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A CLASS OF TWO GENERATED AUTOMATON
GROUPS ON A THREE LETTER ALPHABET

M. J. MAMAGHANI

ABSTRACT. In this paper we take first steps towards the clas-
sification of of the class of two generated automaton groups
on a three letter alphabet. More precisely, we partially char-
acterize the groups that act spherically transitively on T3, are
fractal or non-fractal, from the class of automaton groups in
which each group is generated by a set of two elements each
of which is composed of three automata. We determine the
cardinality of each subclass as well.

1. Introduction

The notion of automaton group has received great attention of a
wide range of mathematicians due to the recent works of Bartholdi-
Grigorchuk [2], [3]; Grigorchuk-Zuk [12], [13], [14]; Grigorchuk [8];
Brunner-Sidki-Viera [6] and the most informative survey paper of
Grigorchuk-Nekrashevych-Shushchansky [11]. So that in the inter-
national conference of group theory that was held in Gaeta-Italy in
1-6 June 2003 one of the major themes of the conference was the
automaton groups.

Automaton groups are groups generated by invertible automata
and act on rooted regular trees as automorphisms. In 1960’s V. M.
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Glushkov suggested to apply the abstract theory of automata to
the Burnside problems [1] and [16]. We got acquainted with this
subject in a talk given by Grigorchuk at Sharif University of Tech-
nology in Tehran in 1994.

The first example of an automaton group belongs to the early 1970,s
that was introduced to solve the Burnside problem [1], but the sub-
ject got attention of group theorists when Grigorchuk introduced
in 1997 the notions of branch and fractal groups in a group theory
conference in Bath(England) [10].The basic ideas for these notions
were introduced by him in the beginnings of 1980 in [7] where he
introduces a group that answers the Burnside problem, and has
many other interesting properties, such as having sub-exponential
growth, being just infinite, being just non-solvable, having infinite
L—presentation, etc. This group which is now called the first Grig-
orchuk group is an automaton group generated by a 5 state au-
tomaton on the alphabet {0, 1}.

The class of automaton groups generated by the two state automata
on the alphabet {0, 1} is classified by Grigorchuk and [et.al] in [11].
Although there is no classification of other automaton groups [11],
but the problem is in focus of several research groups [9].

It should be noted that the class of automaton groups under consid-
eration may be considered as a subclass of the class of automaton
groups generated by three state automata on a three letter alpha-
bet.

2. Preliminaries

We fix the set of states @ = {q1,¢2,...¢mn}, the alphabet S =
{0,1,...d — 1}, the set of all finite words S* including the empty
word () on alphabet S and S, the permutation group of S.

Definition 2.1. An automata with alphabet S and the set of
states @ is a quadruple A = (S, Q, ¢, ¥), where p : S xQ — @ and
S x @ — S are the transition and exit functions respectively.
S is also called the input and output alphabet of A. A is called
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invertible if (., s) € S, for each s € Q.

Let A be an invertible automaton with S and () as above. We
can use an oriented labeled graph to describe A. To this end let I’
be a graph with m vertices labeled ¢y, ¢, ... ¢, . Now we join the
vertex r to the vertex s with an edge of label i € S if (i, r) = s.
besides the labels mentioned above for the vertices we again label
the vertex s € @ by the permutation ¢ (., s) € Sy.

The task we define for the invertible automaton A is to read the
words in S* as inputs, letter by letter from left to right, and pro-
duce words of the same length in S* as outputs . However since it
has no initial states in order to activate it we have to initialize it
by choosing any of it’s states as an initial state. Doing so we get m
initial automata, one corresponding to each state in (). The initial
automaton with initial state p is denoted by A, = (S, Q, ¢, ¥, p).
Now given the word wujus...u, in S* and the state s € () the ini-
tial automaton A; immediately calculates r = ¢(u;,s) € @ and
v1 = 1(uq, s) € D and passes through the edge with label u; to the
state r. Now the initial automaton A, acts on the word usus . .. u,
as did A, on ujus . .. u, and this process continues until the automa-
ton finishes reading the word by reading its last letter u,,. The word
V103 ...V, We obtain in this way is the output of this activity .

