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1. Introduction

Thepurpose of this paper is toillustrate a methodof computing the Langlands-
Shahidi local coefficients [18] using the theory of types and covers [6]. Local
coefficients are important in number theory in that they are related to the the-
ory of local factors. The theory of types and covers on the other hand provides
a systematic way of studying the smooth representation theory of reductive
p-adic groups via the representation theory of compact open subgroups (cf.
Section 3.2).

Shahidi defines a specific list of local factors (L- and ϵ-factors) (see [20])
using these local coefficients through the method developed in [21, 18]– what
is known as the Langlands-Shahidi method. Another well known method for
constructing local factors is the Rankin-Selberg method [12]. Although these
two methods are completely different, they are expected to be consistent with
the putative Local Langlands Correspondence. In particular, whenever both
constructions are possible in a given situation, the resulting local factors ought
to be the same, perhaps up to normalization of certain measures used in the
Langlands-Shahidi method. This is non-trivial and is known only in a limited
number of cases; for example, see [19] where equality is proved in the context
of local factors attached to a pair (π1, π2) of representations of general linear
groups. This latter result of Shahidi combined with the theory of types and
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covers led to an explicit formula for conductors of pairs [4]. We also refer the
reader to [2] and [15] in which ϵ-factors of pairs are computed.

Our approach in this paper is to tackle the problem of computing local coef-
ficients through the theory of types and covers. In fact such an approach goes
back at least as far as the work of Casselman [8], where local coefficients in the
context of unramified principal series representations are explicitly computed.
The calculation there relies on finding the effect of the intertwining operator
(cf. Section 3.1) on the subspace of vectors fixed by the Iwahori subgroup (cf.
[8]). One now knows that the role played by (the trivial representation of) the
Iwahori subgroup in Casselman’s calculation is an extreme instance of the more
general theory of types and covers. It is our belief that certain test functions
(cf. Section 3.3) that arise naturally in the theory of types and covers can be
used to compute local coefficients in more general situations. We illustrate this
approach using the example of SL(2), an example which is of course well-known
through other methods.

In addition to his important contributions to the Langlands program, Frey-
doon Shahidi has played a critical role in the mathematical development of
both authors. He was the thesis advisor of the first author, who has benefited
from his mentoring and from the great breadth of his mathematical knowledge.
The second author has learned much of what he knows about the local Lang-
lands program from Shahidi. Beyond this, we are both grateful for our lifelong
friendship with Freydoon, his wife Guity and his family. Tavalodat Mobarak
Freydoon!

2. Background and preliminaries

Suppose F is a non-archimedean local field with ring of integers oF . Let
pF denote the unique maximal ideal in oF and let q denote the cardinality
of the residue field oF /pF . We fix a generator ϖ of pF and normalize the
absolute value ∥ · ∥ of F so that ∥ϖ∥ = q−1. Let us now consider a F -quasisplit
connected reductive group G and let P be an F -parabolic subgroup of G. We
fix a F -Borel subgroup B of G and assume P ⊃ B. We write B = TU, where
T is a maximal torus defined over F and U is the unipotent radical of B. Let
P = MN be a Levi decomposition with M ⊃ T and N the unipotent radical of
P. Then U ⊃ N. We assume that the parabolic subgroup P is maximal; we let
P = MN denote the unique standard F -parabolic subgroup opposed to P (cf.
[1, Section 20.5]). Let G,B, T, U, P,M,N, and N denote the corresponding
groups of F -rational points. Let NG(M) denote the normalizer of M in G.
Our assumption that P is maximal implies that the quotient group NG(M)/M
is of order two; we write w0 for a representative of the non-trivial element of
NG(M)/M in NG(M).

