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t. In this paper we take �rst steps towards the 
las-si�
ation of of the 
lass of two generated automaton groupson a three letter alphabet. More pre
isely, we partially 
har-a
terize the groups that a
t spheri
ally transitively on T3, arefra
tal or non-fra
tal, from the 
lass of automaton groups inwhi
h ea
h group is generated by a set of two elements ea
hof whi
h is 
omposed of three automata. We determine the
ardinality of ea
h sub
lass as well.1. Introdu
tionThe notion of automaton group has re
eived great attention of awide range of mathemati
ians due to the re
ent works of Bartholdi-Grigor
huk [2℄, [3℄; Grigor
huk-Zuk [12℄, [13℄, [14℄; Grigor
huk [8℄;Brunner-Sidki-Viera [6℄ and the most informative survey paper ofGrigor
huk-Nekrashevy
h-Shush
hansky [11℄. So that in the inter-national 
onferen
e of group theory that was held in Gaeta-Italy in1-6 June 2003 one of the major themes of the 
onferen
e was theautomaton groups.Automaton groups are groups generated by invertible automataand a
t on rooted regular trees as automorphisms. In 1960's V. M.MSC(2000): Primary 20F40; Se
ondary 20E08Keywords: Automaton group, Wreath produ
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32 MamaghaniGlushkov suggested to apply the abstra
t theory of automata tothe Burnside problems [1℄ and [16℄. We got a
quainted with thissubje
t in a talk given by Grigor
huk at Sharif University of Te
h-nology in Tehran in 1994.The �rst example of an automaton group belongs to the early 1970,sthat was introdu
ed to solve the Burnside problem [1℄, but the sub-je
t got attention of group theorists when Grigor
huk introdu
edin 1997 the notions of bran
h and fra
tal groups in a group theory
onferen
e in Bath(England) [10℄.The basi
 ideas for these notionswere introdu
ed by him in the beginnings of 1980 in [7℄ where heintrodu
es a group that answers the Burnside problem, and hasmany other interesting properties, su
h as having sub-exponentialgrowth, being just in�nite, being just non-solvable, having in�niteL�presentation, et
. This group whi
h is now 
alled the �rst Grig-or
huk group is an automaton group generated by a 5 state au-tomaton on the alphabet f0; 1g.The 
lass of automaton groups generated by the two state automataon the alphabet f0; 1g is 
lassi�ed by Grigor
huk and [et.al℄ in [11℄.Although there is no 
lassi�
ation of other automaton groups [11℄,but the problem is in fo
us of several resear
h groups [9℄.It should be noted that the 
lass of automaton groups under 
onsid-eration may be 
onsidered as a sub
lass of the 
lass of automatongroups generated by three state automata on a three letter alpha-bet. 2. PreliminariesWe �x the set of states Q = fq1; q2; : : : qmg, the alphabet S =f0; 1; : : : d � 1g, the set of all �nite words S� in
luding the emptyword ; on alphabet S and Sd the permutation group of S.De�nition 2.1. An automata with alphabet S and the set ofstates Q is a quadruple A = (S;Q; ';  ), where ' : S�Q! Q and : S � Q ! S are the transition and exit fun
tions respe
tively.S is also 
alled the input and output alphabet of A. A is 
alled



A Class of Two Generated Automaton Groups 33invertible if  (:; s) 2 Sd for ea
h s 2 Q.Let A be an invertible automaton with S and Q as above. We
an use an oriented labeled graph to des
ribe A. To this end let �be a graph with m verti
es labeled q1; q2; : : : qm . Now we join thevertex r to the vertex s with an edge of label i 2 S if '(i; r) = s.besides the labels mentioned above for the verti
es we again labelthe vertex s 2 Q by the permutation  (:; s) 2 Sd.The task we de�ne for the invertible automaton A is to read thewords in S� as inputs, letter by letter from left to right, and pro-du
e words of the same length in S� as outputs . However sin
e ithas no initial states in order to a
tivate it we have to initialize itby 
hoosing any of it's states as an initial state. Doing so we get minitial automata, one 
orresponding to ea
h state in Q. The initialautomaton with initial state p is denoted by Ap = (S;Q; ';  ; p).Now given the word u1u2 : : : un in S� and the state s 2 Q the ini-tial automaton As immediately 
al
ulates r = '(u1; s) 2 Q andv1 =  (u1; s) 2 D and passes through the edge with label u1 to thestate r. Now the initial automaton Ar a
ts on the word u2u3 : : : unas did As on u1u2 : : : un and this pro
ess 
ontinues until the automa-ton �nishes reading the word by reading its last letter un. The wordv1v2 : : : vn we obtain in this way is the output of this a
tivity .An initial automaton is 
alled neutral if its a
tion on S� is asthe identity fun
tion. By 
omposing the initial automata Ap =(S;Q; ';  ; p) and Aq = (S;Q; ';  ; q), resulting from a given in-vertible automaton A we obtain another initial automaton A(p;q) =(S;Q�Q; �; �; (p; q)) on the same alphabet S, where � : S � Q�Q ! Q � Q and � : S � Q � Q ! S are de�ned as follows .�(i; (r; s)) = ('(i; r); '( (i; r); s)) and �(i; (r; s)) =  (( (i; r); s).The automaton A(p;q) is denoted by Ap � Aq and is said a 
ompos-ite automaton. On the set of all initial automata resulting fromA in this way we de�ne the equivalen
e of two initial automata asfollows: We say that two initial automata are equivalent if they de-termine the same map on the set S�. The set of equivalen
e 
lassesform a group know as the automaton group generated by the au-tomaton A and is denoted by G(A) or G(A) =< Aq1; � � � ;Aqm >.