An initial automaton is called neutral if its action on S* is as
the identity function. By composing the initial automata A, =
(S,Q, ¢, ¢,p) and A, = (S,Q, ¢, v, q), resulting from a given in-
vertible automaton A we obtain another initial automaton A, o) =
(S,Q x Q, 0, X, (p,q)) on the same alphabet S, where ¢ : S x @ X
R — Q@ xQand y : SxQ xQ — S are defined as follows .
o(1, (r,5)) = (p(i,r), o(P(i,7),5)) and x(i, (r,s)) = P(((i,7), 5).
The automaton A, is denoted by A, x A, and is said a compos-
ite automaton. On the set of all initial automata resulting from
A in this way we define the equivalence of two initial automata as
follows: We say that two initial automata are equivalent if they de-
termine the same map on the set S*. The set of equivalence classes
form a group know as the automaton group generated by the au-
tomaton A and is denoted by G(A) or G(A) =< Aq,, -, Aq. >-
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There is a close relationship between automaton groups and wreath
products. To match our needs in this paper we describe this rela-
tionship in some detail. Consider the groups G(A), S and the group
G(A)S consisting of all functions from S to G(A). The function
f € G(A)S is determined by its values fy, fi,... f4_1. Therefore we
can write f = (fo, f1,... fa—1). Define the right action of Sy on S
by
(i,0) =0 Yi,i€ S o€S,
Therefore S, also acts on G(A)S via

(f,0) = (fo-r(0)s for1)s - fom1a-1))-

Using these data we can define the wreath product G(A)Sq as
follows: The elements of G(A)1S4 are the elements of the cartesian
product G(A)S x S4 and the composition of (f, o) and (g,d) with

f = (anfla---fd—l) and g = (gg,gl,...gd_l) is
(f,a)(g,é) = (h: 05)

where h = (ho, hy,...hg—1) and h; = fig,-1;. The element (f,0)
of the wreath product will be written fo or (fo, fi,... fa1)o if
f = (an fl; s fdfl)-

We embed G(A) in the wreath product G(A) 1S4 as follows: Con-
sider the initial automaton A, and let the label of the vertex ¢ in
' be 0, = ¢(.,¢q). Then the initial automaton A, will be connected
to the initial automata Ay, = Auq.Aq = Apag)s-- A, =
Ag-1,9) in I'. Now the group G(A) embeds in the wreath product
G(A)1Sq via the map

Ay = (Ag, Ay, - Agy_ )0

*i0gd-1

By abuse of language we write this relation as A, = (Ag, Ag, - -
Agy_1)0qg.

To facilitate the study of G we now define other concepts that are
necessary for this purpose. The length |u| of u € S* is the number
of letters that constitute u . Now for any fixed u € S* the elements
of the subset {uv|v € S*} of S* can be arranged as the vertices of a
rooted tree T, with root u, in which there is an edge e = (uv, uw)
between two vertices uv and ww if and only if w = wvi for some
i € S. This tree for u = ) is denoted by T, and is called a d-ary
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tree with root (). Let n > 0 be an integer, the set of all vertices of
T, with length n is denoted by L,, and is called the nth level of T,.
The stabilizer subgroups of G' are the most important subgroups in
our study of GG. These are stabilizer of a vertex of T}, stabilizer of
a level of T, , stabilizer of an element of the boundary of T, (the so
called parabolic subgroups of G[12]), rigid stabilizer of a vertex of
T, and the rigid stabilizer of the n-th level of T,.

Definition 2.2. We denote the subgroup of G that stabilizes the
vertex u of Ty by Stg(u), i.e.
Ste(u) = {g € Glug = u}.
Also the subgroup of G that stabilizes the level L,, of Ty is denoted
by Stg(n). We have
Ste(n) ={g € Glug =wu,u € L,}.

