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A REMARK ON A REMARK BY MACAULAY
OR

ENHANCING LAZARD STRUCTURAL THEOREM

MARIA GRAZIA MARINARI AND TEO MORA

In [10] (also cf.[6]) Macaulay gave a construction which, to each
monomial ideal J ⊂ k[X1, . . . , Xn], associates a set of points X ⊂ kn

whose associated radical ideal I has, using modern lingo, J as the
monomial ideal associated to its Gröbner basis — J = T(I); more-
over Macaulay explicitly stated a direct correspondence between
the points X and the monomials τ /∈ J under the “Gröbner escalier”
N(I).

Partial converse of the Macaulay’s result appeared in the earlier
research on Gröbner Technology:

• In 1981 Möller [1] introduced Duality in Computer Algebra
proposing an algorithm which, for each finite set of points
X ⊂ kn, computes the Gröbner basis and the “Gröbner
escalier” of its associted radical ideal I.

• In 1985 Lazard [9] gave a characterization of the Gröbner
basis of any ideal I ⊂ k[X1, X2] and such characterization is
a refinement of Macaulay’s result.

• In 1990 Cerlienco–Mureddu [2] gave an algorithm which, for
each finite set of points X ⊂ kn , computes the “Gröbner
escalier” N(I) of its associated radical ideal I and a direct
correspondence between X and N(I).
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What started our investigation was the realization that

• in the common setting (simple points in k[X1, X2]) Lazard
and Cerlienco–Mureddu together state exactly the converse
of Macaulay’s result, and

• the most elementary proof of this converse consists of direct
application of Möller’s Algorithm.

This gave us a reasonable strategy in order to investigate how
it could be possible to generalize Lazard’s Structural Theorem to
more than two variables: the application of Cerlienco–Mureddu
Correspondence and Möller’s Algorithm together, on the same line
as in the case of two variables, should automatically produce the
required result.

This paper is a report on our investigation.
In Section 1 we introduce the notation and we recall the

Gröebnerian results we need; Section 2 is devoted to Möller’s
Algorithm, Section 3 to Macaulay’s Trick, Section 4 to Lazard’s
Structural Theorem and Section 5 to Cerlienco–Mureddu
Correspondence. We are then able to state (in Section 6) the
Gröebnerian Structural description of configurations of points in
a plane and prove it in Section 7.

Out next step is to discuss (in Section 8) some illustrating
examples in 3 variables; this is sufficient, after a deeper
analysis of Cerlienco–Mureddu Correspondence (in Section 9) to
state (in Section 10) and prove (in Section 11) our enhanced Lazard
Structural Theorem.

Our investigation is not yet satisfactory as we will explain in
Section 12.

1. Notation and Recalls

Let P := k[X1, . . . , Xn] and T the semigroup generated by
{X1, . . . , Xn},

T := {Xa1
1 · · ·Xan

n : (a1, . . . , an) ∈ Nn};
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if < is a semigroup ordering on T , i.e. an ordering such that

t1 < t2 ⇒ tt1 < tt2 for each t, t1, t2 ∈ T ,

each element f ∈ P can be uniquely expressed either as

f =
deg(f)∑

i=0

giX
i
n ∈ k[X1, . . . , Xn−1][Xn],

gi ∈ k[X1, . . . , Xn−1], gdeg(f) 6= 0,

or as a linear combination

f =
∑
t∈T

c(f, t)t =
s∑

i=1

c(f, ti)ti : c(f, ti) 6= 0, ti ∈ T , t1 > · · · > ts

of terms t ∈ T with coefficients c(f, t) in k; and we will denote

Lp(f) := gdeg(f) the leading polynomial of f ,
T(f) := t1 its maximal term,
lc(f) := c(f, t1) its leading cofficient and
M(f) := c(f, t1)t1 its maximal monomial.

For each set G ⊂ P , T{G} denotes the set {T(g) : g ∈ G},
and T(G) denotes the monomial ideal {τT(g) : τ ∈ T , g ∈ G}
it generates. For each ideal I ⊂ P, we will consider not only the
monomial ideal T(I) = T{I} but also G(I), the minimal basis of
T(I), and the sets

N(I) := T \T(I)

and

B(I) := {Xht : 1 ≤ h ≤ n, t ∈ N(I)} \N(I)

= T(I) ∩ ({1} ∪ {Xht : 1 ≤ h ≤ n, t ∈ N(I)})
and we set k[N(I)] := Spank(N(I)).

All these notations (and the definitions below) depend on the
term-ordering <: all over the paper, we will choose as < the
lexicographical ordering induced by X1 < · · · < Xn defined by

Xa1
1 . . . Xan

n < Xb1
1 . . . Xbn

n ⇐⇒ exists j : aj < bj and

ai = bi for i > j.
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Lemma 1.1 (Buchberger). With this notation, it holds:

(1) P ∼= I⊕ k[N(I)];
(2) P/I ∼= k[N(I)];
(3) for each f ∈ P , there is a unique

g := Can(f, I) =
∑

t∈N(I)

γ(f, t, <)t ∈ k[N(I)]

such that f − g ∈ I.
Moreover:

(a) Can(f1, I) = Can(f2, I) ⇐⇒ f1 − f2 ∈ I;
(b) Can(f, I) = 0 ⇐⇒ f ∈ I.

Definition 1.2. With this notation

• a Gröbner basis of I is any set G ⊂ I such that T(G) = T{I},
i.e. T{G} generates the monomial ideal T(I) = T{I};

• the reduced Gröbner basis of I is the set

G(I) := {τ − Can(τ, I) : τ ∈ G(I)};

• the border basis of I is the set

B(I) := {τ − Can(τ, I) : τ ∈ B(I)}.

Proposition 1.3 (Buchberger). For each f ∈ P , f −Can(f, I) has
a Gröbner representation

f =
m∑

i=1

pigi, pi ∈ P , gi ∈ G,T(pi)T(gi) ≤ T(f) for each i,

in terms of any Gröbner basis G = {g1, . . . , gm}.

