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iety Vol. 30 No. 1 (2004), pp 21-29.EXISTENCE OF AN ALGEBRA NORM ONCERTAIN SUBALGEBRAS OF C(X)F. SADYAbstra
t. Let X be a topologi
al spa
e and A be a subalge-bra of C(X) . We provide 
onditions on A so that it admits analgebra norm (not ne
essarily 
omplete). WhenX is hemi
om-pa
t and (A; (pn)) is a fun
tionally 
ontinuous regular Fr�e
hetfun
tion algebra on X , we show that A is a Q-algebra anddoes not 
ontain any unbounded fun
tion if it admits an al-gebra norm. Moreover, any uniform norm on A is 
ontinuous.Finally we prove that in some parti
ular 
ases, the existen
eof an algebra norm on A leads to the 
ompa
tness of X .1. Introdu
tion and PreliminariesIf X is a 
ompa
t Hausdor� spa
e then C(X), the algebra of all
ontinuous 
omplex valued fun
tions on X, is obviously a Bana
halgebra with the supremum norm and any Bana
h algebra norm onC(X) is equivalent to the supremum norm. When X is an arbitrarytopologi
al spa
e, it has been shown in [7℄ and [8℄ that C(X) admitsan algebra norm (not ne
essarily 
omplete) if and only if it doesnot 
ontain any unbounded fun
tion (also see [5℄). For a 
ompletelyregular spa
e X, this is indeed equivalent to the 
ompa
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22 Sadyreal 
ompa
ti�
ation of X. The proof of this result in [8℄ is basedon the following theorem of Kaplansky.Theorem 1.1. [6℄ Let (A; k:k) be a 
ommutative Bana
h algebrawhi
h is isometri
ally isomorphi
 to C0(X), for some lo
ally 
om-pa
t spa
e X. Then any algebra norm j:j on A satis�es jf j � kfk,for every f 2 A.In this paper we 
onsider the same problem for 
ertain subalge-bras of C(X), where X is mainly a hemi
ompa
t spa
e. In general,the existen
e of an algebra norm on a subalgebra A of C(X) doesnot imply that all elements in A are bounded fun
tions. For ex-ample, kfk = supfjf(z)j : jzj < 1g de�nes an algebra norm on thealgebra Hol(C ) of all holomorphi
 fun
tions on C .Before proving our results, we state some preliminaries. For moredetails one 
an refer to [1℄, [3℄ and [4℄.By a hemi
ompa
t spa
e we mean a Hausdor� topologi
al spa
eX with a sequen
e (Kn) of in
reasing 
ompa
t subsets of X su
hthat every 
ompa
t subset of X is 
ontained in some Kn. Thesequen
e (Kn) is 
alled an admissible exhaustion of X. A k-spa
eis a Hausdor� spa
e in whi
h every subset interse
ting ea
h 
ompa
tsubset in a 
losed set is itself 
losed.In this paper we assume that all algebras are unital.By a Fr�e
het algebra we mean a lo
ally multipli
atively 
onvextopologi
al algebra whi
h is also metrizable and 
omplete. Thusthe topology of a Fr�e
het algebra 
an be de�ned by an in
reas-ing sequen
e of submultipli
ative seminorms . Unlike the theoryof Bana
h algebras, in the theory of Fr�e
het algebras we do notknow whether ea
h 
omplex homomorphism on a Fr�e
het algebrais 
ontinuous or not (Mi
hael's problem). A 
ommutative Fr�e
hetalgebra (A; (pn)) is 
alled fun
tionally 
ontinuous if all 
omplexhomomorphisms on A are automati
ally 
ontinuous. The set ofall nonzero 
omplex homomorphisms on A is denoted by SA andthe set of all nonzero 
ontinuous 
omplex homomorphisms on A,whi
h is 
alled the spe
trum of A, is denoted by MA or M(A;(pn)).As usual, we always endow MA with the Gelfand topology and forevery x 2 A, x̂ is the Gelfand transform of x. A 
ommutative



Existen
e of an algebra norm 23Fr�e
het algebra A is regular on its spe
trum if for any 
losed subsetF of MA and ' 2 MAnF there is an element x 2 A with x̂(') = 1and x̂(F ) = f0g. It is well known that ea
h 
ommutative regularFr�e
het algebra is (Gelfand) normal, that is, for every pair of dis-joint 
losed subsets K and F of MA there exists x 2 A su