34 MamaghaniThere is a 
lose relationship between automaton groups and wreathprodu
ts. To mat
h our needs in this paper we des
ribe this rela-tionship in some detail. Consider the groups G(A), S and the groupG(A)S 
onsisting of all fun
tions from S to G(A). The fun
tionf 2 G(A)S is determined by its values f0; f1; : : : fd�1. Therefore we
an write f = (f0; f1; : : : fd�1). De�ne the right a
tion of Sd on Sby (i; �) = ��1i; i 2 S; � 2 Sd:Therefore Sd also a
ts on G(A)S via(f; �) = (f��1(0); f��1(1); : : : f��1(d�1)):Using these data we 
an de�ne the wreath produ
t G(A) o Sd asfollows: The elements of G(A) oSd are the elements of the 
artesianprodu
t G(A)S � Sd and the 
omposition of (f; �) and (g; Æ) withf = (f0; f1; : : : fd�1) and g = (g0; g1; : : : gd�1) is(f; �)(g; Æ) = (h; �Æ)where h = (h0; h1; : : : hd�1) and hi = fig��1(i). The element (f; �)of the wreath produ
t will be written f� or (f0; f1; : : : fd�1)� iff = (f0; f1; : : : fd�1).We embed G(A) in the wreath produ
t G(A) o Sd as follows: Con-sider the initial automaton Aq and let the label of the vertex q in� be �q =  (:; q). Then the initial automaton Aq will be 
onne
tedto the initial automata Aq0 = A'(0;q); Aq1 = A'(1;q); : : : Aqd�1 =A'(d�1;q) in �. Now the group G(A) embeds in the wreath produ
tG(A) o Sd via the mapAq ! (Aq0; Aq1; : : : Aqd�1)�q:By abuse of language we write this relation as Aq = (Aq0 ; Aq1; : : :Aqd�1)�q.To fa
ilitate the study of G we now de�ne other 
on
epts that arene
essary for this purpose. The length juj of u 2 S� is the numberof letters that 
onstitute u . Now for any �xed u 2 S� the elementsof the subset fuvjv 2 S�g of S� 
an be arranged as the verti
es of arooted tree Tu with root u, in whi
h there is an edge e = (uv; uw)between two verti
es uv and uw if and only if w = vi for somei 2 S. This tree for u = ; is denoted by Td and is 
alled a d-ary



A Class of Two Generated Automaton Groups 35tree with root ;. Let n � 0 be an integer, the set of all verti
es ofTd with length n is denoted by Ln and is 
alled the nth level of Td.The stabilizer subgroups of G are the most important subgroups inour study of G. These are stabilizer of a vertex of Td, stabilizer ofa level of Td , stabilizer of an element of the boundary of Td (the so
alled paraboli
 subgroups of G[12℄), rigid stabilizer of a vertex ofTd and the rigid stabilizer of the n-th level of Td.De�nition 2.2. We denote the subgroup of G that stabilizes thevertex u of Td by StG(u), i.e.StG(u) = fg 2 Gjug = ug:Also the subgroup of G that stabilizes the level Ln of Td is denotedby StG(n). We haveStG(n) = fg 2 Gjug = u; u 2 Lng:Given a vertex u of Td a subgroup ristG(u) of G that a
ts triviallyon the 
omplement of the tree Tu is 
alled the rigid stabilizer of u.The rigid stabilizer of the level Ln is a subgroup of G generated bythe rigid stabilizers of the verti
es of this level and is denoted byristG(n).The fa
t that the subgroups StG(n); n = 1; 2; : : : and ristG(n); n =0; 1; : : : are normal is obvious. Of parti
ular interest is the subgroupStG(1) . Considering g 2 StG(1) as an automaton we observe that g
orresponds to a d+1-tuple (g0; g1; : : : gd�1; i) = (g0; g1; : : : gd�1)i =(g0; g1; : : : gd�1) in the wreath produ
t G(A)oSd, i.e. the label of thestart spa
e of g is the identity permutation i 2 Sd (this is the 
ru
ialfa
t from whi
h we 
on
lude that g �xes the verti
es 0; 1; � � �d� 1),and we 
onne
t g to g0, g1 and gd�1 with edges labeled 0; 1; � � �d�1respe
tively. Consequently there is a well de�ned embedding! : StG(1) ! G� � � � �G; !(g) = (g0; g1; : : : gd�1)and hen
e well de�ned 
anoni
al proje
tions �i : StG(1) ! G; i =0; 1 : : : d � 1; �i(g) = gi; i = 0; 1; : : : d � 1 form StG(1) to the basegroup G.Similarly one 
an de�ne the proje
tions �u : StG(u) ! G for anyvertex u.