Definition 1.4. Let

L := {`1, . . . , `s} ⊂ P∗ := Homk(P , k), q = {q1, . . . , qs} ⊂ P .

L and q are said to be
• triangular if `i(qj) = 0, for each i < j;
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• biorthogonal if `i(qj) = δij =

{
1 if i = j
0 if i 6= j.

Let X := {a1, . . . , as} ⊂ kn be a finite set of points,
ai := (ai1, . . . , ain). We will denote by `i, for each i, the linear
functional `i ∈ P∗ defined by

`i(f) = f(ai1, . . . , ain) for each f(X1, . . . , Xn) ∈ P .

Moreover we will denote

L(X) := Spank({`i, 1 ≤ i ≤ s}) ⊂ P∗,

I(X) := {f ∈ P : f(ai) = 0, for each i},
so that L(X) and I(X) are dual.

In particular

Lemma 1.5 (Lagrange Interpolation Formula). [1]
There exists (and it is possible to compute) a set q = {q1, . . . , qs} ⊂

P such that

(1) qi = Can(qi, I(X)) ∈ Spank(N(I(X)));
(2) L(X) and q(X) are triangular;
(3) P/I(X) ∼= Spank(q(X)).

This allows to compute a set q′(X) = {q′1, . . . , q′s} ⊂ P such that

(1) q′i = Can(q′i, I(X)) ∈ Spank(N(I(X)));
(2) L(X) and q′(X) are biorthogonal;
(3) P/I(X) ∼= Spank(q

′(X)).

Let c1, . . . , cs ∈ k and let q :=
∑

i ciq
′
i ∈ P. Then, if {g1, . . . , gt}

denotes a Gröbner basis of I(X), one has

(1) q is the unique polynomial in Spank(N(I)) such that
q(ai) = ci, for each i;

(2) for each p ∈ P the following are equivalent
(a) p(ai) = ci, for each i,
(b) q = Can(p, I(X)),
(c) exist hj ∈ P such that

p = q +
t∑

j=1

hjgj,T(hj)T(gj) ≤ T(p− q).

ut
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2. Möller Algorithm

Duality for 0-dimension ideals was introduced in Computer
Algebra by Möller in [1] and [11] (cf. also [4]) where he introduced
Lemma 1.5 and solved the related computational problem:

Problem 2.1. Given a finite set of points X := {a1, . . . , as} ⊂ kn

compute q(X) and B(I(X)).

As it is usual with elementary linear algebra algorithms, there are
many ways to perform Möller Algorithm; the version we describe
here is a restatement of Alg. 2 (variant) presented in [11] pp. 127-
128.

Algorithm 2.2 (Möller). After having remarked that, if
s = #(X) = 1, the problem has the obvious solution

q(X) = {1} and B(I(X)) = {Xh − ah1 : 1 ≤ h ≤ n},
the algorithm can be described by induction on #(X) = s.

Let us therefore denote X′ := {a1, . . . , as−1} and let us assume,
by induction, to already know q(X′) = {q1, . . . , qs−1} and B(I(X′));
to simplify the notation, for each τ ∈ B(I(X′)) we will denote
bτ := τ − Can(τ, I(X′)) so that

B(I(X′)) = {bτ : τ ∈ B(I(X′))}.
The algorithm then performs the computations sketched in Figure 1
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Figure 1. Möller Algorithm for point evaluation
r := 1, B := ∅
t1 := 1,N := {t1}, q1 := t1, q := {q1},
For h = 1..n do

t := Xh, bt := Xh − ah1,B := B ∪ {t}
While r ≤ s do

Let t := min<{t ∈ B : bt(ar+1) 6= 0}
B := B \ {t},
r := r + 1
tr := t,N := N ∪ {tr}, qr := bt(ar)

−1bt,q := q ∪ {qr},
%% `i(qj) = δij,∀i ≤ j ≤ r
For each τ ∈ B do

bτ := bτ − bτ (ar)qr,
%% `r(bτ ) = 0, bτ ∈ I(X)

%% B(I(X)) = B(I(X′)) \ {tr} ∪ {Xhtr, 1 ≤ h ≤ n}
For h = 1..n do

If Xhtr 6∈ B then
t := Xhtr,
f := Xhbtr −

∑
τ∈N

Xhτ∈B

c(btr , τ)bXhτ

bt := f − f(ar)qr

%% bt ∈ I(X), bt − t ∈ Spank(N(I(X))), bt =
t− Can(t, I(X))

B := B ∪ {Xhtr, h = 1..n}
%% B = B(I(X)), B(I(X)) = {bτ : τ ∈ B(I(X))}

q, {bτ : τ ∈ B}
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Example 2.3. Let us consider the set Y := {ai, 1 ≤ i ≤ 6} where

a1 = (0, 0) a2 = (0, 1) a3 = (2, 0)
a4 = (0, 2) a5 = (1, 0) a6 = (1, 1)

If we denote, for j ≤ 6,

Yj := {ai, 1 ≤ i ≤ j}, Bj := B(I(Yj), Gj := B(I(Yj).

