)
)
: x ∈ L, f̃A(x) ∈ P(U )

}
,

where f̃A : L → P(U ) satisfies f̃A(x) = ∅ for x /∈ A.

For a soft set FL of L (over U), the set eL

(
f̃L; τ

)
=
{
x ∈ L | f̃L(x) ⊆ τ

}
is

called the τ -exclusive set of FL.
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3. Uni-soft filters

In what follows let L denote an MTL-algebra unless otherwise specified.

Definition 3.1. A soft set FL of L is called a uni-soft filter of L if it satisfies:

(∀x, y ∈ L)
(
f̃L(x⊙ y) ⊆ f̃L(x) ∪ f̃L(y)

)
, and(3.1)

(∀x, y ∈ L)
(
x ≤ y ⇒ f̃L(x) ⊇ f̃L(y)

)
.(3.2)

Example 3.2. Let L = [0, 1] and define a product ⊙ and a residuum → on L
as follows:

x⊙ y :=

{
x ∧ y if x+ y > 1

2 ,
0 otherwise

x → y :=

{
1 if x ≤ y,
(0.5− x) ∨ y if x > y

for all x, y ∈ L. Then L is an MTL-algebra. Let FL be a soft set of L in which

f̃L(x) :=

{
τ1 if x ∈ (0.5, 1],
τ2 otherwise,

where τ1 ⊊ τ2 in P(U ). Then it is straightforward to verify that FL is a uni-soft
filter of L.

We prove the following characterizations for uni-soft filters.

Theorem 3.3. A soft set FL of L is a uni-soft filter of L if and only if it
satisfies:

(∀x ∈ L)
(
f̃L(1) ⊆ f̃L(x)

)
, and(3.3)

(∀x, y ∈ L)
(
f̃L(y) ⊆ f̃L(x) ∪ f̃L(x → y)

)
.(3.4)

Proof. Assume that FL is a uni-soft filter of L. Since x ≤ 1 for all x ∈ L, it
follows from (3.2) that f̃L(1) ⊆ f̃L(x) for all x ∈ L. Since x ≤ (x → y) → y, we
have x⊙ (x → y) ≤ y for all x, y ∈ L by the Galois correspondence. It follows
from (3.2) and (3.1) that

f̃L(y) ⊆ f̃L(x⊙ (x → y)) ⊆ f̃L(x) ∪ f̃L(x → y)

for all x, y ∈ L.
Conversely, let FL be a soft set of L which satisfy two conditions (3.3) and

(3.4). Let x, y ∈ L be such that x ≤ y. Then x → y = 1, and so

f̃L(y) ⊆ f̃L(x) ∪ f̃L(x → y) = f̃L(x) ∪ f̃L(1) = f̃L(x),

for all x ∈ L. This proves (3.2). Using (2.4), we know that

x → (y → (x⊙ y)) = (x⊙ y) → (x⊙ y) = 1.
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Using (3.3) and (3.4), we have

f̃L(x⊙ y) ⊆ f̃L(y) ∪ f̃L(y → (x⊙ y))

⊆ f̃L(y) ∪
(
f̃L(x) ∪ f̃L(x → (y → (x⊙ y)))

)
= f̃L(y) ∪

(
f̃L(x) ∪ f̃L(1)

)
= f̃L(x) ∪ f̃L(y)

for all x, y ∈ L. Therefore, FL is a uni-soft filter of L. □

Theorem 3.4. A soft set FL of L is a uni-soft filter of L if and only if it
satisfies:

(∀a, b, c ∈ L)
(
a ≤ b → c ⇒ f̃L(c) ⊆ f̃L(a) ∪ f̃L(b)

)
.(3.5)

Proof. Assume that FL is a uni-soft filter of L. Let a, b, c ∈ L be such that
a ≤ b → c. Then f̃L(a) ⊇ f̃L(b → c) by (3.2), and so

f̃L(c) ⊆ f̃L(b) ∪ f̃L(b → c) ⊆ f̃L(b) ∪ f̃L(a).