36 MamaghaniDe�nition 2.3. A group G that a
ts by automorphisms on arooted tree T is 
alled fra
tal if for every vertex u, �u(StG(u)) = Gafter the identi�
ation of the tree Td with the subtree Tu with rootat u. 3. Table of GeneratorsTo study the two generated automaton groups G on alphabetS = f0; 1; 2g, as mentioned in the title of the paper, we use anembedded 
opy of G in a wreath produ
t G(A) o S3, where A isa three state automaton on S and S3 is the symmetri
 group ofS. First of all due to its repeated appli
ations we let S3 = fi; � =(01); � = (02); 
 = (12); Æ = (012); � = Æ2 = (021)g, with table 1 asits 
omposition table. Æ 1 � � 
 Æ �1 1 � � 
 Æ �� � 1 � Æ 
 �� � Æ 1 � � 

 
 � Æ 1 � �Æ Æ � 
 � � 1� � 
 � � 1 ÆTable 1Se
ondly we arrange all possible three state initial automata fa =(x; y; z)�; b = (u; v; w)�g with x; y; z; u; v; w 2 f1; a; bg and �; � 2S3 in table 2. Now let for the �xed element 1 = (1; 1; 1)i and any twoelements a and b from this table A(a;b; 1) be an automaton withthree initial automata two of whi
h are a and b, and the third one isthe neutral initial automaton. The group generated by A(a;b; 1) isdenoted by G(a; b; 1). As 1 is the neutral automaton this is a
tuallya two generated group. We observe that a

ording to table 2 wehave 162 
hoi
es for ea
h a and b. Sin
e the automata A(a;b; 1)and A(b; a; 1) are identi
al there are 162�1622 = 13122 automata



A Class of Two Generated Automaton Groups 37that generate the groups we interested in.1 (1; 1; 1) 43 (1; a; a) 85 (b; b; b) 127 (b; a; a)2 (1; 1; 1)� 44 (1; a; a)� 86 (b; b; b)� 128 (b; a; a)�3 (1; 1; 1)� 45 (1; a; a)� 87 (b; b; b)� 129 (b; a; a)�4 (1; 1; 1)
 46 (1; a; a)
 88 (b; b; b)
 130 (b; a; a)
5 (1; 1; 1)Æ 47 (1; a; a)Æ 89 (b; b; b)Æ 131 (b; a; a)Æ6 (1; 1; 1)� 48 (1; a; a)� 90 (b; b; b)� 132 (b; a; a)�7 (1; a; 1) 49 (1; 1; b) 91 (1; b; a) 133 (b; a; b)8 (1; a; 1)� 50 (1; 1; b)� 92 (1; b; a)� 134 (b; a; b)�9 (1; a; 1)� 51 (1; 1; b)� 93 (1; b; a)� 135 (b; a; b)�10 (1; a; 1)
 52 (1; 1; b)
 94 (1; b; a)
 136 (b; a; b)
11 (1; a; 1)Æ 53 (1; 1; b)Æ 95 (1; b; a)Æ 137 (b; a; b)Æ12 (1; a; 1)� 54 (1; 1; b)� 96 (1; b; a)� 138 (b; a; b)�13 (a; 1; 1) 55 (b; 1; 1) 97 (1; a; b) 139 (a; a; b)14 (a; 1; 1)� 56 (b; 1; 1)� 98 (1; a; b)� 140 (a; a; b)�15 (a; 1; 1)� 57 (b; 1; 1)� 99 (1; a; b)� 141 (a; a; b)�16 (a; 1; 1)
 58 (b; 1; 1)
 100 (1; a; b)
 142 (a; a; b)
17 (a; 1; 1)Æ 59 (b; 1; 1)Æ 101 (1; a; b)Æ 143 (a; a; b)Æ18 (a; 1; 1)� 60 (b; 1; 1)� 102 (1; a; b)� 144 (a; a; b)�19 (a; a; 1) 61 (1; b; 1) 103 (a; b; 1) 145 (a; b; a)20 (a; a; 1)� 62 (1; b; 1)� 104 (a; b; 1)� 146 (a; b; a)�21 (a; a; 1)� 63 (1; b; 1)� 105 (a; b; 1)� 147 (a; b; a)�22 (a; a; 1)
 64 (1; b; 1)
 106 (a; b; 1)
 148 (a; b; a)
23 (a; a; 1)Æ 65 (1; b; 1)Æ 107 (a; b; 1)Æ 149 (a; b; a)Æ24 (a; a; 1)� 66 (1; b; 1)� 108 (a; b; 1)� 150 (a; b; a)�25 (1; 1; a) 67 (b; 1; b) 109 (b; 1; a) 151 (b; b; a)26 (1; 1; a)� 68 (b; 1; b)� 110 (b; 1; a)� 152 (b; b; a)�27 (1; 1; a)� 69 (b; 1; b)� 111 (b; 1; a)� 153 (b; b; a)�28 (1; 1; a)
 70 (b; 1; b)
 112 (b; 1; a)
 154 (b; b; a)
29 (1; 1; a)Æ 71 (b; 1; b)Æ 113 (b; 1; a)Æ 155 (b; b; a)Æ30 (1; 1; a)� 72 (b; 1; b)� 114 (b; 1; a)� 156 (b; b; a)�31 (a; 1; a) 73 (b; b; 1) 115 (a; 1; b) 157 (a; b; b)32 (a; 1; a)� 74 (b; b; 1)� 116 (a; 1; b)� 158 (a; b; b)�33 (a; 1; a)� 75 (b; b; 1)� 117 (a; 1; b)� 159 (a; b; b)�34 (a; 1; a)
 76 (b; b; 1)
 118 (a; 1; b)
 160 (a; b; b)
35 (a; 1; a)Æ 77 (b; b; 1)Æ 119 (a; 1; b)Æ 161 (a; b; b)Æ36 (a; 1; a)� 78 (b; b; 1)� 120 (a; 1; b)� 162 (a; b; b)�37 (a; a; a) 79 (1; b; b) 121 (b; a; 1)38 (a; a; a)� 80 (1; b; b)� 122 (b; a; 1)�39 (a; a; a)� 81 (1; b; b)� 123 (b; a; 1)�40 (a; a; a)
 82 (1; b; b)
 124 (b; a; 1)
41 (a; a; a)Æ 83 (1; b; b)Æ 125 (b; a; 1)Æ42 (a; a; a)� 84 (1; b; b)� 126 (b; a; 1)�Table2