Möller Algorithm returns in each iteration:

(0,0) t1 := 1, q1 := 1, and
B1 := {X1, X2};

(0,1) t2 = X2, bt2 = X2, q2 := X2,
X1bt2 −X1X2 = 0, X2bt2 −X2

2 = 0,
`2(X1) = 0, `2(X1X2) = 0, `2(X

2
2 ) = 1,

B2 = {X1, X1X2, X
2
2 −X2};

(2,0) t3 := X1, bt3 = X1, q3 := 1
2
X1,

X1bt3 −X2
1 = 0,

`3(X
2
1 ) = 4, `3(bX1X2) = 0, `3(bX2

2
) = 0,

B3 = {X2
1 − 2X1, X1X2, X

2
2 −X2};

(0,2) t4 := X2
2 , bt4 := X2

2 −X2, q4 := 1
2
X2

2 − 1
2
X2,

X1bt4−X1X
2
2 = −X1X2 ≡ 0, X2bt4−X3

2 = −X2
2 ≡ −X2 mod

I(Y3)
`4(bX2

1
) = 0, `4(bX1X2) = 0, `4(X1X

2
2 ) = 0, `4(X

3
2 −X2) = 6,

B4 = {X2
1 − 2X1, X1X2, X1X

2
2, X

3
2 − 3X2

2 + 2X2};
(1,0) t5 = X2

1 , bt5 := X2
1 − 2X1, q5 = −X2

1 + 2X1,
X1bt5 −X3

1 = −2X2
1 ≡ −4X1, X2bt5 −X2

1X2 = −2X1X2 ≡
0 mod I(Y4)
`5(X

3
1 − 4X1) = −3, `5(bX1X2) = 0, `5(X

2
1X2) = 0,

`5(bX1X2
2
) = 0, `5(bX3

2
) = 0,

B5 = {X3
1 − 3X2

1 +2X1, X1X2, X
2
1X2, X1X

2
2, X

3
2 − 3X2

2 +2X2};
(1,1) t6 = X1X2, bt6 := X1X2, q6 := X1X2,

`6(bX3
1
) = 0, `6(bX2

1X2
) = 1, `6(bX1X2

2
) = 1, `6(bX3

2
) = 0,

B6 = {X3
1 − 3X2

1 +2X1, X
2
1X2−X1X2, X1X

2
2 −X1X2, X

3
2 −

3X2
2 + 2X2}

where the typewriter polynomials are members of Bi \ Gi.
ut
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3. Macaulay’s Trick

As it was recalled in [12], Macaulay ([10]) solved the following
problem:

Problem 3.1. Given a finite order ideal1, N ⊂ T of the semigroup
T , to produce an ideal I ⊂ P which has as many separate roots as
there are elements in N and which satisfies N(I) = N.

We can state Macaulay’s Trick, to solve this problem in the
following way.

Let G := {m1, . . . , mr} be the minimal basis of the monomial
ideal T \N, where

ml = Xe1l
1 · · ·Xenl

n , for each l.

Since N is finite,

for each i, exists di : Xdi
i ∈ G and eil ≤ di, for each l.

Let us then take, for each i, j, k, j 6= k, elements

aij ∈ k, 1 ≤ i ≤ n, 0 ≤ j < di : aij 6= aik,

and let us define, for each l, 1 ≤ l ≤ r,

gl :=
n∏

i=1

eil−1∏
j=0

(Xi − aij),

which is such that T(gl) = ml.
Moreover, to each term t = Xe1

1 · · ·Xen
n ∈ N let us associate the

affine point
a(t) := (a1e1 , . . . anen) ∈ kn,

and let X := {a(t) : t ∈ N}. Then:

Theorem 3.2 (Macaulay). [10] Under this notation, for any
degree-compatible term-ordering, it holds

(1) N = N(I(X)),

1A subset N ⊂ T of a semigroup T is called an order ideal if it satisfies

st ∈ N =⇒ t ∈ N, for each s, t ∈ T .
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(2) G(I(X)) = {g1, . . . , gr}.
ut

Since

ei ≤ di, for each t = Xe1
1 · · ·Xen

n ∈ {Xjτ : 1 ≤ j ≤ n, τ ∈ N}
and each i,

it is natural to consider also the polynomials

gt :=
n∏

i=1

ei−1∏
j=0

(Xi−aij), t = Xe1
1 · · ·Xen

n ∈ {Xjτ : 1 ≤ j ≤ n, τ ∈ N}

and investigate their relation with the notions already introduced.
Let us order N := {t1, . . . , ts} in such a way that

t1 < t2 < · · · < ts, where < is the lexicographical ordering
induced by X1 < · · · < Xn, and let us write ai := a(ti) in
order to fix a suitable enumeration of X and L(X). Moreover let
us define qi := gti , for each i, 1 ≤ i ≤ s. Then

Lemma 3.3. It holds

(1) B(I(X)) = {gt : t ∈ B(I(X))},
(2) G(I(X)) = {gt : t ∈ G(I(X))},
(3) q(X) = {qi : 1 ≤ i ≤ s}.

ut

Example 3.4. Let us give an example considering P = k[X1, X2, X3],
T ordered by the lexicographical ordering < induced by X1 < X2 <

X3 and

N = {1, X1, X
2
1 , X2, X1X2, X

2
1X2, X

2
2 , X1X

2
2 , X

3
2 , X1X

3
2 , X3,

X1X3, X
2
1X3, X2X3, X

2
2X3, X

3
2X3, X

2
3}.

Choosing aij = j, for each i, j, here is the ordered list of the
elements

t ∈ ({1} ∪ {Xjτ : 1 ≤ j ≤ n, τ ∈ N}) :

1: t1 = 1 ∈ N, a1 = (0, 0, 0), 1 = g1 = q1;
X1: t2 = X1 ∈ N, a2 = (1, 0, 0), X1 = gX1 = q2;
X2

1 : t3 = X2
1 ∈ N, a3 = (2, 0, 0), X1(X1 − 1) = gX2

1
= q3;
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X3
1 : X3

1 ∈ G, X1(X1 − 1)(X1 − 2) = gX3
1
∈ G(I);

X2: t4 = X2 ∈ N, a4 = (0, 1, 0), X2 = gX2 = q4;
X1X2: t5 = X1X2 ∈ N, a5 = (1, 1, 0), X1X2 = gX1X2 = q5;
X2

1X2: t6 = X2
1X2 ∈ N, a6 = (2, 1, 0), X1(X1 − 1)X2 = gX2

1X2
= q6;

