WEAK COMPACTNESS OF THE SET OF $\varepsilon ext{-EXTENSIONS}$

SH. REZAPOUR

ABSTRACT. Let W be a subspace of a normed space $X, \varepsilon > 0$ be given and let $f \in W^*$. Every extension of f (in the sense of Hahn-Banach Theorem) is a ε -extension of f. We determine when the set of all ε -extensions of every $f \in W^*$ is weakly compact. Finally by using of ε -extensions, we characterize weak*-closed ε -weakly Chebyshev subspaces of X^* .

1. Introduction

Let X be a (complex or real) normed space, $\varepsilon > 0$ be given and let W be a subspace of X. A point $y_0 \in W$ is said to be a ε -approximation for $x \in X$ if $||x - y_0|| \le d(x, W) + \varepsilon$. For $x \in X$, put

$$P_{W,\varepsilon}(x) = \{ y \in W : ||x - y|| \le d(x, W) + \varepsilon \}.$$

It is clear that $P_{W,\varepsilon}(x)$ is a non-empty, bounded and convex subset of X. Also, $P_{W,\varepsilon}(x)$ is closed for all $x \in X$, if W is closed.

Recently, the author has defined ε -quasi Chebyshev and ε -weakly Chebyshev subspaces of a normed space (see [8,9]). A subspace W of a normed space X is called ε -quasi Chebyshev (ε -Weakly Chebyshev) if $P_{W,\varepsilon}(x)$ is compact (weakly compact) for all $x \in X$. Also,

MSC(2000): Primary 46B50, 41A65

Keywords: ε -quasi Chebyshev subspace, ε -weakly Chebyshev subspace, ε -extension Received: 22 June 2004, Revised: 20 September 2004

This work has been supported by the Research Institute for Fundamental Sciences, Tabriz, Iran.

^{© 2004} Iranian Mathematical Society.

some types of proximinality are investigated (see [2]-[7]).

Let W be a subspace of a normed space X, $\varepsilon > 0$ be given and let $f \in W^*$. A linear functional $g \in X^*$ is called ε -extension of f if $g|_W = f$ and $||g|| - \varepsilon \le ||f|| \le ||g||$. We denote the set of all ε -extensions of f by $E_{\varepsilon}(f)$. Note that $E_{\varepsilon}(f)$ is a non-empty, closed and convex subset of X^* .

Recall that if W is a subspace of a normed space X, then $W^{\perp} = \{f \in X^* : f(w) = 0 \text{ for all } w \in W\}$. Also if M is a subspace of X^* , then $^{\perp}M = \{x \in X : f(x) = 0 \text{ for all } f \in M\}$ and $||f||_{M^{\perp}} = \sup\{|\varphi(f)| : ||\varphi|| \le 1, \ \varphi \in M^{\perp}\}$, for all $f \in X^*$. Finally, \hat{x} stands for the canonical image of $x \in X$ in the second dual X^{**} .

We conclude this section by a list of known lemmas needed in the proof of the main results.

Lemma 1.1. [8; Lemma 2.1]. Let W be a subspace of a normed linear space X $x \in X$, $y_0 \in W$ and $\varepsilon > 0$ be given. Then, $y_0 \in P_{W,\varepsilon}(x)$ if and only if $||x - y_0|| \le ||x - y_0||_{W^{\perp}} + \varepsilon$, where $||x - y_0||_{W^{\perp}} = \sup\{|f(x - y_0)| : ||f|| \le 1, f \in W^{\perp}\}.$

Lemma 1.2. [8; Lemma 2.2]. Let W be a closed subspace of a normed linear space X, $x \in X$ and $\varepsilon > 0$ be given. Then, $M \subseteq P_{W,\varepsilon}(x)$ if and only if there exists $f \in X^*$ such that ||f|| = 1, $f|_W = 0$ and $f(x - y) \ge ||x - y|| - \varepsilon$ for all $y \in M$.