Conversely, let FL be a soft set of L satisfying (3.5). Since x ≤ x → 1 for
all x ∈ L, it follows from (3.5) that

f̃L(1) ⊆ f̃L(x) ∪ f̃L(x) = f̃L(x)

for all x ∈ L. Since x → y ≤ x → y for all x, y ∈ L, we have

f̃L(y) ⊆ f̃L(x) ∪ f̃L(x → y)

for all x, y ∈ L. Therefore FL is a uni-soft filter of L by Theorem 3.3. □

Corollary 3.5. A soft set FL of L is a uni-soft filter of L if and only if it
satisfies

f̃L(x) ⊆
n∪

k=1

f̃L(ak)(3.6)

whenever an → (· · · → (a2 → (a1 → x)) · · · ) = 1 for any a1, a2, · · · , an ∈ L.

Proof. It can be easily checked by induction on n. □

Theorem 3.6. For a filter F of L and a ∈ L, let FL be a soft set of L defined
by

f̃L(x) :=

{
τ1 if x ∈ {z ∈ L | a ∨ z ∈ F},
τ2 otherwise,

for all x ∈ L where τ1 ⊊ τ2 in P(U ). Then FL is a uni-soft filter of L.
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Proof. Since a ∨ 1 ∈ F, we have 1 ∈ {z ∈ L | a ∨ z ∈ F} and so f̃L(1) = τ1 ⊆
f̃L(x) for all x ∈ L. Now if y ∈ {z ∈ L | a ∨ z ∈ F}, then clearly

f̃L(y) = τ1 ⊆ f̃L(x) ∪ f̃L(x → y).

Suppose that y /∈ {z ∈ L | a ∨ z ∈ F}. Then at least one of x and x → y does
not belong to {z ∈ L | a ∨ z ∈ F}. Hence

f̃L(y) = τ2 = f̃L(x) ∪ f̃L(x → y),

and therefore FL is a uni-soft filter of L by Theorem 3.3. □

Theorem 3.7. A soft set FL of L is a uni-soft filter of L if and only if the

nonempty τ -exclusive set eL

(
f̃L; τ

)
is a filter of L for all τ ∈ P(U ).

Proof. Suppose that FL is a uni-soft filter of L. Let τ ∈ P(U ) be such that

eL

(
f̃L; τ

)
̸= ∅. Then there exists an a ∈ eL

(
f̃L; τ

)
, and so f̃L(a) ⊆ τ. It

follows from (3.3) that τ ⊇ f̃L(a) ⊇ f̃L(1). Thus 1 ∈ eL

(
f̃L; τ

)
. Let x, y ∈ L

be such that x → y ∈ eL

(
f̃L; τ

)
and x ∈ eL

(
f̃L; τ

)
. Then f̃L(x → y) ⊆ τ and

f̃L(x) ⊆ τ. It follows from (3.4) that

τ ⊇ f̃L(x → y) ∪ f̃L(x) ⊇ f̃L(y),

that is, y ∈ eL

(
f̃L; τ

)
. Thus eL

(
f̃L; τ

)
( ̸= ∅) is a filter of L by Proposition

2.3.
Conversely, assume that the nonempty τ -exclusive set eL

(
f̃L; τ

)
is a filter

of L for all τ ∈ P(U ). For any x ∈ L, let f̃L(x) = τ. Then x ∈ eL

(
f̃L; τ

)
. Since

eL

(
f̃L; τ

)
is a filter of L, we have 1 ∈ eL

(
f̃L; τ

)
and so f̃L(x) = τ ⊇ f̃L(1).

For any x, y ∈ L, let f̃L(x → y) ∪ f̃L(x) = τ. Then x → y ∈ eL

(
f̃L; τ

)
and

x ∈ eL

(
f̃L; τ

)
. It follows from (b5) that y ∈ eL

(
f̃L; τ

)
. Hence, f̃L(y) ⊆ τ =

f̃L(x → y) ∪ f̃L(x). Therefore, FL is a uni-soft filter of L by Theorem 3.3. □

Theorem 3.8. If FL is a uni-soft filter of L, then the set

Ωa := {x ∈ L | f̃L(x) ⊆ f̃L(a)}
is a filter of L for every a ∈ L.