Given a vertex u of Ty a subgroup ristg(u) of G that acts trivially
on the complement of the tree T, is called the rigid stabilizer of u.
The rigid stabilizer of the level L,, is a subgroup of G' generated by
the rigid stabilizers of the vertices of this level and is denoted by

ristg(n).
The fact that the subgroups Stg(n),n =1,2,... and ristg(n),n =
0,1,... are normal is obvious. Of particular interest is the subgroup

Sti(1) . Considering g € Ste(1) as an automaton we observe that g
corresponds to a d+ 1-tuple (go, g1, -.-9a-1,%) = (9o, g1, - Ga_1)i =
(g0, g1, - - - ga—1) in the wreath product G(A)1Sy, i.e. the label of the
start space of g is the identity permutation i € Sy (this is the crucial
fact from which we conclude that ¢ fixes the vertices 0,1,---d —1),
and we connect g to gg, g1 and g4 with edges labeled 0,1,---d—1
respectively. Consequently there is a well defined embedding

w:Steg(1) > G x - xG,w(g) = (90,91, ga_1)

and hence well defined canonical projections 7; : Stg(1) — G,i =
0,1...d=1;m(g9) = giyi =0,1,...d — 1 form St;(1) to the base
group G.
Similarly one can define the projections , : Stg(u) — G for any
vertex u.
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Definition 2.3. A group G that acts by automorphisms on a
rooted tree T is called fractal if for every vertex u, m,(Stg(u)) = G
after the identification of the tree T, with the subtree T, with root
at u.

3. Table of Generators

To study the two generated automaton groups G on alphabet
S = {0,1,2}, as mentioned in the title of the paper, we use an
embedded copy of G in a wreath product G(A)Ss, where A is
a three state automaton on S and S; is the symmetric group of
S. First of all due to its repeated applications we let S3 = {i,a =
(01), 8 = (02),7 = (12),6 = (012), A = 62 = (021)}, with table 1 as
its composition table.

ol a f v d A
1 1 a f v 6 A
a al X 4§ v f
B B 6 1 N a v
vy A0 1 B «
o 6 B v a X1
AA vy a 146
Table 1

Secondly we arrange all possible three state initial automata {a =
(z,y,2)0,b = (u,v,w)r} with z,y, z,u,v,w € {1,a,b} and o,v €
Sy in table 2. Now let for the fixed element 1 = (1,1, 1)i and any two
elements a and b from this table A(a, b, 1) be an automaton with
three initial automata two of which are a and b, and the third one is
the neutral initial automaton. The group generated by A(a, b, 1) is
denoted by G(a,b,1). As 1 is the neutral automaton this is actually
a two generated group. We observe that according to table 2 we
have 162 choices for each a and b. Since the automata A(a,b, 1)
and A(b,a, 1) are identical there are 1%2%1%2 = 13122 automata
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that generate the groups we interested in.
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To get nearer our aim we partition the entries of table 2 in five sets
I, A, B,C and D, that contain the entries 1 — 6, 7 — 48, 49 — 90,
91 — 126 and 127 — 162 respectively. Observe that each of these
sets has its own characteristics. For example all of the coordinates
of elements of I are 1, and each element of A has coordinates 1’s
and a’s but not all 1’s, and so on. For later use we also note that
if | X| is the cardinality of X then |I| = 6, |A| = |B| = 42 and
C| = |D| = 36.

Let A' C A(B' C B) be those elements in A(B) that have no
coordinate other than a(b). Then for any a,b € A'UB'UD the group
generated by the automaton A(a,b, 1) is in fact a two generated
automaton group on a two letter alphabet. Since |A'| = |B'| = 6
and |D| = 36 the total number of these automata is 2404.

4. Main Result

Theorem 4.1. There are more than 5000 three state automata
A(a,b,1) on S = {0, 1,2} that generate fractal groups acting spher-
veally transitively on Tj.

This result says nothing about isomorphic groups in our list of frac-
tal groups. To obtain non-isomorphic fractal groups one can invoke
the following general lemma and its corollaries.

Definition 4.2. Two automata A = (S,Q, ¢,v) and B = (S, Q/,
¢', 1) on the same alphabet S are said to be isomorphic if there is
a bijection IT: Q) — @' such that

(i, q) = ¢'(i,11(q)) and ¥ (i,q) = ¢'(i,TI(g)) for all i € S and
q€Q.

Lemma 4.3. Isomorphic automata on the same alphabet generate
the same group of tree automorphisms.