X3
1X2: X3

1X2 ∈ B, X1(X1 − 1)(X1 − 2)X2 = gX3
1X2

∈ B(I);

X2
2 : t7 = X2

2 ∈ N, a7 = (0, 2, 0), X2(X2 − 1) = gX2
2

= q7;

X1X
2
2 : t8 = X1X

2
2 ∈ N, a8 = (1, 2, 0), X1X2(X2 − 1) = gX1X2

2
= q8;

X2
1X

2
2 : X2

1X
2
2 ∈ G, X1(X1 − 1)X2(X2 − 1) = gX2

1X2
2
∈ G(I);

X3
2 : t9 = X3

2 ∈ N, a9 = (0, 3, 0), X2(X2 − 1)(X2 − 2) = gX3
2

= q9;

X1X
3
2 : t10 = X1X

3
2 ∈ N, a10 = (1, 3, 0), X1X2(X2 − 1)(X2 − 2) =

gX1X3
2

= q10;

X2
1X

3
2 : X2

1X
3
2 ∈ B, X1(X1 − 1)X2(X2 − 1)(X2 − 2) = gX2

1X3
2
∈ B(I);

X4
2 : X4

2 ∈ G, X2(X2 − 1)(X2 − 2)(X2 − 3) = gX4
2
∈ G(I);

X1X
4
2 : X1X

4
2 ∈ B, X1X2(X2 − 1)(X2 − 2)(X2 − 3) = gX1X4

2
∈ B(I);

X3: t11 = X3 ∈ N, a11 = (0, 0, 1), X3 = gX3 = q11;
X1X3: t12 = X1X3 ∈ N, a12 = (1, 0, 1), X1X3 = gX1X3 = q12;
X2

1X3: t13 = X2
1X3 ∈ N, a13 = (2, 0, 1), X1(X1 − 1)X3 = gX2

1X3
=

q13;
X3

1X3: X3
1X3 ∈ B, X1(X1 − 1)(X1 − 2)X3 = gX3

1X3
∈ B(I);

X2X3: t14 = X2X3 ∈ N, a14 = (0, 1, 1), X2X3 = gX2X3 = q14;
X1X2X3: X1X2X3 ∈ G, X1X2X3 = gX1X2X3X2 ∈ G(I);
X2

1X2X3: X2
1X2X3 ∈ B, X1(X1 − 1)X2X3 = gX2

1X2X3
∈ B(I);

X2
2X3: t15 = X2

2X3 ∈ N, a15 = (0, 2, 1), X2(X2 − 1)X3 = gX2
2X3

=
q15;

X1X
2
2X3: X1X

2
2X3 ∈ B, X1X2(X2 − 1)X3 = gX1X2

2X3
∈ B(I);

X3
2X3: t16 = X3

2X3 ∈ N, a16 = (0, 3, 1), X2(X2 − 1)(X2 − 2)X3 =
gX3

2X3
= q16;

X1X
3
2X3: X1X

3
2X3 ∈ B, X1X2(X2 − 1)(X2 − 2)X3 = gX1X3

2X3
∈ B(I);

X4
2X3: X4

2X3 ∈ B, X2(X2 − 1)(X2 − 2)(X2 − 3)X3 = gX4
2X3

∈ B(I);

X2
3 : t17 = X2

3 ∈ N, a17 = (0, 0, 2), X3(X3 − 1) = gX2
3

= q17;

X1X
2
3 : X1X

2
3 ∈ G, X1X3(X3 − 1) = gX1X2

3
∈ G(I);

X2
1X

2
3 : X2

1X
2
3 ∈ B, X1(X1 − 1)X3(X3 − 1) = gX2

1X2
3
∈ B(I);

X2X
2
3 : X2X

2
3 ∈ G, X2X3(X3 − 1) = gX2X2

3
∈ G(I);

X2
2X

2
3 : X2

2X
2
3 ∈ B, X2(X2 − 1)X3(X3 − 1) = gX2

2X2
3
∈ B(I);
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X3
2X

2
3 : X3

2X
2
3 ∈ B, X2(X2 − 1)(X2 − 2)X3(X3 − 1) = gX3

2X2
3
∈ B(I);

X3
3 : X3

3 ∈ G, X3(X3 − 1)(X3 − 2) = gX3
3
∈ G(I).

ut

4. Lazard Structural Theorem

In the case n = 2, the structure of the Gröbner basis constructed
by Macaulay for the ideal I(X) gives an easy example of the struc-
tural result proved by Lazard [9]:

Theorem 4.1 (Lazard). Let P := k[X1, X2] and let < be the
lexicographical ordering induced by X1 < X2.

Let I ⊂ P be an ideal and let {f0, f1, . . . , fk} be a Gröbner basis
of I ordered so that

T(f0) < T(f1) < · · · < T(fk).

Then

• f0 = PG1 · · ·Gk+1,
• fj = PHjGj+1 · · ·Gk+1, 1 ≤ j < k,
• fk = PHkGk+1,

where
P is the primitive part of f0 ∈ k[X1][X2];
Gi ∈ k[X1], 1 ≤ i ≤ k + 1;

Hi ∈ k[X1][X2] is a monic polynomial of degree d(i), for each
i;

d(1) < d(2) < · · · < d(k);

Hi+1 ∈ (G1 · · ·Gi, H1G2 · · ·Gi, . . . , HjGj+1 · · ·Gi, . . . , Hi−1Gi

, Hi) for each i.
ut
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Example 4.2. Let us consider in Example 3.4 the ideal I∩k[X1, X2]
whose Gröbner basis is {gX3

1
, gX2

1X2
2
, gX4

2
} and for which we have

f0 = X1(X1 − 1)(X1 − 2) = G1G2,
f1 = X1(X1 − 1)X2(X2 − 1) = H1G2,
f2 = X2(X2 − 1)(X2 − 2)(X2 − 3) = H2,

where

G1 = (X1 − 2), G2 = X1(X1 − 1),
H1 = X2(X2 − 1), H2 = X2(X2 − 1)(X2 − 2)(X2 − 3)

and G3 = P = 1.
ut

5. Cerlienco–Mureddu Correspondence

Cerlienco and Mureddu [2] gave a partial converse of Macaulay’s
result:

Problem 5.1. Given a finite set of points,

X := {a1, . . . , as} ⊂ kn, ai := (ai1, . . . , ain),

compute N(I(X)) w.r.t. the lexicographical ordering < induced by
X1 < · · · < Xn.