Proof. Since f̃L(1) ⊆ f̃L(a) for all a ∈ L. we have 1 ∈ Ωa. Let x, y ∈ L be such

that x ∈ Ωa and x → y ∈ Ωa. Then f̃L(a) ⊇ f̃L(x) and f̃L(a) ⊇ f̃L(x → y).
Since FL is a uni-soft filter of L, it follows from (3.4) that

f̃L(y) ⊆ f̃L(x) ∪ f̃L(x → y) ⊆ f̃L(a)

so y ∈ Ωa. Hence Ωa is a filter of L by Proposition 2.3. □
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Theorem 3.9. Let a ∈ L and let FL be a soft set of L. Then

(1) If Ωa is a filter of L, then FL satisfies the following implication for all
x, y ∈ L:

f̃L(a) ⊇ f̃L(x → y) ∪ f̃L(x) ⇒ y ∈ Ωa, i.e.,f̃L(y) ⊆ f̃L(a).(3.7)

(2) If FL satisfies (3.3) and (3.7), then Ωa is a filter of L.

Proof. (1) Assume that Ωa is a filter of L. Let x, y ∈ L be such that

f̃L(a) ⊇ f̃L(x → y) ∪ f̃L(x).

Then x → y ∈ Ωa and x ∈ Ωa. Using (b5), we have y ∈ Ωa, i.e., f̃L(y) ⊆ f̃L(a).

(2) Suppose that f̃L satisfies (3.3) and (3.7). From (3.3) it follows that
1 ∈ Ωa. Let x, y ∈ L be such that x ∈ Ωa and x → y ∈ Ωa. Then

f̃L(a) ⊇ f̃L(x) and f̃L(a) ⊇ f̃L(x → y),

which imply that f̃L(a) ⊇ f̃L(x) ∪ f̃L(x → y). Thus y ∈ Ωa by (3.7).
Therefore, Ωa is a filter of L by Proposition 2.3. □

Theorem 3.10. Let FL be a uni-soft filter of L. Then the following are equiv-
alent for all x, y, z in L:

(1) f̃L(x → z) ⊆ f̃L(x → (y → z)) ∪ f̃L(x → y).

(2) f̃L(x → y) ⊆ f̃L(x → (x → y)).

(3) f̃L((x → y) → (x → z)) ⊆ f̃L(x → (y → z)).

Proof. (1) ⇒ (2). Suppose that FL satisfies the condition (1). Taking z = y
and y = x in (1) and using (3.3), we have

f̃L(x → y) ⊆ f̃L(x → (x → y)) ∪ f̃L(x → x)

= f̃L(x → (x → y)) ∪ f̃L(1)

= f̃L(x → (x → y))

(2) ⇒ (3). Suppose that FL satisfies the condition (2) and let x, y, z ∈ L.
Since

x → (y → z) ≤ x → ((x → y) → (x → z)),

it follows from (2.4), (2) and (3.2) that

f̃L((x → y) → (x → z)) = f̃L(x → ((x → y) → z))

⊆ f̃L(x → (x → ((x → y) → z)))

= f̃L(x → ((x → y) → (x → z)))

⊆ f̃L(x → (y → z)).
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(3) ⇒ (1). If FL satisfies the condition (3), then

f̃L(x → z) ⊆ f̃L((x → y) → (x → z)) ∪ f̃L(x → y)

⊆ f̃L(x → (y → z)) ∪ f̃L(x → y)

This completes the proof. □

Theorem 3.11. For a fixed element a ∈ L, let F a
L be a soft set of L defined by

f̃a
L(x) :=

{
τ1 if a ≤ x,
τ2 otherwise,

where τ1 ⊊ τ2 in P(U ). Then F a
L is a uni-soft filter of L if and only if it

satisfies the following implication:

(∀x, y ∈ L) (a ≤ y → x, a ≤ y ⇒ a ≤ x).(3.8)

Proof. Assume that F a
L is a uni-soft filter of L and let x, y ∈ L be such that

a ≤ y → x and a ≤ y. Then f̃a
L(y → x) = τ1 = f̃a

L(y), and thus

f̃a
L(x) ⊆ f̃a

L(y → x) ∪ f̃a
L(y) = τ1

which implies that f̃a
L(x) = τ1 and so a ≤ x.