38 MamaghaniTo get nearer our aim we partition the entries of table 2 in �ve setsI; A;B; C and D, that 
ontain the entries 1 � 6, 7 � 48, 49 � 90,91 � 126 and 127 � 162 respe
tively. Observe that ea
h of thesesets has its own 
hara
teristi
s. For example all of the 
oordinatesof elements of I are 1, and ea
h element of A has 
oordinates 1'sand a's but not all 1's, and so on. For later use we also note thatif jXj is the 
ardinality of X then jIj = 6, jAj = jBj = 42 andjCj = jDj = 36:Let A0 � A(B0 � B) be those elements in A(B) that have no
oordinate other than a(b). Then for any a; b 2 A0[B0[D the groupgenerated by the automaton A(a;b; 1) is in fa
t a two generatedautomaton group on a two letter alphabet. Sin
e jA0j = jB0j = 6and jDj = 36 the total number of these automata is 2404.4. Main ResultTheorem 4.1. There are more than 5000 three state automataA(a;b; 1) on S = f0; 1; 2g that generate fra
tal groups a
ting spher-i
ally transitively on T3.This result says nothing about isomorphi
 groups in our list of fra
-tal groups. To obtain non-isomorphi
 fra
tal groups one 
an invokethe following general lemma and its 
orollaries.De�nition 4.2. Two automata A = (S;Q; ';  ) and B = (S;Q0;'0;  0) on the same alphabet S are said to be isomorphi
 if there isa bije
tion � : Q! Q0 su
h that�'(i; q) = '0(i;�(q)) and  (i; q) =  0(i;�(q)) for all i 2 S andq 2 Q.Lemma 4.3. Isomorphi
 automata on the same alphabet generatethe same group of tree automorphisms.Proof. Let A = (S;Q; �; �) and B = (S;Q0; � 0; �0) be isomorphi
automata with isomorphism 0 : Q! Q0, whereQ = fq1; : : : qng,Q0 =fq01; : : : q0ng and S = f0; 1; : : : ; d�1g. Then to the initial automaton



A Class of Two Generated Automaton Groups 39Aq = (A�(0;q); A�(1;q); : : : ; A�(d�1;q))�(; q) in A 
orresponds theinitial automatonBq0 = (A� 0(0;q0); A� 0(1;q0); : : : ; A� 0(d�1;q0))�0(; q0), andthis 
orresponden
e is a bije
tion. In fa
t we have a renaming inautomata A to obtain automata B. And therefore every relationin G(A) is renamed to the same relation in G(B). Now de�neF : G(A) :! G(B) by de�ning F (Aq) = Bq0 and extend it to ahomomorphism. It is 
lear that F is an isomorphism of groups. 2Corollary 4.4. If one of the two isomorphi
 automaton groups Gand H on the same alphabet S and the same state set Q is fra
talthe other is also fra
tal.Corollary 4.5. If one of the two isomorphi
 automaton groupsG and H on the same alphabet S and the same state set Q a
tstransitively spheri
ally on S� then so does the other.Proof. of theorem 4.1 The following se
tions are devoted to theproof of this theorem. 25. Non-Fra
tal Automaton GroupsA

ording to the de�nition of a fra
tal group ea
h automatongroup is either fra
tal or non-fra
tal. In this se
tion we formulatesome statements that 
hara
terize some non-fra
tal three generatedautomaton groups on S.Theorem 5.1. Let G(a; b; 1) be the group generated by the threestate automaton A(a;b; 1) with a; b 2 I [ A or a; b 2 I [ B, thenG is not fra
tal, ex
ept for the following 
ases(1) Trivial 
ase a = (1; 1; 1) and b = (1; 1; 1),(2) The 
y
li
 groups generated byA(x; 1; 1) with x = (x; 1; 1)�;x = (1; x; 1)�; x = (1; 1; x)�, where � 2 fÆ; �g and x 2fa; bg,(3) the group generated by automaton A(x;x2; 1) with x as initem 2.