For any topological group H, we write Ĥ to denote the group of continuous

homomorphisms from H to C×. In particular, one has the character groups F̂
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and ô×F . Since F is a union of compact open subgroups and o×F is compact, all

characters in F̂ and ô×F respectively are unitary. Now fix a non-trivial character

ψ ∈ F̂ , then it defines a non-degenerate character of the maximal unipotent
subgroup U of G as explained in [11, Section 2]. We denote this character
by ψG. One can then arrange the choice of w0 ∈ NG(M)/M so that it is
compatible with ψG [10, Section 1.2], in the sense that its restriction to the
maximal unipotent radical U ∩M has the following property:

ψG(u) = ψG(w−1
0 uw0), u ∈ U ∩M.

Throughout the rest of the paper, we fix such a representative w0. We write
ψM to denote the restriction of ψG to U ∩M . Now, let (σ, Vσ) be a smooth
irreducible representation of M which is generic (with respect to ψM ); i.e.,
there is a nonzero linear functional on Vσ that transforms according to ψM

on U ∩M . Such a functional is called a ψM -Whittaker functional; by local
uniqueness [23, 16], the space of ψM -Whittaker functionals is of dimension
one. Let us fix a basis vector ΩM for this one-dimensional space.

If we write Rat(M) for the group of F -rational characters of M, then
each χ ∈ Rat(M) defines a continuous homomorphism ∥χ∥ : M −→ C× via
∥χ∥(m) = ∥χ(m)∥,m ∈M . Let

0M =
∩

χ∈Rat(M)

Ker∥χ∥;

and let X(M) denote the group of continuous homomorphisms of M into C×

which are trivial on 0M – called the group of unramified characters of M (cf.
[26, p. 239]). Let AG denote the F -points of the maximal split torus in the
center of G. Then, since M is maximal, the quotient M/AG

0M is isomorphic
to Z. Therefore we may identify the subgroup XG(M) ⊂ X(M) consisting of
unramified characters of M that are trivial on AG with C× or equivalently,
using an exponential map, with C modulo a lattice. In [20, Section 1] Shahidi
makes this identification explicit through the choice of a certain fundamental
weight α̃; we denote this identification here by s 7→ χs ∈ XG(M), s ∈ C. (In
the notation of loc.cit., χs(m) = ∥α̃(m)∥s.)

Let ιGP denote the functor of normalized parabolic induction and for any
smooth (not necessarily generic) representation τ of M , let FP (τ) denote the
space of ιGP (τ). If τ is irreducible, one has [18] the usual intertwining operator
A(s, τ, w0) : ι

G
P (τ ⊗ χs) −→ ιGP (w0(τ ⊗ χs)) given by

A(s, τ, w0)f(g) =

∫
N

f(w−1
0 ng)dn, f ∈ FP (τ ⊗ χs),

for Re(s) ≫ 0; the function s 7→ A(s, τ, w0) admits a meromorphic continuation
[18, Section 2.2]. (In fact s 7→ A(s, τ, w0) is a rational function in a certain
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precise sense [26, Section IV].) We recall this theory in detail for G = SL(2, F )
in Section 3.1 below.

Now for σ generic as above, it is a theorem of Rodier (cf. [9]) that the
dimension of the space of ψG-Whittaker functionals on FP (s, σ⊗χs) is the same
as the dimension of the space of ψM -Whittaker functionals on Vσ; consequently
this dimension is one. One may define a basis vector [9], Ωs, for the one-
dimensional space of ψG-Whittaker functionals on FP (s, σ⊗χs) by the formula

Ωs(f) =

∫
N

ΩM (f(w−1
0 u))ψG(u)du, f ∈ FP (σ ⊗ χs).

This integral may not converge for all f but can be extended to the whole
space as a principal value integral. Further s 7→ Ωs is a holomorphic function
[9, Proposition 2.1]. One also has the following convenient formula for Ωs as a
principal value integral [9, Corollary 2.3]: Given a compact open subgroup K
of G, there exists a suitably large compact open subgroup N∗ ⊂ N such that

(2.1) Ωs(f) =

∫
N∗

ΩM (f(w−1
0 u))ψG(u)du

for all s and for all f ∈ FP (σ ⊗ χs)
K .