Proof. Let A = (S,Q, 7, 1) and B = (S, Q’, 7, /') be isomorphic
automata with isomorphism’ : @@ — @', where Q = {q1,...¢,},Q' =
{q},...¢,} and S = {0,1,...,d—1}. Then to the initial automaton
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Ay = (A0, Arag)s - - Aria—1,9))14(,q) in A corresponds the
initial automaton By = (Ay 0,9y Ar(i,gys - - s Ara—1,¢0) 1 (1 ¢'), and
this correspondence is a bijection. In fact we have a renaming in
automata A to obtain automata B. And therefore every relation
in G(A) is renamed to the same relation in G(B). Now define
F : G(A) :— G(B) by defining F'(4,) = By and extend it to a
homomorphism. It is clear that F' is an isomorphism of groups. O

Corollary 4.4. If one of the two isomorphic automaton groups G
and H on the same alphabet S and the same state set () is fractal
the other is also fractal.

Corollary 4.5. If one of the two isomorphic automaton groups
G and H on the same alphabet S and the same state set () acts
transitively spherically on S* then so does the other.

Proof. of theorem 4.1 The following sections are devoted to the
proof of this theorem. O

5. Non-Fractal Automaton Groups

According to the definition of a fractal group each automaton
group is either fractal or non-fractal. In this section we formulate
some statements that characterize some non-fractal three generated
automaton groups on S.

Theorem 5.1. Let G(a,b,1) be the group generated by the three
state automaton A(a,b,1) with a,b € TU A or a,b € I U B, then
G is not fractal, except for the following cases

(1) Trivial case a = (1,1,1) and b= (1,1, 1),

(2) The cyclic groups generated by A(x,1,1) withz = (z,1,1)0,
r = (L,z,)o,x = (1,1,2)0, where 0 € {§,\} and z €
{a. 0},

(3) the group generated by automaton A(x,x? 1) with x as in
item 2.
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Proof. For a,b € I the group G is isomorphic to a subgroup of
S3 and so is finite. For various values of a and b we have brought
these subgroups in table 3.

* ay a9 as Q4 as ag
ar {1}
(05} Z}t Z}t

as ij Sg Z;z

a4 ij Sg Sg ij

as Z“ﬁ Sg Sg 53 Zj,g

ag Ly Sz Sz Sz Ly Ly,

Table 3

where a; - - - ag are elements of I. Obviously none of these is a frac-
tal group.

Let a,b € TUA and a # b and b='. Then the projection of any ele-
ment of Sts in any of it’s coordinates gives either 1 or some power
of a. Therefore Sts is projected on 1, Z. for some integer m or Z,
which are not equal to G' because G is not cyclic.

In case when a = b or a = b!, G is cyclic. Let a = (z,y,2)0
with z,y,z € {1,a} and without loss of generality let 0 = 1, or
d. Therefore for any choice of (z,y, z) there are three cases for a.
For x =y = 2z = 1, (G is trivial, of order 2 or of order 3 according
to the choices 0 = 1, or ¢ respectively. In these cases Sts(1) is
trivial. For x =y = 2z = a, G is trivial or Stg(1) is trivial.

For x = y = a and 2z = 1, G is trivial or of order two when
oc=1orc=a,and when ¢ = § we have Stg =< a® > and so
©i(Stg(1)) =< a? > which is not equal to G.

Forz =aand y = z = 1, G is trivial for 0 = 1, po(Ste(1)) = {1}
for 0 = «, and finally for 0 = ¢ we have Stabg(1) =< (a,a,a) >
and therefore ¢;(Ste(1)) =G,i=0,1,2. O

Corollary 5.2. The groups G generated by A(x,1,1) and A(x, x>,
1) with x as in item 2 of theorem 5.1 act spherically transitively on
Ts.
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Corollary 5.3. The number of three state automata A(a,b,1)
with a,b € TUA ora,b € I UB that generate non-fractal groups is
2333.

Proof. Obviously the trivial group generated by a = (1,1,1) and
b= (1,1,1) is fractal. therefore theorem 5.1 shows that there are
7 fractal groups among the groups under consideration. Now the
assertion follows since we have totally 48 x 48 + 48 + 6 x 6/2 + 3
groups. U

Definition 5.4. We say that the pair (a,b) € B x A is exceptional
of first kind if
(1) a=

Y

Y

)

)
)
)
)
)

’

a,l
1,1
1, a
1,1
1,a
, ,a,1)
,b,b)o,b € A,O’ € S3\ {i}.

= (a,a,a)o,a € B;o € S5\ {i}.