Conversely, suppose that (3.8) holds. Note that eL

(
f̃a
L; τ2

)
= L and

eL

(
f̃a
L; τ1

)
= {x ∈ L | a ≤ x}.

Obviously, 1 ∈ eL

(
f̃a
L; τ1

)
. Let x, y ∈ L be such that x ∈ eL

(
f̃a
L; τ1

)
and

x → y ∈ eL

(
f̃a
L; τ1

)
. Then a ≤ x and a ≤ x → y, which imply from (3.8) that

a ≤ y, that is, y ∈ eL

(
f̃a
L; τ1

)
. Hence, eL

(
f̃a
L; τ1

)
is a filter of L. By Theorem

3.7, F a
L is a uni-soft filter of L. □

Definition 3.12. A uni-soft filter FL of L is said to be Boolean if it satisfies
the following identity

(∀x ∈ L)
(
f̃L(x ∨ x∗) = f̃L(1)

)
.(3.9)

Theorem 3.13. Every Boolean uni-soft filter FL of L satisfies the following
inclusion for all x, y, z ∈ L:

f̃L(x → z) ⊆ f̃L(x → (z∗ → y)) ∪ f̃L(y → z).(3.10)

Proof. Using (2.5), we have

y → z ≤ (z∗ → y) → (z∗ → z) ≤ (x → (z∗ → y)) → (x → (z∗ → z)).

It follows from (3.2) that

f̃L(y → z) ⊇ f̃L((x → (z∗ → y)) → (x → (z∗ → z)))
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so from (3.4) that

f̃L(x → (z∗ → z)) ⊆ f̃L(x → (z∗ → y)) ∪ f̃L((x → (z∗ → y))

→ (x → (z∗ → z)))

⊆ f̃L(x → (z∗ → y)) ∪ f̃L(y → z).

Since

z∗ ∨ z = ((z∗ → z) → z) ∧ ((z → z∗) → z∗) ≤ (z∗ → z) → z,

we have f̃L((z
∗ → z) → z) ⊆ f̃L(z

∗ ∨ z) = f̃L(1). Since

x → (z∗ → z) ≤ ((z∗ → z) → z) → (x → z),

it follows from (3.2) that

f̃L(x → (z∗ → z)) ⊇ f̃L(((z
∗ → z) → z) → (x → z)).

Thus

f̃L(x → z) ⊆ f̃L((z
∗ → z) → z) ∪ f̃L(((z

∗ → z) → z) → (x → z))

⊆ f̃L(1) ∪ f̃L(x → (z∗ → z))

= f̃L(x → (z∗ → z))

⊆ f̃L(x → (z∗ → y)) ∪ f̃L(y → z),

for all x, y, z ∈ L. This completes the proof. □

We provide a necessary and sufficient condition for a uni-soft filter to be
Boolean.

Theorem 3.14. If a uni-soft filter FL of L satisfies the following inclusion

(∀x, y ∈ L)
(
f̃L(x) ⊆ f̃L((x → y) → x)

)
,(3.11)

then it is Boolean.

Proof. Using (2.2), (2.4) and (2.5), we have

1 = x → ((x∗ → x) → x)

≤ ((x∗ → x) → x)∗ → x∗

≤ (x∗ → x) → (((x∗ → x) → x)∗ → x)

= ((x∗ → x) → x)∗ → ((x∗ → x) → x)

= (((x∗ → x) → x) → 0) → ((x∗ → x) → x).