40 MamaghaniProof. For a; b 2 I the group G is isomorphi
 to a subgroup ofS3 and so is �nite. For various values of a and b we have broughtthese subgroups in table 3.� a1 a2 a3 a4 a5 a6a1 f1ga2 Z2 Z2a3 Z2 S3 Z2a4 Z2 S3 S3 Z2a5 Z3 S3 S3 S3 Z3a6 Z3 S3 S3 S3 Z3 Z3;Table 3where a1 � � �a6 are elements of I. Obviously none of these is a fra
-tal group.Let a; b 2 I [A and a 6= b and b�1. Then the proje
tion of any ele-ment of StG in any of it's 
oordinates gives either 1 or some powerof a. Therefore StG is proje
ted on 1, Zm for some integer m or Z,whi
h are not equal to G be
ause G is not 
y
li
.In 
ase when a = b or a = b�1, G is 
y
li
. Let a = (x; y; z)�with x; y; z 2 f1; ag and without loss of generality let � = 1; � orÆ. Therefore for any 
hoi
e of (x; y; z) there are three 
ases for a.For x = y = z = 1, G is trivial, of order 2 or of order 3 a

ordingto the 
hoi
es � = 1; � or Æ respe
tively. In these 
ases StG(1) istrivial. For x = y = z = a, G is trivial or StG(1) is trivial.For x = y = a and z = 1, G is trivial or of order two when� = 1 or � = � , and when � = Æ we have StG =< a3 > and so'i(StG(1)) =< a2 > whi
h is not equal to G.For x = a and y = z = 1, G is trivial for � = 1, '2(StG(1)) = f1gfor � = �, and �nally for � = Æ we have StabG(1) =< (a; a; a) >and therefore 'i(StG(1)) = G; i = 0; 1; 2. 2Corollary 5.2. The groups G generated by A(x; 1; 1) and A(x;x2;1) with x as in item 2 of theorem 5:1 a
t spheri
ally transitively onT3.



A Class of Two Generated Automaton Groups 41Corollary 5.3. The number of three state automata A(a;b; 1)with a; b 2 I [A or a; b 2 I [B that generate non-fra
tal groups is2333.Proof. Obviously the trivial group generated by a = (1; 1; 1) andb = (1; 1; 1) is fra
tal. therefore theorem 5:1 shows that there are7 fra
tal groups among the groups under 
onsideration. Now theassertion follows sin
e we have totally 48 � 48 + 48 + 6 � 6=2 + 3groups. 2De�nition 5.4. We say that the pair (a; b) 2 B�A is ex
eptionalof �rst kind if(1) a = (1; 1; b)�; b = (1; a; 1)�(2) a = (1; 1; b)�; b = (a; 1; 1)
(3) a = (1; b; 1)�; b = (1; 1; a)�(4) a = (1; b; 1)�; b = (a; 1; 1)
(5) a = (b; 1; 1)
; b = (1; 1; a)�(6) a = (b; 1; 1)
; b = (1; a; 1)�(7) a = (b; b; b)�; b 2 A; � 2 S3 n fig:(8) b = (a; a; a)�; a 2 B; � 2 S3 n fig:The groupG(a; b; 1) generated by the three state automatonA(a;b;1), with (a; b) an ex
eptional pair of �rst kind is 
alled an ex
ep-tional group of �rst kind.Proposition 5.5. The �rst kind ex
eptional groups are not fra
tal.Proof. We prove the theorem in two 
ases. Other 
ases treated inthe same way.
ase 1. Let G =< a; b >, where a = (1; 1; b)�; b = (1; a; 1)�. Wehave a2 = (1; 1; b2) and b2 = (1; a2; 1), whi
h imply a2 = b2 = 1.Therefore any other relation in G will be of the form (ab)n = 1,for some n a multiple of 3. Let n = 3k be the smallest positivevalue of n satisfying this 
ondition. Then we have 1 = (1; 1; 1) =(ab)3k = ((ab)k; (ba)k; (ba)k), whi
h for 0 < k < n imply (ab)k = 1.Therefore G = Z2 � Z2.Now a

ording to (ab)3(ba)3 = 1 we have StG(1) =< (ab)3 >. Fromthis we 
on
lude that G is not fra
tal.



42 Mamaghani
ase 2. Assume G =< a; b >, where a = (b; b; b)�; b = (a; a; a)
.We have a2 = (b2; b2; b2) and b2 = (a2; a2; a2), whi
h imply a2 = b2.We have StG(1) =< a2; (ab)3; (ba)3 > :This implies G is not fra
tal. 2Corollary 5.6. There are 416 three state automata A(a;b; 1) thatgenerate non-fra
tal groups of �rst kind.We now introdu
e our se
ond set of ex
eptional pairs.De�nition 5.7. We say that the pair (a; b) 2 I�D[C[B[A[Iis ex
eptional of se
ond kind if(1) a = (1; 1; 1)�; b = (x; y; z)�; x; y; z 2 f1; a; bg(2) a = (1; 1; 1)�; b = (x; y; z)�; x; y; z 2 f1; a; bg(3) a = (1; 1; 1)
; b = (x; y; z)
; x; y; z 2 f1; a; bg:The groupG(a; b; 1) generated by the three state automatonA(a;b;1), with (a; b) an ex
eptional pair of se
ond kind is 
alled an ex-
eptional group of se
ond kind.Proposition 5.8. The se
ond kind ex
eptional groups are not fra
-tal.Proof. We prove the theorem in two 
ases. Other 
ases treated inthe same way.
ase 1. Let G(a; b; 1), where a = (1; 1; 1)�; b = (b; a; b)�. We haveStG(1) =< ab; ba; b2 >. We observe that the proje
tion of this sta-bilizer on the third 
oordinate is the in�nite 
y
li
 group, and so Gis not fra
tal.
ase 2. Assume G(a; b; 1), where a = (1; 1; 1)�; b = (1; b; a)�. Weobserve that the proje
tion of this stabilizer on the third 
oordinateis the 
y
li
 group of order 2, and so G is not fra
tal. 2Corollary 5.9. There are 60 three state automata A(a;b; 1) thatgenerate ex
eptional groups of se
ond kind.