Lemma 1.3. [8; Corollary 2.12(a)]. All closed subspaces of a normed space X are ε -quasi Chebyshev in X if and only if X is finite dimensional.

Lemma 1.4. [9; Corollary 2.8(a)]. All closed subspaces of a normed space X are ε -weakly Chebyshev in X if and only if X is reflexive.

Lemma 1.5. [3; Lemma 1.4]. Let X be a normed space and let W be weak*-closed subspace of X^* . Then, $||f||_{W^{\perp}} = ||f|_{\perp W}||$ for all $f \in X^*$.

2. Weak compactness of the set of ε -extensions

Now, we are ready to state and prove our results on ε -extensions.

Lemma 2.1. Let W be a subspace of a normed space X and $f, g \in X^*$. Then

$$g \in P_{W^{\perp},\epsilon}(f) \iff \widehat{f-g} \in E_{\epsilon}(\widehat{f}|_{W^{\perp\perp}}).$$

Proof. Let $g \in P_{W^{\perp},\varepsilon}(f)$. Then, by Lemma 1.2, there exists $\Lambda \in X^{**}$ such that $\|\Lambda\| = 1$, $\Lambda|_{W^{\perp}} = 0$ and $\Lambda(f-g) \geq \|f-g\| - \varepsilon$. It follows that, $\|f-g\| - \varepsilon \leq \|\widehat{(f-g)}|_{W^{\perp \perp}}\| \leq \|f-g\|$. Thus, $\|\widehat{f-g}\| - \varepsilon \leq \|\widehat{f}|_{W^{\perp \perp}}\| \leq \|\widehat{f-g}\|$. Therefore, $\widehat{f-g}$ is a ε -extension of $\widehat{f}|_{W^{\perp \perp}}$. Now, let $\widehat{f-g}$ be a ε -extension of $\widehat{f}|_{W^{\perp \perp}}$. Then, $\widehat{g}|_{W^{\perp \perp}} = 0$ and hence $g \in W^{\perp}$. On the other hand, $\|f-g\| = \|\widehat{f-g}\| \leq \|\widehat{f}|_{W^{\perp \perp}}\| + \varepsilon = \|\widehat{(f-g)}|_{W^{\perp \perp}}\| + \varepsilon = \|f-g\|_{W^{\perp \perp}} + \varepsilon$. Therefore, by Lemma 1.1, $g \in P_{W^{\perp},\varepsilon}(f)$. \square

Lemma 2.2. Let W be a subspace of a normed space X, $f \in W^*$ and let $\tilde{f} \in X^*$ be an extension of f. Then

$$E_{\epsilon}(\hat{\tilde{f}}|_{W^{\perp\perp}}) = \{\hat{g} : g \in E_{\epsilon}(f)\}.$$

Proof. Let $g \in X^*$ be such that \hat{g} is a ε -extension of $(\hat{\tilde{f}})|_{W^{\perp\perp}}$. Then, $\hat{g}(\varphi) = (\hat{\tilde{f}})(\varphi)$, for all $\varphi \in W^{\perp\perp}$. Thus,

 $g(x) = \hat{x}(g) = \hat{g}(\hat{x}) = (\hat{\tilde{f}})(\hat{x}) = \hat{x}(\tilde{f}) = \tilde{f}(x) = f(x), \text{ for all } x \in W.$ Since

$$||g|| - \varepsilon = ||\hat{g}|| - \varepsilon \le ||\hat{f}||_{W^{\perp \perp}}|| = ||\tilde{f}|| = ||f|| \le ||\hat{g}|| = ||g||,$$