One similarly defines Ω′
s on FP (w0(σ ⊗ χs)) via

(2.2) Ω′
s(f) =

∫
N

ΩM (f(w0u))ψG(u)du.

as a principal value integral in the above sense.
Then by the aforementioned result of Rodier there is a non-zero constant

Cψ(s, σ) called the local coefficient [18] satisfying

(2.3) Cψ(s, σ)(Ω
′
s ◦A(s, σ, w0)) = Ωs.

The local coefficient is of great importance in number theory and is closely
related to the theory of local factors à la Langlands-Shahidi [21, 20].

3. A calculation for SL(2)

In this section, we illustrate the use of the theory of types and covers in the
computation of local coefficients using the example of SL(2). To be precise,
with notation as in the previous section, take G = SL(2, F ) and P = B,
where B is the subgroup of F -points of the Borel subgroup of upper triangular
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matrices. Then M = T and N = U , and explicitly

T =

{(
a 0
0 a−1

) ∣∣a ∈ F×
}
;

U =

{
u(x) :=

(
1 x
0 1

) ∣∣x ∈ F

}
;

U =

{
u(x) :=

(
1 0
x 1

) ∣∣x ∈ F

}
.

In this case the character χs referred to above is given by the formula

χs

((
a 0
0 a−1

))
= ∥a∥s;

by extending χs trivially to U , we may also view it as a character of B. Let
K = G(oF ) and let W = NG(T )/T = {1, w0}, where

w0 =

(
0 −1
1 0

)
is the representative as fixed in Section 2 in the present context. Now, any

η̃ ∈ F̂× (not necessarily unitary) defines a representation σ of M which is
trivially supercuspidal and generic. It is our intention to calculate Cψ(s, σ)
under the assumption η2 ̸= 1, where η = η̃|o×

F
. To that end, we start by

recalling the theory of intertwining operators in the situation at hand.

3.1. The intertwining operator. We keep the notation from the previous
section; in particular, we fix a character η of o×F . For any smooth representation
(π, V ) of G, let VU be the Jacquet module and let πU denote the natural action
of T on VU . We write ι to denote the induction functor ιGB and F(·) (instead
of FB(·)) to denote the corresponding representation space.

We recall the structure of ι(η̃)U for any extension η̃ of η to F×. First, let δ
denote the modulus character of B; explicitly δ(a) = ∥a∥2. Let F(η̃)w0 denote
the B-subspace of functions in F(η̃) supported on the big cell Bw0N . We have
a filtration

{0} ⊆ F(η̃)w0 ⊆ F(η̃)

by B-stable subspaces and the map f 7→ f(1) induces a T -isomorphism between

(F(η̃)/F(η̃)w0)U ≃ Cη̃δ1/2 .

In short, we have an exact sequence

(3.1) 0 −→ (F(η̃)w0)U −→ F(η̃)U −→ Cη̃δ1/2 −→ 0.

The Jacquet module of F(η̃)w0 can be realized using the B-intertwining map

aw0(η̃) : F(η̃)w0 −→ Cη̃−1δ1/2 given by f 7→
∫
U

f(w0u)du.
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Note that this integral is well defined since the function n 7→ f(w0n) belongs
to C∞

c (U) for f ∈ F(η̃)w0 . Moreover, one checks that the kernel of aw0(η̃) is
precisely F(η̃)w0(U). Thus aw0(η̃) induces the isomorphism

(F(η̃)w0)U ≃ Cη̃−1δ1/2

which we continue to denote as aw0
(η̃).

Now, if η2 ̸= 1, then η̃ ̸= η̃−1; such a character is called a regular char-
acter. Therefore the sequence (3.1) splits and aw0

(η̃) extends to all of F(η̃)U
to give a well defined element in HomT (F(η̃)U ,Cη̃−1δ1/2). Then, by Frobenius
reciprocity, this determines a unique non-zero intertwining operator

A(η̃, w0) : F(η̃) −→ F(η̃−1)

such that for all f ∈ F(η̃)w0

A(η̃, w0)(f)(1) =

∫
U

f(w0u)du.