More precisely the algorithm proposed by them, to each ordered
finite set of points

X := {a1, . . . , as} ⊂ kn, ai := (ai1, . . . , ain),

associates

• an order ideal N := N(X) and
• a bijection Φ := Φ(X) : X 7→ N;

which, as we will prove later, satisfies

Fact 5.2. N(I(X)) = N(X) holds for each finite set of points
X ⊂ kn.

ut
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Since they do so by induction on s = #(X) let us consider
the subset X′ := {a1, . . . , as−1}, and the corresponding order ideal
N′ := N(X′) and bijection Φ′ := Φ(X′)2.

We need also to consider, for each m < n, the set

T [1, m] := T ∩k[X1, . . . , Xm] = {Xa1
1 · · ·Xam

m : (a1, . . . , am) ∈ Nm},
and the projection

πm : kn 7→ km, πm(x1, . . . , xn) = (x1, . . . , xm),

which we freely use to denote also the projection

πm : T ∼= Nn 7→ Nm ∼= T [1, m], πm(Xa1
1 · · ·Xan

n ) = Xa1
1 · · ·Xam

m .

With this notation, let us set

m := max (j : exists i < s : πj(ai) = πj(as));
d := #{ai, i < s : πm(ai) = πm(as), Φ

′(ai) ∈ T [1, m + 1]};
W := {ai : Φ′(ai) = τiX

d
m+1, τi ∈ T [1, m]} ∪ {as};

Z := πm(W);
τ := Φ(Z)(πm(as));
ts := τXd

m+1;
where N(Z) and Φ(Z) are the result of the application of the present
algorithm to Z, which can be inductively applied since #(Z) ≤ s−1.

We then define

• N := N′ ∪ {ts},

• Φ(ai) :=

{
Φ′(ai) i < s
ts i = s

Example 5.3. Let us consider the same set X := {ai, 1 ≤ i ≤ 6}
as in Example 2.3; Cerlienco–Mureddu Algorithms returns:

(0,0) a1 := (0, 0), Φ(a1) := t1 := 1;
(0,1) a2 := (0, 1), m = 1, d = #{(0, 0)} = 1, W = {(0, 1)},

τ = 1, Φ(a2) := t2 := X2,
(2,0) a3 := (2, 0), m = 0, d = #{(0, 0)} = 1, W = {(2, 0)},

τ = 1, Φ(a3) := t3 := X1,
(0,2) a4 := (0, 2), m = 1, d = #{(0, 0), (0, 1)} = 2, W = {(0, 2)},
2If s = 1 the only possible solution is N = {1},Φ(a1) = 1.
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τ = 1, Φ(a4) := t4 := X2
2 ,

(1,0) a5 := (1, 0), m = 0, d = #{(0, 0), (2, 0)} = 2, W = {(1, 0)},
τ = 1, Φ(a5) := t5 := X2

1 ,
(1,1) a6 := (1, 1), m = 1, d = #{(1, 0)} = 1, W = {(0, 1), (1, 1)},

τ = X1, Φ(a6) := t6 := X1X2.

The fact, that Möller and Cerlienco–Mureddu algorithms give the
same solution is not an accident and it suggests a proof strategy.

ut

Remark 5.4. In the case n = 2, Cerlienco–Mureddu result can be
simplified and described as follows. Let

{a0, . . . , ar−1} := π1(X);
d(i) := #{(x1, x2) ∈ X : x1 = ai};

after renumbering the ais, we can assume d(0) ≥ d(1) ≥ · · · ≥
d(r − 1). Then there are values bil, 0 ≤ i < r, 0 ≤ l < d(i), such
that

X = {(ai, bil) : 0 ≤ i < r, 0 ≤ l < d(i)}.
Then:

(1) N(I(X)) = {X i
1X

l
2 : 0 ≤ i < r, 0 ≤ l < d(i)},

(2) Φ(ai, bil) = X i
1X

l
2.

6. Configuration of points in a plane

If we restrict ourselves to a radical 0-dimensional ideal in
2 variables, one can merge the corresponding restrictions of Lazard
Theorem (which considers only ideals in 2 variables) and
Cerlienco–Mureddu Correspondence (which is available for a radical
0-dimensional ideal), obtaining in this way a complete description
of the structure of the ideal I(X) of any finite set of points X ⊂ k2.

Let, therefore, X ⊂ k2 be a finite set of points. Following Re-
mark 5.4, we can assume3 that there are

3This assumption, which simplifies both the description and the proof of the
structural results, cannot be performed in the general case n > 2 requiring a
more involved argument.
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r different values a0, . . . , ar−1 ∈ k,

r ordered integer values d(0) ≥ d(1) ≥ · · · ≥ d(r − 1) > 0 =: d(r),

for each i < r, d(i) different values bil, 0 ≤ l < d(i),

so that X = {(ai, bil) : 0 ≤ i < r, 0 ≤ l < d(i)}.