h thatx̂(F ) = f0g while x̂(K) = f1g.A topologi
al algebra A is 
alled a Q-algebra if the set A�1 ofall invertible elements of A is an open set. A uniform topologi
al(Fr�e
het) algebra is a topologi
al (Fr�e
het) algebra whose topologyis determined by a separating family � of uniform seminorms, thatis, p(x2) = p(x)2 for all p in � and x 2 A. For example, if X isa hemi
ompa
t k-spa
e with an admissible exhaustion (Kn); then(C(X); (k:kKn)) is a uniform Fr�e
het algebra , where k:kKn is thesupremum norm on Kn. Indeed, a 
ommutative algebra A is a uni-form Fr�e
het algebra if and only if there is a hemi
ompa
t spa
e Xsu
h that A is topologi
ally and algebrai
ally isomorphi
 to a pointseparating and 
omplete subalgebra of C(X) whi
h also 
ontainsthe 
onstants ([4, Theorem 4.1.3℄).Similarly by a Fr�e
het fun
tion algebra on a hemi
ompa
t spa
eX we mean a point separating subalgebra A of C(X) whi
h 
on-tains the 
onstants and is a Fr�e
het algebra under some topologysu
h that all evaluation homomorphisms 'x, for x 2 A, are 
on-tinuous. That is, 'x 2 MA for all x 2 A. In fa
t, the 
lass ofall 
ommutative semisimple unital Fr�e
het algebras 
oin
ides withthe 
lass of Fr�e
het fun
tion algebras, sin
e the spe
trum of ea
h
ommutative Fr�e
het algebra is a hemi
ompa
t spa
e.If (A; (pn)) is a Fr�e
het fun
tion algebra on a hemi
ompa
t spa
eX and (Kn) is an admissible exhaustion of X then it is easy to seethat for ea
h n there is an integer m � n su
h thatkfkKn � pm(f)for all f 2 A [9℄. This shows that the identity map from (A; (pn))into (C(X); k:kKn) is 
ontinuous. For ea
h n, let i(n) � n be thesmallest integer for whi
h the above inequality holds. Sin
e (pn) isan in
reasing sequen
e and (pi(n)) generates the same topology, wemay assume that i(n) = n.



24 Sady2. The ResultsWhenX is a hemi
ompa
t k-spa
e with an admissible exhaustion(Kn), the existen
e of an algebra norm on the uniform Fr�e
hetalgebra (C(X); (k:kKn)) implies the 
ompa
tness of X. Be
ause,as it was mentioned before, in this 
ase all fun
tions in C(X) arebounded by [7℄ or [8℄. That is, Cb(X) = C(X). Sin
e (Cb(X); k:kX)is a semisimple Bana
h algebra, by Carpenter's Theorem, it has aunique topology as a Fr�e
het algebra. Hen
e the topologies indu
edby the sequen
e (k:kKn) of seminorms and the supremum normk:kX are equivalent on C(X). That is, (C(X); (k:kKn)) is a Bana
halgebra and thus X is 
ompa
t (see [4℄).Now let A be a subalgebra of C(X) for some topologi
al spa
eX and set Ab = A \ Cb(X). As the following proposition shows, ifthere exists an algebra norm k:k on A su
h that either all evaluationhomomorphisms are k:k 
ontinuous or the set A�1 is open withrespe
t to this norm, then Ab = A.Proposition 2.1. Let S be a non-empty set and let A be an algebraof fun
tions on S. If there exists an algebra norm on A su
h thatea
h evaluation fun
tional is 
ontinuous then all fun
tions in A arebounded. The same 
on
lusion holds if there is a topology on Amaking it a Q-algebra.Proof. Let k:k be an algebra norm on A su
h that 'x is 
ontinuouson (A; k:k) for all x 2 X. The 
ompletion �A of (A; k:k) is a Bana
halgebra and sin
e every 'x is k:k 
ontinuous on A it 
an be extendedto a k:k 
ontinuous homomorphism on �A. Hen
e for f 2 A, f(X) is
ontained in � �A(f), the spe
trum of f in �A. Sin
e � �A(f) is 
ompa
t,f is a bounded fun
tion.In a Q-algebra ea
h element has a bounded spe
trum, so thatthe result follows from the in
lusion f(X) � �A(f). 2An immediate 
onsequen
e of the above proposition is that when(A; (k:kKn)) is a uniform Fr�e
het algebra on a hemi
ompa
t spa
eX (with (Kn) as an admissible exhaustion) su
h that (A; �) is a Q-algebra, for some topology � , then (A; (k:kKn)) is a Bana
h algebra.