The group G(a, b, 1) generated by the three state automaton A (a, b,

1), with (a,b) an exceptional pair of first kind is called an excep-
tional group of first kind.

(1,1
(2 (1,1
(3 = (1,b
(4) a = (1,0,
(5) a= (b1
(6 (b1
(7) a = (b,b
(8 a,

a,

Proposition 5.5. The first kind exceptional groups are not fractal.

Proof. We prove the theorem in two cases. Other cases treated in
the same way.

case 1. Let G =< a,b >, where a = (1,1,b)a,b = (1,a,1)3. We
have a?> = (1,1,b%) and b* = (1,a? 1), which imply a? = b = 1.
Therefore any other relation in G' will be of the form (ab)" = 1,
for some n a multiple of 3. Let n = 3k be the smallest positive
value of n satisfying this condition. Then we have 1 = (1,1,1) =
(ab)®* = ((ab)*, (ba)*, (ba)¥), which for 0 < k < n imply (ab)* =
Therefore G = Zy * Zy.

Now according to (ab)?(ba)® = 1 we have Stg(1) =< (ab)® >. From
this we conclude that G is not fractal.
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case 2. Assume G =< a,b >, where a = (b,b,b)a,b = (a,a,a)y.
We have a? = (02,02, b%) and b = (a?, a?, a?), which imply a® = b%.
We have

Sta(1) =< a?, (ab)?, (ba)® > .

This implies GG is not fractal. O

Corollary 5.6. There are 416 three state automata A(a,b, 1) that
generate non-fractal groups of first kind.

We now introduce our second set of exceptional pairs.

Definition 5.7. We say that the pair (a,b) € I x DUCUBUAUI
is exceptional of second kind if

(1) a=(1,1,1)a,b= (z,y,2), x,y,2 € {1,a,b}
(2) a=(1,1,1)8,b = (z,y,2)0,z,y,2 € {1,a,b}
(3) a=(1,1,1)y,b = (z,y,2)v, 2,9,z € {1,a,b}.
The group G(a, b, 1) generated by the three state automaton A (a, b,

1), with (a,b) an exceptional pair of second kind is called an ex-
ceptional group of second kind.

Proposition 5.8. The second kind exceptional groups are not frac-
tal.

Proof. We prove the theorem in two cases. Other cases treated in
the same way.

case 1. Let G(a,b,1), where a = (1,1,1)a, b = (b, a,b)a. We have
Sta(1) =< ab, ba,b* >. We observe that the projection of this sta-
bilizer on the third coordinate is the infinite cyclic group, and so G
is not fractal.

case 2. Assume G(a,b,1), where a = (1,1,1)a,b = (1,b,a)ac. We
observe that the projection of this stabilizer on the third coordinate
is the cyclic group of order 2, and so G is not fractal. O

Corollary 5.9. There are 60 three state automata A(a, b, 1) that
generate exceptional groups of second kind.
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Definition 5.10. We say that the pair (a,b) € AxC is exceptional
of third kind if

(1) a=(1,1,a)a,b= (1,a,b)p, or b = (b,a,1)p,
(2) a=(1,1,a)a,b= (a,1,b)y, or b = (a,b, 1)y,
(3) a=(1,a,1)8,b=(1,b,a)a, or b= (b,1,a)a,
(4) a=(1,a,1)8,b = (a,1,b)y, or b = (a,b, 1),
(5) a=(a,1,1)y,b= (1,b,a)a, or b = (b, 1, a)a,
(6) a=(a,1,1)y,b=(1,a,b)B3, or b = (b,a,1)8,
(7) a = (a,a,a)0,0 € S3\ {§,\}, b= (z,y,2)7 € C with 7 # 1.

In the same way the third kind exceptional elements in B x C' are
defined. The group G(a, b, 1) generated by the three state automa-
ton A(a,b,1), with (a,b) an exceptional pair of third kind is called
an exceptional group of third kind.

Proposition 5.11. The exceptional groups of third kind are not
fractal.

Proof. We prove this proposition in cases when a = (1,1,a)a, b =
(1,a,b)8 and a = (a,a,a)a,b = (a,b,1)5 . in the first case we have
a? =1 and

Sta(1) =< b, ab’a, (ab)?, (ba)® > .
From which we observe that ¢;Sts(1) =< aba,b ># G. Hence G
is not fractal.