If we fix an extension η̃, then any other extension of η is of the form η̃∥ · ∥s,
and the operator denoted as A(s, η̃, w0) in Section 2 is nothing but A(η̃∥·∥s, w0).
It is for example shown in [8] that A(s, η̃, w0) varies holomorphically with s,
or in the language of algebraic geometry, that it is a regular function on the
domain of regular characters.

3.2. Types and covers. Let for the moment G be the set of F -points of
an arbitrary connected reductive group over F . By a cuspidal pair in G we
mean a pair (L, τ) in G, where L is the F -points of a F-Levi subgroup of G
and τ is a supercuspidal representation of L. Two such pairs (Li, τi), i = 1, 2,
are said to be inertially equivalent if there exist g ∈ G and χ ∈ X(L) such
that L2 = Lg1 = g−1L1g and σ2 is equivalent to the representation σg1 ⊗ χ:
x 7→ σ1(gxg

−1)χ(x) of L2. We denote by [(L, τ)] theG-inertial equivalence class
of a cuspidal pair (L, τ) in G. Let B(G) denote the set of inertial equivalence
classes of cuspidal pairs in G. For each s inB(G), one defines a full subcategory
Rs(G) of R(G) as follows: a smooth representation Π belongs to Rs(G) if and
only if each irreducible subquotient π of Π has inertial support s. (See [6,
Definition 1.1].) It is a fundamental result of Bernstein that R(G) decomposes
into a product of subcategories

(3.2) R(G) ∼=
∏

s∈B(G)

Rs(G).

Let H = H(G) be the space of smooth compactly supported complex valued
functions on G. After fixing a Haar measure µ on G, this becomes a convolution
algebra relative to µ via

f ⋆ g(y) =

∫
G

f(x)g(x−1y)dµ(x), f, g ∈ H(G), y ∈ G.
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It is a well-known fact that R(G) can be identified with the category of non-
degenerate left H-modules. (See for example [3, Chapter 1, Section 4.2, Propo-
sition 1].)

If e ∈ H is a nonzero idempotent, then e ⋆H ⋆ e is a subalgebra of H with
unit element e. If (π, V ) ∈ R(G), then the subspace π(e)V = e ⋆ V carries a
natural eHe-module structure. Let Re(G) denote the full subcategory of R(G)
whose objects are those representations V generated over G by the subspace
e ⋆ V , i.e., V = H ⋆ e ⋆ V . The idempotent e is said to be special if the functor
V 7→ e ⋆ V is an equivalence of categories Re(G) ∼= eHe-Mod. It follows from
[6, (3.12)] that an idempotent e is special if and only if there is a finite subset
S(e) of B(G) such that

Re(G) =
∏

s∈S(e)

Rs(G).

Conversely, it is shown in [6, Proposition (3.13)] that, for s ∈ B(G), there
exists a special idempotent e ∈ H so that s = S(e). In particular, the category
Rs(G) is equivalent to the category eHe-Mod of left, unital eHe-modules.

A useful way of producing special idempotents is through the representation
theory of compact open subgroups of G. Let (λ,W ) be a smooth irreducible
representation of a compact open subgroup J of G. Then W is finite dimen-
sional and we may define the function eλ : G −→ C by

eλ(x) =

{ dimW
µ(K) tr(λ(x

−1)), if x ∈ J,

0 otherwise.

Then clearly eλ ∈ H(G) and it is an idempotent. The pair (J, λ) is said to be
a type for s ∈ B(G), or simply a s-type, if the idempotent eλ is special and
S(eλ) = s (cf. [6, Definition (4.1)]). Equivalently, the pair (J, λ) is a s-type if
and only if for every irreducible object (π, V ) in R(G), we have (π, V ) ∈ Rs(G)
if and only if V λ = eλ ⋆ V ̸= 0 [6, (4.2)].