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e of an algebra norm 25Be
ause Ab = A by Proposition 2.1, and sin
e (A; (k:kKn)) is auniform Fr�e
het algebra, it is easy to verify that (Ab; k:kX) is aBana
h algebra. Hen
e by the Carpenter's theorem the topologiesindu
ed by k:kX and (k:kKn) are equivalent on A. That is, A is aBana
h algebra.It is well known that for any algebra norm j:j on a regular uniformBana
h algebra (A; k:k) we have k:k � j:j (see [3, Corollary 4.1.28℄or [2℄). In the sequel we 
on�ne ourselves to hemi
ompa
t spa
es.In the �rst part of the following theorem we use a similar idea to[2℄ to get a result 
on
erning the existen
e of an algebra norm on afun
tionally 
ontinuous regular Fr�e
het fun
tion algebra.Theorem 2.2. Let X be a topologi
al spa
e and let (A; (pn)) be a
ommutative semisimple unital Fr�e
het algebra whose spe
trum isequal to X. Suppose that A is regular and fun
tionally 
ontinuous.(i) If A admits an algebra norm then (A; (pn)) is a Q-algebra.(ii) Any uniform norm on A is 
ontinuous.Proof. (i) Let j:j be an algebra norm on A and let �A be the
ompletion of (A; j:j). Take Y as the set of all points in X su
hthat 'x is j:j 
ontinuous on A. Note that sin
e A is fun
tionally
ontinuous, Y 
an be identi�ed with the spe
trum of �A. We �rstshow that Y is dense in X. Assume that �Y 6= X and 
hoose, bythe regularity of A, an open subset G of X with �G � Xn �Y . Sin
eA is regular and hen
e normal, there exists an element f 2 A withf̂ j �Y = 1 and f̂ j �G = 0. We 
laim that f is invertible in �A. If f is notso, there exists an element y in the spe
trum of the Bana
h algebra�A with y(f) = 0. That is, y 2 Y and f̂(y) = 0 whi
h is impossible.Now let z 2 G and 
hoose an element g 2 A with ĝjXnG = 0 andĝ(z) = 1 so that supp ĝ � �G and ĝ 6= 0. Then f̂ ĝ = 0 on X andhen
e fg = 0 in A and 
onsequently in �A. But this is impossiblebe
ause f is invertible in �A and g 6= 0. Thus �Y = X.As we noted before Y 
an be identi�ed with the spe
trum of �Aand so Y is a 
ompa
t spa
e with respe
t to the Gelfand topologyfrom �A whi
h is the same as the relative topology from X. Hen
eY is a 
ompa
t subset of X, so that Y = X. It now follows that A



26 Sadyis a Q-algebra (see [10℄ or [1, 4.12-3℄) . In parti
ular, ea
h elementof A has a �nite spe
tral radius and kf̂kX = rA(f) = r �A(f) � jf j,for all f 2 A.(ii) Let j:j be a uniform norm on A. By Theorem 1 in [2℄, j:j is analgebra norm and so by (i), (A; (pn)) is a Q-algebra and kf̂kX � jf j,for all f 2 A. Let N 2 N be su
h that V = ff 2 A : pN(1� f) <1=Ng � A�1. If f 2 A and pN(f) = 0 then for ea
h non zero s
alar�, 1 � ��1f 2 V and so � =2 �A(f). Therefore, rA(f) = r �A(f) =jf j = 0, where �A is the 
ompletion of (A; j:j). Hen
e f = 0. Thisshows that pN is indeed a norm.Now let f be a non zero element of A. Then for ea
h s
alar �with j�j > 1 we have pN( fN�pN (f)) < 1=N and so �:1� fNpN (f) 2 A�1.This shows that rA( fNpN (f)) = r �A( fNpN (f)) = j fNpN (f) j � 1. Note thatsin
e j:j is a uniform norm it follows easily that jf j � pN (f), for allf 2 A. 2In the following theorem we obtain a similar result for regularFr�e
het fun
tion algebras with lo
ally 
ompa
t spe
trum withoutthe fun
tional 
ontinuity assumption.Theorem 2.3. Let X be a hemi
ompa
t spa
e and let (A; (pn)) be aregular Fr�e