Then we define

N := {X i
1X

l
2 : 0 ≤ i < r, 0 ≤ l < d(i)} ⊂ k[X1, X2];

Φ : X1 7→ N the bijection such that Φ(ai, bil) = X i
1X

l
2;

i0 := r > i1 > . . . > ij > ij+1 > . . . > ih−1 > 0 =: ih all the
indices in which there is a jump d(ij − 1) > d(ij);

t0 := Xr
1 , tj := X

ij
1 X

d(ij)
2 , for each j, 0 < j ≤ h;

G := {tj, 0 ≤ j ≤ h};

Gj(X1) :=
∏

ij≤α<ij−1

(X1 − aα);

B := ({1} ∪ {X1τ,X2τ : τ ∈ N}) \N;

≺ any ordering on T such that, for each τ ∈ T , {ω ∈ T : ω � τ}
is an order ideal;

we enumerate N = {τ1, . . . , τs} and X1 = {a1, . . . , as} so that
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for each α, β, τα ≺ τβ ⇐⇒ α < β;
for each σ, τσ = Φ(aσ),

and we define
B(τ) := {Xa

1 Xb
2 ∈ N : a ≥ i, b < l}, for each τ := X i

1X
l
2 ∈ B∪N

N(τ) := {ω ∈ B(τ) : ω ≺ τ}, for each τ := X i
1X

l
2 ∈ N.

Theorem 6.1. With these notations, it holds:

1: N(I(X)) = N;
2: B(I(X)) = B;
3: G(I(X)) = G;
4: for each τ := X i

1X
l
2 ∈ N, there is

gτ := X l
2 +

∑
ω∈B(τ)

c(gτ ,
ω

X i
1

)
ω

X i
1

such that

gτ (a) = 0, for each a ∈ X : Φ(a) ∈ N(τ);

5: for each τ := X i
1X

l
2 ∈ B, there is

gτ := X l
2 +

∑
ω∈B(τ)

c(gτ ,
ω

X i
1

)
ω

X i
1

such that

gτ (a) = 0, for each a ∈ X : Φ(a) ∈ B(τ).

Denoting

fτ := gτ

∏
α<i

(X1 − aα), for each τ := X i
1X

l
2 ∈ B ∪N,

it moreover holds

6: G(I(X)) = {ftj : 0 ≤ j ≤ h};
7: for each j, ftj = gtjGj+1 · · ·Gk;
8: Hj := gtj ∈ k[X1][X2] is a monic polynomial of degree d(ij),

for each j;
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9: Hj+1 ∈ (G1 · · ·Gj, H1G2 · · ·Gj, . . . , Hj−1Gj, Hj), for each
j;

10: B = {X i
1X

d(i)
2 , 0 ≤ i ≤ r} ∪ {X ij

1 X l
2, 0 ≤ j < h, d(ij) <

l < d(ij+1)};
11: B(I(X)) = {fτ : τ ∈ B};
12: for each τα ∈ N, aβ ∈ X, α > β =⇒ fτα(aβ) = 0;
13: for each α, fτα(aα) 6= 0.

ut

7. An algorithmic proof

What is fascinating us is that all one needs in order to prove these
structural results4 is just a direct application of Möller
Algorithm.

Let us begin the proof with few remarks.

Lemma 7.1. The theorem holds if conditions 1-5, 9, 13 hold.

Proof.

6: For each τ = X i
1X

l
2 ∈ G and for each a := (aα, b) ∈ X we

have that either Φ(a) ∈ B(τ) and so gτ (a) = 0, or α < i.
Also, for each υ ∈ T such that c(fτ , υ) 6= 0 there is ω ∈ B(τ)
and j ≤ i such that c(fτ , υ) = c(gτ ,

ω
Xi

1
) and

υ = Xj
1

ω

X i
1

=
ω

X i−j
1

| ω ∈ N = N(I(X)),

implying fτ − τ ∈ Spank(N(I(X)) and fτ is reduced.
7: Follows immediately by the definition of fτ .
8: Follows immediately by the definition of gτ .
10: Obvious.
11: Follows by the same considerations of the proof of 6.

12: Setting τα := Xaα
1 Xbα

2 , τβ := X
aβ

1 X
bβ

2 , it holds α > β =⇒
τα � τβ; this either implies τβ ∈ N(τα) or,

4Which include (the restrictions of) Lazard Structural Theorem and
Cerlienco–Mureddu Correspondence.
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τβ /∈ B(τα) since aβ < aα;

in both cases fτα(aβ) = 0. ut

Lemma 7.2. If X satisfies the conditions of Theorem 6.1, let

τ := XI
1X

d(I)
2 ∈ B = B(I(X)), and

Z := {ai : Φ(ai) ∈ B(τ)} = {Φ−1(Xa
1 Xb

2) : a ≥ I, b < d(I)}.
Then Z satisfies the conditions of Theorem 6.1.

Proof. Denoting

N′ := {X i
1X

l
2 : 0 ≤ i < r − I, 0 ≤ l < d(i + I)},

Φ′ : Z 7→ N′ the bijection defined by Φ′(ai, bil) = X i−I
1 X l

2,

J the value such that d(iJ) = d(I),

G′ := { tj
XI

1
, 0 ≤ j < J} ∪ {Xd(I)

2 },

B′ := ({1} ∪ {X1τ,X2τ : τ ∈ N′}) \N′,

for each σ := X i
1X

l
2 ∈ B′ ∪N′, B′(σ) := {Xa

1 Xb
2 ∈ N′ : a ≥ i, b <

l},

for each σ := X i
1X

l
2 ∈ N′, N′(σ) := {ω ∈ B′(σ) : XI

1ω ≺ XI
1σ},

for each σ := X i
1X

l
2 ∈ B′ ∪N′, φσ := gσXI

1

∏
I≤α<i+I

(X1 − aα),

J := (φσ : σ ∈ B′) ,

we have obviously:

J is an ideal,

B(J) = {φσ : σ ∈ B′},
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N′ = N(J),

B′ = B(J),

G′ = G(J),

for each a ∈ Z, and each σ ∈ B′, φσ(a) = 0,

J ⊂ I(Z),

mult(J) = #N′ = #Z = mult(I(Z)), so that

J = I(Z),

for each σ ∈ N′, τ := XI
1σ ∈ N, and

B(τ) = {XI
1ω : ω ∈ B′(σ)},

N(τ) = {XI
1ω : ω ∈ N′(σ)},

from which we can deduce that

1: N(I(Z)) = N(J) = N′;