In practice, the algebra eλHeλ is not easy to compute. Fortunately there
is an associated algebra H(G,λ) about which we know much more. In fact,
in all known cases, this algebra is known to be an affine Hecke algebra. We
define H(G,λ) as follows: Let (λ̌, W̌ ) denote the contragredient of (λ,W ), then
H(G,λ) is the space of compactly supported functions f : G −→ EndC(W̌ )
that satisfy f(hxk) = λ̌(h)f(x)λ̌(k), x ∈ G,h, k ∈ J . This becomes a unital
(associative) algebra under the standard convolution operation (cf. [6, Section
2]). Further, for any smooth representation (π, V ) of G, there is a natural left
H(G,λ)-module structure on the space of λ-coinvariants Vλ = HomJ(W,V ).
One has that (see [6, (2.13)])

(3.3) V λ ≃ Vλ ⊗C W.

Since the map V 7→ eλ⋆V is an equivalence of categories Reλ(G)
∼= eλHeλ-Mod

for a s-type (J, λ), it now follows that the map V 7→ Vλ is an equivalence of
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categories Rs(G) ∼= H(G,λ)-Mod. This latter equivalence has proved to be
useful in a variety of contexts [5, 4, 14, 27].

The notion of a cover [6, Section 8] is used for the construction of types
and it captures parabolic induction in the framework of module theory. In
what follows we recall the key features of the theory of types and covers in
the context of this paper. Keeping this in mind, we revert to our initial set-up
with G = SL(2, F ); in particular we identify T with F× when no confusion
can arise.

Let η̃i, i = 1, 2, be characters of T , then η̃1 is T -inertially equivalent to η̃2
if and only if there exist s ∈ C such that η̃2 = η̃1χs. Thus the T -inertial
equivalence class of a character η̃ of T is determined by the restriction, η, of
η̃ to o×F . We denote this class by tη. On the other hand with η̃i, i = 1, 2, as

above, η̃2 is G-inertially equivalent to η̃1 if and only if η2 = η±1
1 . With η and

η̃ as above, let sη be the corresponding G-inertial equivalence class. Then the
associated subcategories of R(T ) and R(G), respectively, are given as follows:

(i) Rtη (T ) is the full subcategory of R(T ) whose objects (π, V ) have the
property that π(x)v = η(x)v, x ∈ 0T, v ∈ V ,

(ii) Rsη (G) is the full subcategory of R(G) whose irreducible objects are
precisely those that appear as a sub-quotient of some ιGQ(η̃χs), where

Q is either B or B.

For η as above, set nη = 1 if 1 + pF ⊂ ker η; otherwise it is defined to be
the smallest integer n so that 1 + pnF ⊂ ker η. Let (Jη, λη) be as in [13]. In
particular, Jη is the compact open subgroup given by

Jη =
{
[cij ] ∈ G|c11, c22 ∈ o×F , c12 ∈ oF , c21 ∈ p

nη

F

}
,

and λη is a function on Jη given by

λη([cij ]) = η(c11).

It is proved in [13] that the pair (J, λ) = (Jη, λη) is a G-cover for (
0T, η). In

our situation it means that the pair (J, λ) has the following properties:

(1) J = (J ∩ U)0T (J ∩ U).
(2) J ∩ U, J ∩ U ⊂ kerλ; λ|0T = η.
(3) There are positive integers n1, n2 and invertible elements f1, f2 ∈ H(G,

λ) such that f1, f2 are supported on the double cosets JΠn1J, JΠ−n2J

where Π =

(
ϖ 0
0 ϖ−1

)
.

In particular, it follows from [6, Theorem (8.3)] that (Jη, λη) is a type for sη.

An important consequence of (3) from above is that, for Q = B,B, there is
a support preserving injective algebra map (cf. [6, Corollary (7.12)])

tQ : H(T, η) −→ H(G,λη)
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that realizes the parabolic induction functor ιGQ at the level of Hecke algebras.

We once again refer the reader to [6, Corollary (8.4)] for its precise meaning.
Further, when η2 ̸= 1, the maps tQ, Q = B,B, are known to be isomorphisms

[13, Section 3.1, Corollary] in which case the cover (J, λ) = (Jη, λη) is said to
be a split cover.