In the second case we observe that Stg(1) =< b% ab’a >. This
implies that ¢9St;(1) =< a > which is isomorphic to Z.

Corollary 5.12. There are 312 three state automata A(a,b,1)
that generate exceptional groups of third kind.

6. Fractal Automata Groups

In this section we determine fractal groups G(a,b, 1) generated
by a three state automaton A(a,b, 1) , with (a,b) € X XY, where
X,Y € {I, A, B,C,D).
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Proposition 6.1. Let a = (z,y,2)0 € A and b = (u,v,w)T € B
be such that o, 7 € {0, \}; not all of z,y,z are a and 1; and not all
of u,v,w are b and 1. Then G(a,b,1) is fractal.

Proof. We prove the proposition in three cases, the remaining
cases are quite similar.

case 1. a = (1,1,a)d and b = (1,1,b)A. We have Sts; =<
ab, ba, a®,b> > and so G is fractal.

case 2. a = (1,1,a)d and b = (1,b,b)\. In this case St(1) =<
a?, ab, ba, b® >, which implies G is fractal.

case 3. a = (1,a,a)d and b = (1,b,b)\. Here we have

Stg(1) =< a*,b*, ab,ba,[a ', b],[b ', a] > .

From this we observe that G is fractal.O

We observe that there are 8 elements in A and 8 elements in B that
satisfy the conditions of the above proposition. Therefore we have
the following corollary:

Corollary 6.2. There are 64 three state automata A(a,b,1) that
generate the groups in proposition above. These groups all act
spherically transitively on Ts.

Proposition 6.3. If (a,b) € B x A is not exceptional(of first kind)
then G(a,b) is fractal.

Proof. We prove this proposition through the following two lem-
mas

Lemma 6.4. Let a = (1,1,b)a and b = (1,a,1)y. Then G(a,b) is
fractal.

Proof. From the relations
a’® = (1,1,0%),0* = (1,a,a),b=%(ab)® = (ab,b,a™'ba), (ab)®b™2 =
(ab, aba=1,b)
a 'v*a = (a,1,b 'ab),
a”'b™%a(ab)®b™? = (b,aba™",b"'a"'b?) € Stg(1),
we deduce that G is fractal. O
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Lemma 6.5. Let a = (1,b,b)a and b = (a,1,1)y. Then G(a,b,1)
is fractal.

Proof. From the relations
a® = (b, b, b?), ababab = (bab, bab, b*a),a” *babab = (ab, ab, a),
a~'babab = (b, ab, a), a”'bababa™? = (1, a,ab™?),
b 'a®b = (a 'ba,b*,b), bababa * = (a,1,bab *) € Sta(1),
we deduce that G is fractal.

O

The above proposition provides us with a great number of three
state automata that generate fractal groups acting spherically tran-
sitively on T3. In fact by the corollary 5.7 we have 48 x 48 — 416
three state automata A(a, b, 1) generating fractal groups provided
by the above proposition. We have proved:

Corollary 6.6. There are 1788 three state automata A(a,b,1)
that generate fractal groups resulting from the proposition 6.3 all of
which act spherically transitively on Ts.

Proposition 6.7. Let a = (1,1,1)0 and b € C, where o € {0, \}.
Then G(a,b,1) is fractal.

Proof. We prove the proposition in four cases. Other cases are
proved similarly. We use a® = 1 in the proof.

case 1. a = (1,1,1)6 and b = (a,1,b). We observe that b,a 'ba =
(1,b,a),aba™" = (b,1,a) € Stg(1). Therefore G is fractal.

case 2. Fora = (1,1,1)§ and b = (a, 1, b)a we calculate

a 'ba = (1,b,a)B,a'b*a = (a,b2,a), ab’a™" = (b*,a,a),
and
(ab)2 = (b, a?, b), (ba)2 = (aZ, b,b)
and conclude that G is fractal.

case 3. a = (1,1,1)6 and b = (a, 1,b)d is easily handled because of
aba = (b,a,1), a b = (1,b,a) and ba~! = (a,1,b).
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case 4. a = (1,1,1)§ and b = (1,a,b)a. Using the elements b*> =
(a,a,b?),a"'b*a = (a,b? a),ab’a™" = (b% a,a), abab = (ba, 1,ab) ,
baba = (1,ab,ba) and a?baba™"' = (ab,ba,1) we observe that G is
fractal. O

Corollary 6.8. The group G(a,b,1) with a = (1,1,1)0 or a =
(1,1,1)X and b € C acts spherically transitively on Tj.