It follows from (3.2), (3.3) and (3.11) that

f̃L((x
∗ → x) → x) ⊆ f̃L((((x

∗ → x) → x) → 0) → ((x∗ → x) → x))

⊆ f̃L(1).
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so that f̃L((x
∗ → x) → x) = f̃L(1). Using (2.7) and (2.8), since

(x∗ → x) → x ≤ ((x∗ → x) → x) ∨ ((x∗ → x) → x∗)

= (x∗ → x) → (x ∨ x∗)

= (1 ∧ (x∗ → x)) → (x ∨ x∗)

= ((x → x) ∧ (x∗ → x)) → (x ∨ x∗)

= ((x ∨ x∗) → x) → (x ∨ x∗),

we get

f̃L(1) = f̃L((x
∗ → x) → x)

⊇ f̃L(((x ∨ x∗) → x) → (x ∨ x∗))

⊇ f̃L(x ∨ x∗),

and so f̃L(x ∨ x∗) = f̃L(1). Therefore, FL is Boolean. □

Theorem 3.15. If a uni-soft filter FL of L satisfies the condition (3.10), then
it satisfies the condition (3.11).

Proof. Since (x → y) → x ≤ x∗ → x, it follows from (3.2) and (3.10) and (3.3)
that

f̃L(x) = f̃L(1 → x)

⊆ f̃L(1 → (x∗ → x∗)) ∪ f̃L(x
∗ → x)

⊆ f̃L(1) ∪ f̃L((x → y) → x)

= f̃L((x → y) → x)

for all x, y ∈ L. Hence, FL satisfies the condition (3.11). □

Corollary 3.16. Every uni-soft filter FL of L satisfying the condition (3.10)
is Boolean.

Theorem 3.17. If a uni-soft filter FL of L satisfies (3.11), then it satisfies
the following inclusion for all x, y, z ∈ L:

f̃L(x → z) ⊆ f̃L(x → (y → z)) ∪ f̃L(x → y).(3.12)

Proof. Since x → (y → z) = y → (x → z) ≤ (x → y) → (x → (x → z)), it
follows from (3.2) that

f̃L(x → (y → z)) ⊇ f̃L((x → y) → (x → (x → z)))

so from (3.4) that

f̃L(x → (x → z)) ⊆ f̃L(x → y) ∪ f̃L((x → y) → (x → (x → z)))

⊆ f̃L(x → y) ∪ f̃L(x → (y → z)).
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Since

x → (x → z) ≤ x → (((x → z) → z) → z) = ((x → z) → z) → (x → z),

we have

f̃L(x → z) ⊆ f̃L(((x → z) → z) → (x → z))

⊆ f̃L(x → (x → z))

⊆ f̃L(x → y) ∪ f̃L(x → (y → z))

by using (3.2) and (3.11). This completes the proof. □

Corollary 3.18. Every uni-soft filter FL of L satisfying the condition (3.10)
satisfies the condition (3.12).

Theorem 3.19. Every Boolean uni-soft filter FL of L satisfies the following
inclusion:

(3.13) (∀x, y, z ∈ L)
(
f̃L(x → z) ⊆ f̃L(x → (y → z)) ∪ f̃L(x → y)

)
.

Proof. Note that x → (y → z) = y → (x → z) ≤ (x → y) → (x → (x → z))
and

x → (x → z) ≤ x → (((x → z) → z) → z) = ((x → z) → z) → (x → z),

for all x, y, z ∈ L. It follows from (3.2), (3.4), and Propositions 3.13 and 3.15
that

f̃L(x → z) ⊆ f̃L(((x → z) → z) → (x → z))

⊆ f̃L(x → (x → z))

⊆ f̃L(x → y) ∪ f̃L((x → y) → (x → (x → z)))

⊆ f̃L(x → y) ∪ f̃L(x → (y → z)),

for all x, y, z ∈ L. This completes the proof. □

Combining Theorems 3.13, 3.14 and 3.15, we have a characterization of a
Boolean uni-soft filter.

Theorem 3.20. Let FL be a uni-soft filter of L. Then the following assertions
are equivalent:

(1) FL is Boolean.
(2) FL satisfies the condition (3.10).
(3) FL satisfies the condition (3.11).