2: B(I(Z)) = B(J) = B′;

3: G(I(Z)) = G(J) = G′;

4: for each σ := X i
1X

l
2 ∈ N′, setting τ := XI

1σ, it holds

g′σ := gτ = X l
2+

∑
ω∈B(τ)

c(gτ ,
ω

X i+I
1

)
ω

X i+I
1

= X l
2+

∑
ω∈B′(σ)

c(gτ ,
ω

X i
1

)
ω

X i
1

,

and g′σ(a) = gτ (a) = 0, for each a ∈ X such that Φ(a) ∈ N(τ),
i.e. for each a ∈ Z such that Φ′(a) ∈ N′(σ);
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5: as in the proof of 4, for each σ ∈ B′ it is sufficient to take
g′σ := gτ where τ := XI

1σ;

9: follows directly from the same result for X;

13: for each a ∈ Z and each σ ∈ N′ such that Φ′(a) = σ, i.e.
Φ(a) = τ := XI

1σ, we have

fτ = φσ

∏
α<I

(X1 − aα)

so that fτ (a) 6= 0 =⇒ φσ(a) 6= 0.

ut
The proof being by induction, we begin with

Lemma 7.3. If #X = 1 conditions 1-5, 9, 13 hold.

Proof. When we have a single point (a, b) ∈ k2, we have

N = {1},B = G = {X1, X2}, g1 = 1,

G(I(X)) = B(I(X)) = {X1 − a, X2 − b},
and the properties are obviously satisfied. ut

This giving a starting point for induction, let us assume we have
a set

X := {a1, . . . , as} ⊂ k2, s > 0,

and let us denote X′ := {a1, . . . , as−1} for which we use the notation
of Section 6 and for which Theorem 6.1 holds. With a slight abuse of
notation, the notions of Section 6 for X′ and X will be distinguished
by accenting the former with ′.

Since X is ordered so that Φ(X) is an order ideal, necessarily
Φ(as) ∈ G′ and

exists J, 0 ≤ J ≤ h, b ∈ k, b 6= biJ l for each l : as = (aiJ , b),

Φ(as) = tJ .

Lemma 7.4. f ′tj(as) = 0, for each j < J, and f ′tJ (as) 6= 0.
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Proof. Let Z := {ai : Φ′(ai) ∈ B(tJ)}; by Lemma 7.2 we know
that I(Z) is generated by

g′tj
∏

iJ≤α<ij

(X − aα) for j ≤ J

thus implying that f ′tj(as) = 0, for each j < J.

Therefore either g′tJ (as) 6= 0 (and f ′tJ (as) 6= 0 too) or

I(Z) = I(Z ∪ {as}),

which is impossible by a multiplicity argument. ut
As a consequence, to apply Möller Algorithm to X = X′ ∪ {as}

produces

qs := c−1f ′tJ , with c = f ′tJ (as);

N := N′ ∪ {X iJ
1 X

d(iJ )
2 };

B := (B′ \ {X iJ
1 X

d(iJ )
2 }) ∪ {X iJ

1 X
d(iJ )+1
2 , X iJ+1

1 X
d(iJ )
2 };

fτ := f ′τ − f ′τ (as)qs for each τ := X i
1X

l
2 ∈ B′ such that i < iJ and

fτ := f ′τ , for each τ := X i
1X

l
2 ∈ B′ such that i > iJ , since

f ′τ (as) = 0;

fτ := X2qs − bqs −
∑

X2ω∈B
c−1c(g′tJ , ω

XiJ
)f ′X2ω for τ := X iJ

1 X
d(iJ )+1
2

where

g′tJ := X
d(iJ )
2 +

∑
ω∈B(tJ )

c(g′tJ ,
ω

X iJ
)

ω

X iJ
;

fτ := X2f
′
σ −

∑
ω∈B(σ)
X2ω∈B

c(g′σ,
ω

XiJ+1 )f ′X2ω for τ := X iJ+1
1 X

d(iJ )
2 , if τ 6∈

B, where σ := X iJ+1
1 X

d(iJ )−1
2 ∈ B and

g′σ := X
d(iJ )−1
2 +

∑
ω∈B(σ)

c(g′σ,
ω

X iJ+1
)

ω

X iJ+1
.
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Proposition 7.5. If X′ satisfies the conditions of Theorem 6.1,
then X satisfies them too.

Proof.

1: Trivial.

2: Trivial.

3: Trivial.

4: The thesis follows defining gtJ := g′tJ and, for each τ ∈ N′,
gτ := g′τ , since Φ(as) 6∈ B(τ).

5: Defining gτ := fτ∏
α<i

(X−aα)
the property holds.

9: The only g′τ s modified are those such that τ = X i
1X

l
2 with

i ≤ iJ and they are modified by elements which are in

(G1 · · ·Gi, H1G2 · · ·Gi−1, . . . , HlGl+1 · · ·Gi−1, . . . , Hi−2Gi−1, Hi−1).

13: Since f ′tJ (as) 6= 0.

ut

8. What happens in dimension 3?

Example 8.1. Let us consider the set X := {bi, 1 ≤ i ≤ 6} where

b1 = (0, 0, 1) b2 = (0, 1,−2) b3 = (2, 0, 2)
b4 = (0, 2,−2) b5 = (1, 0, 3) b6 = (1, 1, 3)

and let us set ai := π2(bi), for each i, so that π2(X) = Y, where Y
is the set of points discussed in Example 2.3.