Proof. Fractal plus spherical action on the first level of T3 imply
spherical transitivity on T3 [5]. O

Corollary 6.9. The group G(a,b,1) with a = (z,y,2) € C and
b= (z,y,2)0 € C witho = § oro = X is fractal and acts spherically
transitively on Tj.

Corollary 6.10. The proposition 6.7 yields 2 x 36 + 12 = 84
three state automata A(a,b,1) generating fractal groups that act
spherically transitively on Ts.

Considering the generators from B x C (A x C') we have the following
two propositions

Proposition 6.11. The group G(a, b, 1) is fractal when a = (t,t,t)o
b= (z,y,2), where t € {a,b}, o € {0, \} and one of z,y,z is a
the other is b the third is 1.

Proof. Without loss of generality assume a = (a,a,a)d and b =
(a,b,1), we then have a®* = 1 and

Sta(1) =< b= (a,b,1),aba™" = (1,a,aba™"),a”"ba = (a'ba,1,a) > .
Which implies G is fractal. O

Corollary 6.12. There are 24 three state automata A(a,b,1) re-
sulting from the proposition 6.11 that generate fractal groups acting
spherically transitively on Tj.

Proposition 6.13. Let G(a,b,1) be a two generated group gener-
ated by a € A and b € C, if the pair (a,b) is not exceptional(of
third kind) then G is fractal.
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Remark. Note that a = (z,y,2) € A with z,y,2z € {1,a} all
represent the identity ¢ = (1,1,1) of group and therefore in this
case GG will not be considered as a two generated group .

Proof. Without loss of generality we will prove the proposition

in 6 cases. In any case we have to show how ¢;Sts(1) = G for
i=0,1,2.

case 1. a = (1,1,a)8,b = (1,a,b). We have b,a®> = (a,a,a),
a’ba? = (1,b,1) and aba™" = (b,1,a) € Ste(1). From which we
conclude that G is fractal.

case 2. a = (1,1,a)a,b = (1,a,b)y. We list some elements of
Stabg(1). a* = 1, b* = (1,ab,ba), (ab™')* = (b~1,b71, 071,

a
ab’a=' = (ab, 1,ab) From these we conclude that G is fractal

case 3. a = (1,q, 1)a b= (1,a,b)3. We observe that a*> = (a,a, 1),
v> = (b,a®,b) , (a 'b)* = (b,b, b) and ba*b~' = (1,a,bab™ ') all be-
long to Ste(1). Therefore G is fractal.

case 4. a = (1,a,a)a,b = (1,a,b)3. Here are some elements of
St(1) from which we conclude that G is fractal. a®> = (a, a,a?),b* =
(b,a®,b), (a='b)® = (a='b,a™'b,a™"D).

case 5. a = (l,a,a)a,b = (a,1,b)3. We have a®> = (a,a,a?),
(a™'0)® = (a'b,ba"t,a'b) and b ta®b = (b1a?b,a,a). These im-
ply that G is fractal.

case 6. a = (1,a,a)a,b = (a,1,b)y. The relations a® = (a, a, a?),
b’ = (a?,0b,b), (a7'0)® = (a"ba,b,a""ba) and b~'ab = (a,b~'ab, a)
show that G is fractal. O

Corollary 6.14. There are 3024 three state automata A(a,b,1)
resulting from proposition 6.13 that generate fractal groups acting
spherically transitively on T3

Now we consider the groups G(a, b, 1) where a € [UAUBUCUD
and b€ D

Proposition 6.15. Let a = (1,1,1)0 ora = (1,1,1)A and b € D,
Then G(a,b,1) is fractal.

Proof. We prove the proposition in four cases. The proof of re-
maining cases are similar.