A Class of Two Generated Automaton Groups 43De�nition 5.10. We say that the pair (a; b) 2 A�C is ex
eptionalof third kind if(1) a = (1; 1; a)�; b = (1; a; b)�; or b = (b; a; 1)�;(2) a = (1; 1; a)�; b = (a; 1; b)
; or b = (a; b; 1)
;(3) a = (1; a; 1)�; b = (1; b; a)�; or b = (b; 1; a)�;(4) a = (1; a; 1)�; b = (a; 1; b)
; or b = (a; b; 1)
;(5) a = (a; 1; 1)
; b = (1; b; a)�; or b = (b; 1; a)�;(6) a = (a; 1; 1)
; b = (1; a; b)�; or b = (b; a; 1)�;(7) a = (a; a; a)�; � 2 S3 n fÆ; �g, b = (x; y; z)� 2 C with � 6= i.In the same way the third kind ex
eptional elements in B � C arede�ned. The group G(a; b; 1) generated by the three state automa-ton A(a;b; 1), with (a; b) an ex
eptional pair of third kind is 
alledan ex
eptional group of third kind.Proposition 5.11. The ex
eptional groups of third kind are notfra
tal.Proof. We prove this proposition in 
ases when a = (1; 1; a)�; b =(1; a; b)� and a = (a; a; a)�; b = (a; b; 1)� . in the �rst 
ase we havea2 = 1 and StG(1) =< b2; ab2a; (ab)3; (ba)3 > :From whi
h we observe that '1StG(1) =< aba; b >6= G. Hen
e Gis not fra
tal.In the se
ond 
ase we observe that StG(1) =< b2; ab2a >. Thisimplies that '2StG(1) =< a > whi
h is isomorphi
 to Z2.Corollary 5.12. There are 312 three state automata A(a;b; 1)that generate ex
eptional groups of third kind. 26. Fra
tal Automata GroupsIn this se
tion we determine fra
tal groups G(a; b; 1) generatedby a three state automaton A(a;b; 1) , with (a; b) 2 X � Y , whereX; Y 2 fI; A;B; C;Dg:



44 MamaghaniProposition 6.1. Let a = (x; y; z)� 2 A and b = (u; v; w)� 2 Bbe su
h that �; � 2 fÆ; �g; not all of x; y; z are a and 1; and not allof u; v; w are b and 1. Then G(a; b; 1) is fra
tal.Proof. We prove the proposition in three 
ases, the remaining
ases are quite similar.
ase 1. a = (1; 1; a)Æ and b = (1; 1; b)�. We have StG =<ab; ba; a3; b3 > and so G is fra
tal.
ase 2. a = (1; 1; a)Æ and b = (1; b; b)�. In this 
ase StG(1) =<a3; ab; ba; b3 >, whi
h implies G is fra
tal.
ase 3. a = (1; a; a)Æ and b = (1; b; b)�. Here we haveStG(1) =< a3; b3; ab; ba; [a�1; b℄; [b�1; a℄ > :From this we observe that G is fra
tal.2We observe that there are 8 elements in A and 8 elements in B thatsatisfy the 
onditions of the above proposition. Therefore we havethe following 
orollary:Corollary 6.2. There are 64 three state automata A(a;b; 1) thatgenerate the groups in proposition above. These groups all a
tspheri
ally transitively on T3.Proposition 6.3. If (a; b) 2 B�A is not ex
eptional(of �rst kind)then G(a; b) is fra
tal.Proof. We prove this proposition through the following two lem-masLemma 6.4. Let a = (1; 1; b)� and b = (1; a; 1)
. Then G(a; b) isfra
tal.Proof. From the relationsa2 = (1; 1; b2); b2 = (1; a; a); b�2(ab)3 = (ab; b; a�1ba); (ab)3b�2 =(ab; aba�1; b) a�1b2a = (a; 1; b�1ab);a�1b�2a(ab)3b�2 = (b; aba�1; b�1a�1b2) 2 StG(1);we dedu
e that G is fra
tal. 2