3.3. The main calculation. We continue with the notation of Section 3.2
and assume η2 ̸= 1. Having fixed w0 and B, in what follows, we suppress them
from the various notations for the sake of brevity. For example, as before we
write Cψ(s, η̃) for the local coefficient and F(s, η̃) to denote the induced space
FB(η̃| · |s). We also have the G-isomorphism

A(s, η̃) : F(s, η̃) −→ F(−s, η̃−1).

Since the cover splits, it follows from [6, Corollary (12.4)] that the induction
functor ι gives an equivalence of categories. Therefore F(s, η̃)λ and F(−s, η̃−1)λ
are both one dimensional. On the other hand the representation λ|0T = η is one
dimensional and consequently the corresponding λ-isotypic subspaces F(s, η̃)λ

and F(−s, η̃−1)λ are also both one dimensional. Let us describe these explic-
itly:

(1) For V = F(s, η̃), let f ∈ V be given by

f(g) =

{
η̃χsδ

1/2(b)λη(j) if g = bj ∈ BJ
0 otherwise.

(2) For V ′ = F(−s, η̃−1), let f ′ ∈ V ′ be given by

f ′(g) =

{
η̃−1χ−sδ

1/2(b)λη(j) if g = bw0j ∈ Bw0J
0 otherwise.

Since η̃ (resp. η̃w0 = η̃−1) agrees with λη on B∩J (resp. w−1
0 Bw0∩J), it follows

that both f and f ′ are well-defined and that they belong to the corresponding
λ-isotypic subspaces. More precisely, in (1), Vλ = Cf ; and in (2), (V ′)λ = Cf ′.

We are now ready for the calculation.
Fix a Haar measure dx on F , or equivalently, a measure du (resp. dū) on

U (resp. U). Set d×x = dx
∥x∥ ; then d

×x is an invariant measure on F×. Since

A(s, η̃) is a G-map, it follows from the preceding discussion that A(s, η̃)f = af ′

for some complex constant a. We may evaluate both sides of this equation at
w0 to obtain a = (A(s, η̃)f)(w0);

a =

∫
U

f(w0uw0)du

= η̃(−1)

∫
U

f(ū)dū

= η̃(−1)vol(U ∩ J).
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Here, we note that we pick up a factor of η̃(−1) in the second equality since
w2

0 = −1.

Let us take ψ ∈ F̂ to be trivial on oF , but not on p−1
F . Since f ′ is supported

in Bw0J , it follows that the function u 7→ f ′(w0u) is supported on U ∩ J , and
consequently (cf. (2.2), Section 2)

Ω′
s(f

′) =

∫
U∩J

f ′(w0u)ψ
−1(u)du

=

∫
U∩J

du

= vol(U ∩ J).
It remains to compute Ωs(f). By definition (cf. (2.1), Section 2), there

exists a suitably large compact open subgroup U∗ ⊂ U such that

Ωs(f) =

∫
U∗

f(w0u)ψ
−1(u)du.

One observes that w0u ∈ BJ if and only if u ∈ Bw0(J ∩ U). Take

u = u(x) =

(
1 x
0 1

)
,

then for x ̸= 0, we have

u(x) =

(
x 0
1 x−1

)(
0 1
−1 0

)(
1 0
x−1 1

)
.

It follows that w0u(x) ∈ BJ if and only if x−1 ∈ p
nη

F . In particular, for such x,

f(w0u(x)) = η̃χsδ
1/2(x−1).

Therefore

Ωs(f) =

∫
{p−k

F −{0}}∩{x:x−1∈p
nη
F }

η̃(x−1)∥x∥−s−1ψ(x)dx

=

∫
{p−k

F −{0}}∩{x:x−1∈p
nη
F }

η̃(x−1)∥x∥−sψ(x)d×x

for some large positive integer k. For convenience, let J denote the above
domain of integration. (We will soon see that the choice of k here is irrelevant.)
For m ≥ 1, set umF = 1+ pmF . Note that J is invariant under multiplication by
elements in o×F ; therefore for u ∈ umF , m ≥ 1, we obtain

Ωs(f) =

∫
J

η̃(xu)−1ψ(xu)∥x∥−sd×x.
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Now, integrating both sides of the above equation over u and interchanging the
order of integration, we obtain

Ωs(f) =
1

vm

∫
J

η̃(x)−1∥x∥−s

 ∫
um
F

η̃(u)−1ψ(xu)d×u

 d×x,

where vm = vol(umF ). In particular, choosing m = nη, and writing u = 1 + y,
we see that

Ωs(f) =
1

vm

∫
J

η̃(x)−1∥x∥−sψ(x)

 ∫
pm
F

ψ(xy)dy

 d×x.