g is a ε -extension of f. Now, let $g \in X^*$ be a ε -extension of f. Then, $g(x) = f(x) = \tilde{f}(x)$, for all $x \in W$. Since \hat{g} and $(\hat{\tilde{f}})$ are continuous with respect to the weak-topology on X^{**} and W is dense in $W^{\perp \perp}$ for the weak-topology on X^{**} , we have $\hat{g}(\varphi) = (\hat{\tilde{f}})(\varphi)$, for all $\varphi \in W^{\perp \perp}$. Hence, $\hat{g}|_{W^{\perp \perp}} = (\hat{\tilde{f}})|_{W^{\perp \perp}}$ and

$$\|\hat{g}\| - \varepsilon = \|g\| - \varepsilon \le \|f\| = \|\tilde{f}\| = \|(\hat{\tilde{f}})|_{W^{\perp \perp}}\| \le \|g\| = \|\hat{g}\|.$$

Therefore, \hat{g} is a ε -extension of $(\hat{\tilde{f}})|_{W^{\perp\perp}}$. \square

Theorem 2.3. Let W be a subspace of a normed space X and let $\varepsilon > 0$ be given. Then the following are equivalent:

- (a) For each $f \in W^*$, $E_{\varepsilon}(f)$ is weakly compact.
- (b) For each $f \in X^*$, the set of all $g \in X^*$ such that \hat{g} is a ε -extension of $\hat{f}|_{W^{\perp\perp}}$ is weakly compact.
- (c) W^{\perp} is a ε -weakly Chebyshev subspace of X^* .

Proof. (a) \Rightarrow (b). For each $f \in X^*$, $f_1 \in W^*$, where $f_1 = f|_W$. Let $\{g_n\}_{n\geq 1}$ be an arbitrary sequence in X^* such that $\hat{g_n}$ is a ε -extension of $\hat{f}|_{W^{\perp\perp}}$ $(n=1,2,\ldots)$. Then, by Lemma 2.2, $\{g_n\}_{n\geq 1}$ is a sequence in the set of all ε -extensions of f_1 . Therefore, $\{g_n\}_{n\geq 1}$ has a weakly convergent subsequence, and hence the set of all $g \in X^*$ such that \hat{g} is a ε -extension of $\hat{f}|_{W^{\perp\perp}}$ is weakly compact.

- (b) \Rightarrow (a). Let $f \in W^*$ be given. Then, f has an extension $\tilde{f} \in X^*$, by Hahn-Banach Theorem. Now, (a) is an immediate consequence of Lemma 2.2.
- (b) \Rightarrow (c). Let $f \in X^*$ be given and let $\{g_n\}_{n\geq 1}$ be a sequence in $P_{W^{\perp},\varepsilon}(f)$. Then, by Lemma 2.1, $\{f-g_n\}_{n\geq 1}$ is a sequence in the set of all $g\in X^*$ such that \hat{g} is a ε -extension of $\hat{f}|_{W^{\perp\perp}}$. Thus, there exists a weakly convergent subsequence $\{f-g_{n_k}\}_{k\geq 1}$ of $\{f-g_n\}_{n\geq 1}$. Therefore, $\{g_{n_k}\}_{k\geq 1}$ is a weakly convergent subsequence of $\{g_n\}_{n\geq 1}$. Hence, W^{\perp} is a ε -weakly Chebyshev subspace of X^* .
- (c) \Rightarrow (b). Let $f \in X^*$ be given and let $\{g_n\}_{n\geq 1}$ be a sequence in X^* such that $\hat{g_n}$ is an extension of $\hat{f}|_{W^{\perp\perp}}$, for all $n\geq 1$. Then, by Lemma 2.1, $\{f-g_n\}_{n\geq 1}$ is a sequence in $P_{W^{\perp},\varepsilon}(f)$. Thus, there exists a weakly convergent subsequence $\{f-g_{n_k}\}_{k\geq 1}$ of $\{f-g_n\}_{n\geq 1}$. Therefore, $\{g_n\}_{n>1}$ has a weakly convergent subsequence. \square

The proof of the following Theorem is similar to that of Theorem 2.3.