A Class of Two Generated Automaton Groups 45Lemma 6.5. Let a = (1; b; b)� and b = (a; 1; 1)
. Then G(a; b; 1)is fra
tal.Proof. From the relationsa2 = (b; b; b2); ababab = (bab; bab; b2a); a�1babab = (ab; ab; a);a�1babab = (b; ab; a); a�1bababa�2 = (1; a; ab�2);b�1a2b = (a�1ba; b2; b); bababa�3 = (a; 1; bab�3) 2 StG(1);we dedu
e that G is fra
tal. 2The above proposition provides us with a great number of threestate automata that generate fra
tal groups a
ting spheri
ally tran-sitively on T3. In fa
t by the 
orollary 5:7 we have 48 � 48 � 416three state automata A(a;b; 1) generating fra
tal groups providedby the above proposition. We have proved:Corollary 6.6. There are 1788 three state automata A(a;b; 1)that generate fra
tal groups resulting from the proposition 6:3 all ofwhi
h a
t spheri
ally transitively on T3.Proposition 6.7. Let a = (1; 1; 1)� and b 2 C, where � 2 fÆ; �g.Then G(a; b; 1) is fra
tal.Proof. We prove the proposition in four 
ases. Other 
ases areproved similarly. We use a3 = 1 in the proof.
ase 1. a = (1; 1; 1)Æ and b = (a; 1; b). We observe that b; a�1ba =(1; b; a); aba�1 = (b; 1; a) 2 StG(1): Therefore G is fra
tal.
ase 2. For a = (1; 1; 1)Æ and b = (a; 1; b)� we 
al
ulatea�1ba = (1; b; a)�; a�1b2a = (a; b2; a); ab2a�1 = (b2; a; a);and (ab)2 = (b; a2; b); (ba)2 = (a2; b; b)and 
on
lude that G is fra
tal.
ase 3. a = (1; 1; 1)Æ and b = (a; 1; b)Æ is easily handled be
ause ofaba = (b; a; 1), a�1b = (1; b; a) and ba�1 = (a; 1; b):
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ase 4. a = (1; 1; 1)Æ and b = (1; a; b)�. Using the elements b2 =(a; a; b2); a�1b2a = (a; b2; a); ab2a�1 = (b2; a; a), abab = (ba; 1; ab) ,baba = (1; ab; ba) and a2baba�1 = (ab; ba; 1) we observe that G isfra
tal. 2Corollary 6.8. The group G(a; b; 1) with a = (1; 1; 1)Æ or a =(1; 1; 1)� and b 2 C a
ts spheri
ally transitively on T3.Proof. Fra
tal plus spheri
al a
tion on the �rst level of T3 implyspheri
al transitivity on T3 [5℄. 2Corollary 6.9. The group G(a; b; 1) with a = (x; y; z) 2 C andb = (x; y; z)� 2 C with � = Æ or � = � is fra
tal and a
ts spheri
allytransitively on T3.Corollary 6.10. The proposition 6:7 yields 2 � 36 + 12 = 84three state automata A(a;b; 1) generating fra
tal groups that a
tspheri
ally transitively on T3.Considering the generators fromB�C(A�C) we have the followingtwo propositionsProposition 6.11. The group G(a; b; 1) is fra
tal when a = (t; t; t)�; b = (x; y; z), where t 2 fa; bg, � 2 fÆ; �g and one of x; y; z is athe other is b the third is 1.Proof. Without loss of generality assume a = (a; a; a)Æ and b =(a; b; 1), we then have a3 = 1 andStG(1) =< b = (a; b; 1); aba�1 = (1; a; aba�1); a�1ba = (a�1ba; 1; a) > :Whi
h implies G is fra
tal. 2Corollary 6.12. There are 24 three state automata A(a;b; 1) re-sulting from the proposition 6:11 that generate fra
tal groups a
tingspheri
ally transitively on T3:Proposition 6.13. Let G(a; b; 1) be a two generated group gener-ated by a 2 A and b 2 C, if the pair (a; b) is not ex
eptional(ofthird kind) then G is fra
tal.