48 Mamaghani

case 1. b = (a,b,a). We have a~'ba = (b,a,a) and aba™' =

(a,a,b). So that b,aba™", a='ba € Stg(1). Therefore G is fractal.
case 2. b = (a,b,a)a. In this case we have b> = (ab,ba,a?)
and a® = 1.Therefore b2 = (b-'a ',a bt a) € Stg(l). Con-
jugating shows that a '072a = (¢ 'b"',a,b'a" ) and , ab 2a ! =
(a,b~'a"t a"b71) € Stg(1). On the other hand we have

ab’*a™" = (a*, ab,ba), ab’a™'b* = (b, ab’a,b),

b’a 'b*a = (ab’a, b, b) € Stg(1).

Therefore G is fractal.
case 3. b = (a,b,a)d. We have ba! = (a,b,a), a~'b = (b,a,a) and
aba = (a,a,b) and so G is fractal.
casd. b = (b,b,a)a. Using a® = 1,0*> = (b2, V%, a?), a b 2a,
ab 2a" ', b taba and b 'a 'ba !, we observe that G is fractal. O

Corollary 6.16. Proposition 6.15 yields 84 three state automata
A(a, b, 1) that generate fractal groups acting spherically transitively
on 13

Proposition 6.17. Let a = (x,y, z)o € A where not all x,y, z are
1 and not all are a; and let b = (u,v,w)T € D with o € {6, \} and
T € {i,0,\. Then G(a,b,1) is fractal.

Proof. We prove the proposition in for cases.
case 1. a = (1,1,a)d,b = (b,b,a)\. We have

a® = (a,a,a),ab = (a,b,ab),ba = (b, ba, a).

Therefore G is fractal.
case 2. a = (1,1,a)d,b = (a,b,a)\. We have

Stg(1) =< b,a®, a” " ba, aba™" > .

This imply that G is fractal.

case 3. a= (1,1,a)d,b = (b,a,b)\. A little calculation shows that
Sta(1) =< a®,ab, ba, b® > and so G is fractal.

case 4. a = (1,a,a)8,b = (a,b,a). In this case we have a® =
(a?,a% a?),ab = (b,a? ab),ba = (a? ba,a). From these we deduce
that G is fractal. O
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In the same way one can use B instead of A in the above propo-
sition, so that we obtain the following corollary

Corollary 6.18. The proposition 6.17 yields 432 three state au-
tomata A(a,b,1) that generate fractal groups acting spherically
transitively on Ty

Proposition 6.19. For a = (z,y,2)0,b = (x,y,2)7 € D, where
0 €Sy, T=0o0rT=M\and T # o the group G(a,b,1) generated
by the automaton A(a,b,1) is fractal.

Proof. We prove the proposition in three cases. The proof of
remaining cases are similar.

case 1. a = (b,b,a) and b = (b,b,a)d. Let ¢ = a~'b = (1,1,1)d.
We have cac™' = (a,b,b) and ¢~ 'ac = (b,a,b). Since a is also in
St (1), the proof of case 1 is complete.

case 2. a = (b,a,a)a and b = (b,a,a)d. Let ¢ = ab* = (a, a,b)
and u = a2b* = (1,1, 1)\, We have:

ucu ' = (a,b,a),u 'cu = (b,a,a).

Therefore G(a, b, 1) is fractal.

case 3. a = (b,a,a)) and b = (b,a,a)d. Let ¢ = b ta = (1,1,1).
We have ca = (a,b,a) , ¢*b = (a,a,b) and ac = (b, a,a). Therefore
G is fractal. O

Corollary 6.20. There are more than 55 three state automata
A(a,b, 1) with a,b € D that generate fractal groups acting spheri-
cally transitively on T3

Proof. One can see easily that the automaton A(a,b, 1) with
a = (a,a,b) and b = (a,b,b)d also generate a group with above
properties. O

Calculating the number of automata A(a, b, 1) we have obtained
in the course of the proof of propositions above we observe that
there are more than 5000 automata that generate fractal groups
acting spherically transitively on 75. This completes the proof of
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the theorem 3.1.

Remark. According to propositions 5.5 and 6.19 and some calcu-
lations, except the trivial group the groups generated by automata
A(a,b,1) with (a,b) € X x Y, where X,Y € {A", B', D}, are not
fractal if X # D or Y # D. Therefore the only possibility that the
automata A (a, b, 1) may generate fractal groups is (a,b) € D x D.
Using corollary 6.20 and it’s proof one can count at least 100 of
these groups.
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