Theorem 2.4. Let W be a subspace of a normed space X and let $\varepsilon > 0$ be given. Then the following are equivalent:

- (a) For each $f \in W^*$, the set $E_{\varepsilon}(f)$ is compact.
- (b) For each $f \in X^*$, the set of all $g \in X^*$ such that \hat{g} is a ε -extension of $\hat{f}|_{W^{\perp\perp}}$, is compact.
- (c) W^{\perp} is a ε -quasi Chebyshev subspace of X^* .

The following corollary is a consequence of Theorems 2.3, 2.4, Lemma 1.3 and Lemma 1.4.

Corollary 2.5. Let X be a normed space.

(a) For each subspace W of X and for each $f \in W^*$, the set of all ε -extensions of f is weakly compact if and only if X is reflexive.

(b) For each subspace W of X and $f \in W^*$, the set of all ε -extensions of f is compact if and only if X is finite dimensional.

3. ε -weakly Chebyshev subspaces in dual spaces

In this section by using of ε -extensions, we shall characterize weak*-closed ε -weakly Chebyshev subspaces in dual spaces.

A subspace W of a normed space X is said to have the property $(\varepsilon - W)$ if for every $f \in W^*$ the set $E_{\varepsilon}(f)$ is weakly compact.

A subspace M of X^* is said to have the property $(\varepsilon - W^*)$ if the set

 $D_{x,\varepsilon}^M = \{ y \in X : \ f(y) = f(x) \ for \ all \ f \in M \ \& \ ||y|| \le ||x||_M + \varepsilon \}$ is weakly compact for all $x \in X$, where

$$||x||_M = \sup\{|f(x)| : ||f|| \le 1, \quad f \in M\}.$$

Note that $D_{x,\varepsilon}^M$ is a non-empty, closed, bounded and convex subset of X for all $x \in X$.

Theorem 3.1. Let X be a normed space, M be a subspace of X^* and let $\varepsilon > 0$ be given. Then the following are equivalent:

- (a) M is a ε -weakly Chebyshev subspace of X^* .
- (b) M^{\perp} has the property (εW^*) .
- (c) $^{\perp}M$ has the property (εW) .

Proof. (a) \Rightarrow (b). If $D_{f,\varepsilon}^{M^{\perp}}$ is not weakly compact for some $f \in X^*$, then there exists a sequence $\{g_n\}_{n\geq 1}$ in $D_{f,\varepsilon}^{M^{\perp}}$ without a weakly convergent subsequence. Since M is weak*-closed, $g_1 - g_n \in M$ for all $n \geq 1$ and

$$||g_1 - (g_1 - g_n)|| = ||g_n|| \le ||f||_{M^{\perp}} + \varepsilon = ||g_1 - (g_1 - g_n)||_{M^{\perp}} + \varepsilon$$

for all $n \geq 1$. Therefore, $g_1 - g_n \in P_{M,\varepsilon}(g_1)$ for all $n \geq 1$. It follows that M is not ε -weakly Chebyshev subspace of X^* . Hence, (a) implies (b).

(b) \Rightarrow (c). suppose that $^{\perp}M$ does not have the property $(\varepsilon - W)$. Then, there exists $f_0 \in (^{\perp}M)^*$ and a sequence $\{g_n\}_{n\geq 1}$ in $E_{f_0,\varepsilon}$ without a convergent subsequence. Since, $M^{\perp} = (^{\perp}M)^{\perp \perp}$, $^{\perp}M$ is dense in M^{\perp} for the weak topology on X^{**} ([1; Propositions 1.10.15 and 2.6.6]). Next, define $F_0: X^{**} \longrightarrow \Phi$ by $F_0(\varphi) = \varphi(f_0)$ and $F_n: X^{**} \longrightarrow \Phi$ by $F_n(\varphi) = \varphi(g_n)$ for all $n \geq 1$, where Φ is the real or complex field. Then, F_0, F_1, F_2, \ldots are continuous with respect to the weak-topology on X^{**} . Therefore, $\varphi(g_n) = \varphi(f_0)$ for all $n \geq 1$ and $\varphi \in M^{\perp}$. By Lemma 1.5, $g_n \in D_{g_1,\varepsilon}^{M^{\perp}}$ for all $n \geq 1$, because $||g_1||_{M^{\perp}} = ||f_0|| \geq ||g_n|| - \varepsilon$ for all $n \geq 1$. Thus, M^{\perp} does not have the property $(\varepsilon - W^*)$. Hence, (b) implies (c).