A Class of Two Generated Automaton Groups 47Remark. Note that a = (x; y; z) 2 A with x; y; z 2 f1; ag allrepresent the identity i = (1; 1; 1) of group and therefore in this
ase G will not be 
onsidered as a two generated group .Proof. Without loss of generality we will prove the propositionin 6 
ases. In any 
ase we have to show how 'iStG(1) = G fori = 0; 1; 2:
ase 1. a = (1; 1; a)Æ; b = (1; a; b). We have b; a3 = (a; a; a);a2ba�2 = (1; b; 1) and aba�1 = (b; 1; a) 2 StG(1): From whi
h we
on
lude that G is fra
tal.
ase 2. a = (1; 1; a)�; b = (1; a; b)
: We list some elements ofStabG(1). a2 = 1 , b2 = (1; ab; ba), (ab�1)3 = (b�1; b�1; b�1);ab2a�1 = (ab; 1; ab) From these we 
on
lude that G is fra
tal.
ase 3. a = (1; a; 1)�; b = (1; a; b)�:We observe that a2 = (a; a; 1),b2 = (b; a2; b) , (a�1b)3 = (b; b; b) and ba2b�1 = (1; a; bab�1) all be-long to StG(1). Therefore G is fra
tal.
ase 4. a = (1; a; a)�; b = (1; a; b)�: Here are some elements ofStG(1) from whi
h we 
on
lude thatG is fra
tal. a2 = (a; a; a2); b2 =(b; a2; b); (a�1b)3 = (a�1b; a�1b; a�1b).
ase 5. a = (1; a; a)�; b = (a; 1; b)�: We have a2 = (a; a; a2),(a�1b)3 = (a�1b; ba�1; a�1b) and b�1a2b = (b�1a2b; a; a). These im-ply that G is fra
tal.
ase 6. a = (1; a; a)�; b = (a; 1; b)
: The relations a2 = (a; a; a2),b2 = (a2; b; b), (a�1b)3 = (a�1ba; b; a�1ba) and b�1a2b = (a; b�1a2b; a)show that G is fra
tal. 2Corollary 6.14. There are 3024 three state automata A(a;b; 1)resulting from proposition 6:13 that generate fra
tal groups a
tingspheri
ally transitively on T3Now we 
onsider the groups G(a; b; 1) where a 2 I [A[B [C [Dand b 2 DProposition 6.15. Let a = (1; 1; 1)Æ or a = (1; 1; 1)� and b 2 D,Then G(a; b; 1) is fra
tal.Proof. We prove the proposition in four 
ases. The proof of re-maining 
ases are similar.
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ase 1. b = (a; b; a). We have a�1ba = (b; a; a) and aba�1 =(a; a; b). So that b; aba�1; a�1ba 2 StG(1). Therefore G is fra
tal.
ase 2. b = (a; b; a)�. In this 
ase we have b2 = (ab; ba; a2)and a3 = 1.Therefore b�2 = (b�1a�1; a�1b�1; a) 2 StG(1). Con-jugating shows that a�1b�2a = (a�1b�1; a; b�1a�1) and , ab�2a�1 =(a; b�1a�1; a�1b�1) 2 StG(1). On the other hand we haveab2a�1 = (a2; ab; ba); ab2a�1b2 = (b; ab2a; b);b2a�1b2a = (ab2a; b; b) 2 StG(1):Therefore G is fra
tal.
ase 3. b = (a; b; a)Æ. We have ba�1 = (a; b; a), a�1b = (b; a; a) andaba = (a; a; b) and so G is fra
tal.
as4. b = (b; b; a)�. Using a3 = 1,b2 = (b2; b2; a2), a�1b�2a,ab�2a�1, b�1aba and b�1a�1ba�1, we observe that G is fra
tal. 2Corollary 6.16. Proposition 6:15 yields 84 three state automataA(a;b; 1) that generate fra
tal groups a
ting spheri
ally transitivelyon T3Proposition 6.17. Let a = (x; y; z)� 2 A where not all x; y; z are1 and not all are a; and let b = (u; v; w)� 2 D with � 2 fÆ; �g and� 2 fi; Æ; �. Then G(a; b; 1) is fra
tal.Proof. We prove the proposition in for 
ases.
ase 1. a = (1; 1; a)Æ; b = (b; b; a)�. We havea3 = (a; a; a); ab = (a; b; ab); ba = (b; ba; a):Therefore G is fra
tal.
ase 2. a = (1; 1; a)Æ; b = (a; b; a)�. We haveStG(1) =< b; a3; a�1ba; aba�1 > :This imply that G is fra
tal.
ase 3. a = (1; 1; a)Æ; b = (b; a; b)�. A little 
al
ulation shows thatStG(1) =< a3; ab; ba; b3 > and so G is fra
tal.
ase 4. a = (1; a; a)Æ; b = (a; b; a). In this 
ase we have a3 =(a2; a2; a2); ab = (b; a2; ab); ba = (a2; ba; a). From these we dedu
ethat G is fra
tal. 2



A Class of Two Generated Automaton Groups 49In the same way one 
an use B instead of A in the above propo-sition, so that we obtain the following 
orollaryCorollary 6.18. The proposition 6:17 yields 432 three state au-tomata A(a;b; 1) that generate fra
tal groups a
ting spheri
allytransitively on T3Proposition 6.19. For a = (x; y; z)�; b = (x; y; z)� 2 D, where� 2 S3 , � = Æ or � = � and � 6= � the group G(a; b; 1) generatedby the automaton A(a;b; 1) is fra
tal.Proof. We prove the proposition in three 
ases. The proof ofremaining 
ases are similar.
ase 1. a = (b; b; a) and b = (b; b; a)Æ. Let 
 = a�1b = (1; 1; 1)Æ.We have 
a
�1 = (a; b; b) and 
�1a
 = (b; a; b). Sin
e a is also inStG(1), the proof of 
ase 1 is 
omplete.
ase 2. a = (b; a; a)� and b = (b; a; a)Æ. Let 
 = a�2b3 = (a; a; b)and u = a�2b2 = (1; 1; 1)�, We have:u
u�1 = (a; b; a); u�1
u = (b; a; a):Therefore G(a; b; 1) is fra
tal.
ase 3. a = (b; a; a)� and b = (b; a; a)Æ. Let 
 = b�1a = (1; 1; 1)Æ.We have 
a = (a; b; a) , 
2b = (a; a; b) and a
 = (b; a; a). ThereforeG is fra
tal. 2Corollary 6.20. There are more than 55 three state automataA(a;b; 1) with a; b 2 D that generate fra
tal groups a
ting spheri-
ally transitively on T3Proof. One 
an see easily that the automaton A(a;b; 1) witha = (a; a; b) and b = (a; b; b)Æ also generate a group with aboveproperties. 2Cal
ulating the number of automataA(a;b; 1) we have obtainedin the 
ourse of the proof of propositions above we observe thatthere are more than 5000 automata that generate fra
tal groupsa
ting spheri
ally transitively on T3. This 
ompletes the proof of



50 Mamaghanithe theorem 3:1.Remark. A

ording to propositions 5:5 and 6:19 and some 
al
u-lations, ex
ept the trivial group the groups generated by automataA(a;b; 1) with (a; b) 2 X � Y , where X; Y 2 fA0; B0; Dg, are notfra
tal if X 6= D or Y 6= D. Therefore the only possibility that theautomata A(a;b; 1) may generate fra
tal groups is (a; b) 2 D�D.Using 
orollary 6:20 and it's proof one 
an 
ount at least 100 ofthese groups. A
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