Theorem 3.21. Every Boolean uni-soft filter FL of L satisfies:

(∀x, y ∈ L)
(
f̃L(x → y) ⊇ f̃L(((y → x) → x) → y)

)
.(3.14)



Filter theory in MTL-algebras 2304

Proof. Let FL be a Boolean uni-soft filter of L.
Since y ≤ ((y → x) → x) → y, we have

(3.15) (((y → x) → x) → y) → x ≤ y → x

by (2.6). Using (2.4), (2.5), (2.6) and (3.15), we get

x → y ≤ ((y → x) → x) → ((y → x) → y)

= (y → x) → (((y → x) → x) → y)

≤ ((((y → x) → x) → y) → x) → (((y → x) → x) → y)

and so

f̃L(((y → x) → x) → y) ⊆ f̃L(((((y → x) → x) → y) → x)

→ (((y → x) → x) → y))

⊆ f̃L(x → y)

for all x, y ∈ L by Theorem 3.20(3) and (3.2). □
Theorem 3.22. A uni-soft filter FL of L is Boolean if and only if it satisfies
(3.14) and

(∀x, y ∈ L)
(
f̃L((x⊙ x) → y) ⊇ f̃L(x → y)

)
.(3.16)

Proof. Assume that FL is a Boolean uni-soft filter of L. Then f̃L satisfies the
condition (3.14) (see Theorem 3.21). The condition (3.16) follows from Theo-
rems 3.19 and 3.10.

Conversely, let FL be a uni-soft filter of L that satisfies two conditions (3.14)
and (3.16). Since

(x → y) → x ≤ ((x → y)⊙ (x → y)) → y

for all x, y ∈ L, it follows from (3.2) and (3.16) that

f̃L((x → y) → x) ⊇ f̃L(((x → y)⊙ (x → y)) → y) ⊇ f̃L((x → y) → y)(3.17)

for all x, y ∈ L. Note that

((x → (x → y)) → (x → y)) → x ≤ ((x → y) → y) → x

for all x, y ∈ L. Hence

f̃L((x → y) → x) ⊇ f̃L(((x → (x → y)) → (x → y)) → x)

⊇ f̃L(((x → y) → y) → x)
(3.18)

for all x, y ∈ L by (3.14) and (3.2). Since FL is a uni-soft filter of L, it follows
from (3.17), (3.18) and (3.4) that

f̃L((x → y) → x) ⊇ f̃L(((x → y) → y) → x) ∪ f̃L((x → y) → y) ⊇ f̃L(x)

for all x, y ∈ L. We conclude from Theorem 3.14 that FL is a Boolean uni-soft
filter of L. □
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Theorem 3.23 (Condensational property for Boolean uni-soft filter). Let FL

and GL be two uni-soft filters of L such that f̃L(1) = g̃L(1) and f̃L(x) ⊇ g̃L(x)
for all x ∈ L. If FL is Boolean, then so is GL.

Proof. Assume that FL is a Boolean uni-soft filter of L. Then f̃L(x∨x∗) = f̃L(1)
for all x ∈ L. It follows from the hypothesis that

g̃L(x ∨ x∗) ⊆ f̃L(x ∨ x∗) = f̃L(1) = g̃L(1).(3.19)

Combining (3.19) and (3.3), we have g̃L(x ∨ x∗) = g̃L(1) for all x ∈ L. Hence
GL is a Boolean uni-soft filter of L. □

4. Applications

Soft set theory, introduced by Molodtsov [7], is an important mathematical
tool to deal with uncertainties, fuzzy or vague objects; and has vast applications
in real life situations. Several possible applications of soft set theory in various
directions are given in [7].

In this paper, we presented an application of soft set theory in an algebraic
structure, called an MTL-algebra. In fact, using the notion of uni-soft prop-
erty, we introduced the notion of (Boolean) uni-soft filters in MTL-algebras,
and investigated on several properties of them. Moreover, we discussed on
characterizations of (Boolean) uni-soft filters, and provided a necessary and
sufficient condition for a uni-soft filter to be Boolean. We also established the
condensational property for a Boolean uni-soft filter.

We hope that this work will provide a deep impact on the upcoming research
in this field and other soft algebraic studies to open up new horizons of interest
and innovations. Indeed, this work may serve as a foundation for further study
of soft MTL-algebras. To extend these results, one can further study the union
soft substructures of different algebras such as hemirings, R0-algerbas, hyper-
algebras and other mathematical branches. One may also apply this concept
to study some applications in many fields like decision making, knowledge base
systems, data analysis, etc.
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