Since the character y 7→ ψ(xy) has level −ordF (x), we see that the inside
integral is zero unless m = nη ≥ −ordF (x). This combined with the fact that
x lies in J forces ordF (x) = −nη. Let c = ϖ−nη . Thus

Ωs(f) =

∫
p
−nη
F −p

−nη+1

F

η̃(x−1)∥x∥−sψ(x)d×x

=

∫
co×

F

η̃(x−1)∥x∥−sψ(x)d×x

= η̃(c−1)q−nηs

∫
o×
F

η(x−1)ψ(cx)d×x.(3.4)

Note that the above integral (which is effectively a sum) is the Gauss sum of η
relative to ψ.

Putting everything together we obtain from the definition of the local coef-
ficient (see (2.3)) that

η̃(−1)vol(U ∩ J)vol(U ∩ J)Cψ(s, η̃) = Ωs(f),

where Ωs(f) is given by (3.4). Now, if we normalize dx by setting vol(oF ) = 1,
then

vol(U ∩ J) = 1; vol(U ∩ J) = q−nη .

Thus we have proved the following.

Proposition 3.1. Suppose ψ ∈ F̂ is of level 0 and η is a character of o×F satis-
fying η2 ̸= 1 with level n. Assume that the measure dx is normalized as above.

Let η̃ ∈ F̂× be any extension of η and let Cψ(s, η̃) denote the corresponding
local coefficient as defined in Section 2. Then

Cψ(s, η̃) = η̃(−c−1)τ(η, ψ, c)q−n(s−1),
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where c = ϖ−n and τ(η, ψ, c) =
∫
o×
F

η(x−1)ψ(cx)dx.

3.4. Concluding remarks.

(1) The above result should be compared with [17, Lemma 4.4], where
Shahidi shows the equality of Cψ(s, η̃) with the corresponding Hecke-
Tate γ-factor [25, 24] up to normalization of the measure dx. The
central idea in his proof is to reinterpret Cψ(s, η̃) via the theory of
Fourier transforms. (For a more general result in this context, see
[19].) On the other hand, for η2 ̸= 1, one can recover this equality
by comparing our expression for Cψ(s, η̃) with that of the Hecke-Tate
local factor [3, Section 23.6]. In general, as discussed in [22, Section 9],
local coefficients can be realized as Fourier transforms of the measure
that defines the corresponding intertwining operator by convolution.

(2) One can make a similar calculation when η2 = 1 using the cover (J, λ) =
(Jη, λη), but it is more complicated as the cover is not split in this
case; that is, the map tB is not an isomorphism (see [13, Section 4,
Proposition]). In addition, the intertwining map A(s, η̃), which may
now have poles, is not an isomorphism and computing its effect on the
λ-isotypic subspace F(s, η̃)λ is subtle. We omit this calculation here to
keep our presentation simple. In fact, our original motivation was to
study the problem of stability of local coefficients [11] via the theory of
types and covers. In this regard, according to [7, Section 1.5, Theorem],
one may always arrange the cover (if it exists) to be split after twisting
the inducing representation σ (see Section 2 for notation) by a suitably
highly ramified character. For example, in the case of SL(2, F ), given
any quadratic η; i.e., η2 = 1, we can twist it by a suitably highly
ramified character so that the resulting character is not quadratic.

(3) Although there are technical difficulties in extending the method de-
scribed above to the general situation of a p-adic group G and a max-
imal self-opposed F -Levi subgroup M , these difficulties do not appear
to be insurmountable.
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