 $(c)\Rightarrow$ (a). suppose that $P_{M,\varepsilon}(f_0)$ is not weakly compact for some $f_0\in X^*$. Then, there exists a sequence $\{g_n\}_{n\geq 1}$ in $P_{M,\varepsilon}(f_0)$ without a weakly convergent subsequence. By Lemma 1.1, $||f_0-g_n||\leq ||f_0-g_n||_{M^{\perp}}+\varepsilon=||f_0||_{W^{\perp}}+\varepsilon$ for all $n\geq 1$. It follows that $f_0-g_n\in D^{M^{\perp}}_{f_0,\varepsilon}$ for all $n\geq 1$. If we define the linear functional $\Lambda_0\in ({}^{\perp}M)^*$ by $\Lambda_0=f_0|_{{}^{\perp}M}$, then by Lemma 1.5, $\Lambda_0(x)=f_0(x)-g_n(x)$ and $||\Lambda_0||+\varepsilon=||f_0||_{M^{\perp}}+\varepsilon\geq ||f_0-g_n||$ for all $n\geq 1$ and all $x\in {}^{\perp}M$. It follows that $f_0-g_n\in E_{\Lambda_0,\varepsilon}$ for all $n\geq 1$. Therefore, ${}^{\perp}M$ does not have the property $(\varepsilon-W)$. \square

Corollary 3.2. Let X be a normed space and $\varepsilon > 0$ be given. Then the following are equivalent:

- (a) All weak*-closed subspaces of a X^* are ε -weakly Chebyshev.
- (b) All subspaces of X have the property (εW) .

(c) X is reflexive.

References

- [1] R. E. Megginson, An Introduction to Banach Space Theory, Springer Verlag, Berlin Heidelberg New York, 1998.
- [2] H. Mohebi, On quasi-Chebyshev subspaces of Banach spaces, *J. App. Theory*, **107**, (1) (2000), 87-95.
- [3] H. Mohebi, Pseudo-Chebyshev subspaces in dual spaces, *J. Nat. Geom.*, **17**, (1-2) (2001), 93-104.
- [4] H. Mohebi, H. Mazaheri, On compactness and weakly compactness of the best approximant set, *Math. Sci. Res. Hot-Line*, **5**, (10) (2001), 31-42.
- [5] H. Mohebi, H. Radjavi, On compactness of the best approximant set, J. Nat. Geom., 21, (1-2) (2002), 52-62.
- [6] H. Mohebi, Sh. Rezapour, On compactness of the set of extensions of a continuous linear functional, J. Nat. Geom., 22, (1-2) (2002), 91-102.
- [7] H. Mohebi, Sh. Rezapour, Upper semi-continuity of the projective maps, J. Nat. Geom., 21, (1-2) (2002), 63-80.
- [8] Sh. Rezapour, ε -pseudo Chebyshev and ε -quasi Chebyshev subspaces of Banach spaces, Technical Report, Azarbaidjan University of Tarbiat Moallem, 2003.
- [9] Sh. Rezapour, ε -weakly Chebyshev subspaces of Banach spaces, *Anal. Theory Appl.* **19** (2) (2003), 130-135.

Sh. Rezapour

Department of Mathematics
Azarbaidjan University of Tarbiat Moallem
Azarshahr 51745-406
Tabriz, Iran
e-mail:sh.rezapour@azaruniv.edu
shahramrezapour@yahoo.ca