het fun
tion algebra whose spe
trum is lo
ally 
ompa
t.If there is a 
ontinuous algebra norm on A then all fun
tions in Aare bounded.Proof. Let k:k be a 
ontinuous algebra norm on A and let ( �A; k:k)be the 
ompletion of (A; k:k). Then the in
lusion map id : (A; (pn))�! ( �A; k:k) is 
ontinuous with a dense range so that its transposemap id� : M( �A;k:k) �! M(A;(pn)); de�ned by ' 7�! 'jA; is a 
on-tinuous inje
tive map. Sin
e M(A;(pn)) is lo
ally 
ompa
t, it followsfrom Theorem 2.6 in [9℄ that id�(M( �A;k:k)) is dense in M(A;(pn)) andhen
e M(A;(pn)) is 
ompa
t, sin
e M( �A;k:k) is 
ompa
t. Therefore,(A; (pn)) is a Q-algebra by [10℄ and all elements of A are boundedby Proposition 2.1. Note that in this 
ase, (Ab; k:kX) may not be aBana
h algebra. 2



Existen
e of an algebra norm 27Theorem 2.4. Let X be a hemi
ompa
t spa
e, (Kn) an admissi-ble exhaustion of X and (A; (pn)) a fun
tionally 
ontinuous regularFr�e
het fun
tion algebra on X. If the sequen
e (pn) is su
h that forf 2 A and n 2 N, f jKn = 0 implies pn(f) = 0, then A admits analgebra norm if and only if X is 
ompa
t.Proof. Assume that there is an algebra norm on A. Then by The-orem 2.2, (A; (pn)) is a Q-algebra and hen
e the set of all invertibleelements of A is open. So that there is an integer N su
h thatV = ff 2 A : pN (1� f) < 1=Ng � A�1. Now if X is not 
ompa
t,we 
an 
hoose x 2 XnKN . The regularity of A shows that there isan element f 2 A with f̂('y) = 1, y 2 KN and f̂('x) = 0. Hen
e(1�f)jKN = 0 and so by the hypothesis pN(1�f) = 0, whi
h showsthat f is invertible in A. But this is impossible be
ause f(x) = 0.2 Let X be a hemi
ompa
t k-spa
e, (Kn) an admissible exhaustionof X and (An) a sequen
e of Bana
h fun
tion algebras su
h thatfor ea
h n, An is a Bana
h fun
tion algebra on Kn with respe
t tok:kn, An+1jKn � An and kf jKnkn � kfkn+1, for all f 2 An+1. Thenthe subalgebraA = ff 2 C(X) : f jKn 2 An; n 2 Ngof C(X) is a Fr�e
het algebra with respe
t to the topology de�nedby the sequen
e (pn) of seminorms, where pn(f) = kf jKnkn, f 2 A.Moreover, if A separates the points ofX then it is a Fr�e
het fun
tionalgebra on X (see [9℄). Clearly, in this 
ase for ea
h n and f 2 A,f jKn = 0 implies pn(f) = 0. Thus if A is regular and fun
tionally
ontinuous then the existen
e of an algebra norm on A is equivalentto the 
ompa
tness of X by Theorem 2.4. An example of thissituation is des
ribed as follows:Example 2.5. Let (X; d) be a hemi
ompa
t metri
 spa
e with theadmissible exhaustion (Kn) and let 0 < � � 1. For ea
h n, letAn = Lip(Kn; �) be the Bana
h algebra of all Lips
hitz fun
tions oforder � on Kn with pointwise addition and multipli
ation, whi
h is



28 Sadyendowed with the following norm:kfkn = kfkKn + supx;y2Knx6=y jf(x)� f(y)jd�(x; y) :By the above argument the subalgebra A = FLip(X; �) = ff 2C(X) : fjKn 2 An; n 2 Ng of C(X) is a Fr�e
het fun
tion algebra onX. Sin
e A is a symmetri
 *-algebra with f 7! �f as an involution,it is fun
tionally 
ontinuous. Moreover, MA is homeomorphi
 to X[9℄ and it is easy to see that A is regular on its spe
trum. Sin
eMA �= X, the algebra A does not admit a Bana
h algebra normif X is not 
ompa
t. Now Theorem 2.4 shows that in this 
ase Adoes not admit an algebra norm (not ne
essarily 
omplete).A
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