Clearly Cerlienco-Mureddu Correspondence returns Φ(bi) = Φ(ai)
for each i and the Gröbner basis G(I(X)) of I(X) is

G(I(X)) = G6 ∪ {X3 −
3

2
X2

2 − 3X1X2 +
9

2
X2 +

3

2
X2

1 −
7

2
X1 − 1}
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where
G6 = {X3

1 − 3X2
1 + 2X1, X

2
1X2−X1X2, X1X

2
2 −X1X2, X

3
2 − 3X2

2 +
2X2} is the result returned by Möller Algorithm in our computation
performed in Example 2.3. ut

Example 8.2. If we now add a new point b7 := (1, 1, 1) both Cer-
lienco–Mureddu and Möller return t7 := X3. The Gröbner basis
is

G6 ∪ {f1, f2, f3}
where

f1 = X3X1 −X3 +
3

2
X2

2 + 3X1X2 −
9

2
X2 −

1

2
X2

1 −
1

2
X1 + 1,

f2 = X3X2 −X3 +
3

2
X2

2 − 2X2X1 −
5

2
X2 −

3

2
X2

1 +
7

2
X1 + 1,

f3 = X2
3 − 4X3 +

15

2
X2

2 + 15X2X1 −
45

2
X2 +

1

2
X2

1 −
1

2
X1 + 3

and (modulo I(Y))

f1 = (X1 − 1)(X3 −
3

2
X2

2 +
9

2
X2 −

1

2
X1 − 1),

f2 = (X2 − 1)(X3 +
3

2
X2 +

3

2
X2

1 −
7

2
X1 − 1).

The interesting aspect is that

• {b ∈ X : (X1 − 1)(b) 6= 0} = {b1, b2, b3, b4} to
which Cerlienco–Mureddu Correspondence associates
{1, X1, X2, X

2
2}

• {b ∈ X : (X2 − 1)(b) 6= 0} = {b1, b3, b4, b5} to
which Cerlienco–Mureddu Correspondence associates
{1, X1, X

2
1 , X2}.

ut

Example 8.3. The same pattern appears if we add a new point
b8 := (2, 0, 1) to which both Cerlienco–Mureddu and Möller return
t8 := X1X3. The corresponding Gröbner basis is

G6 ∪ {f1, f2, f3}
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where

f1 = X3X
2
1 − 3X3X1 + 2X3 − 3X2

2 − 6X2X1 + 9X2 −X2
1

+3X1 − 2,

f2 = X3X2 + X3X1 − 2X3 + 3X2
2 + X2X1 − 7X2 − 2X2

1

+3X1 + 2,

f3 = X2
3 + X3X1 − 5X3 + 9X2

2 + 18X2X1 − 27X2 −X1 + 4,

and (modulo I(Y))

f1 = (X2
1 − 3X1 + 2)(X3 −

3

2
X2

2 +
9

2
X2 − 1)

f2 = (X2 + X1 − 2)(X3 + 3X2 − 2X1 − 1)

where (X2
1 −3X1 +2, X2 +X1−2) is the Gröbner basis of the ideal

whose roots are {π2(b7), π2(b8)} and

• {b ∈ X : (X2
1 − 3X1 + 2)(b) 6= 0} = {b1, b2, b4} to which

Cerlienco–Mureddu Correspondence associates {1, X2, X
2
2}

• {b ∈ X : (X2 + X1 − 2)(b) 6= 0} = {b1, b2, b5} to which
Cerlienco–Mureddu Correspondence associates {1, X1, X2}

i.e. exactly the terms which appear in the corresponding cofactor
of fi.

ut

Example 8.4. If we add the further point b9 := (2, 0, 0) to which
both Cerlienco–Mureddu and Möller associate t9 := X2

3 , the corre-
sponding Gröbner basis is

G(I(X)) ∪ {f1, f2, f3, f4}
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where

f1 = X3X
2
1 − 3X3X1 + 2X3 − 3X2

2 − 6X2X1 + 9X2 −X2
1

+3X1 − 2,

f2 = X3X2 + X3X1 − 2X3 + 3X2
2 + X2X1 − 7X2 − 2X2

1

+3X1 + 2,

f3 = X2
3X1 − 2X2

3 − 4X3X1 + 8X3 − 15X2
2 − 30X2X1 + 45X2

+3X1 − 6,

f4 = X3
3 − 3X2

3 + 3X3X1 − 4X3 − 3X2
2 − 6X2X1 + 9X2

−3X1 + 6,

and (modulo I(Y))

f1 = (X2
1 − 3X1 + 2)(X3 −

3

2
X2

2 +
9

2
X2 − 1)

f2 = (X2 + X1 − 2)(X3 + 3X2 − 2X1 − 1)

f3 = (X1 − 2)(X2
3 − 4X3 + 15/2X2

2 + 15X2X1 − 45/2X2 + 3)

where

• {b ∈ X : (X1 − 2)(b) 6= 0} = {b1, b2, b4, b5, b6, b7} to which
Cerlienco–Mureddu Correspondence associates
{1, X1, X2, X1X2, X

2
2 , X3} .

ut

9. Cerlienco–Mureddu Correspondence (2)

The aim of this section is to remark some easy-to-prove properties
satisfied by Cerlienco–Mureddu Correspondence (for which see [2]):

Let therefore

X := {a1, . . . , as} ⊂ kn, ai := (ai1, . . . , ain),

be an ordered set of points and let us denote N := N(X) and
Φ := Φ(X) the result of Cerlienco–Mureddu Correspondence.
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Lemma 9.1. If Y = {a1, . . . , ar} ⊂ X is an initial segment of X
then

• N(Y) ⊂ N(X),
• for each j ≤ r < s, Φ(Y)(aj) = Φ(X)(aj).

ut

Let τ := Xd1
1 · · ·Xdn

n ∈ T \N(X) be any term such that N∪ {τ}
is an order ideal and, let us define, for each m, 1 ≤ m ≤ n:

Nm(τ) := Nm(X, τ) := {ω ∈ T [1, m] : τ ≥ ωX
dm+1

m+1 · · ·Xdn
n ∈ N},

Am(τ) := Am(X, τ) := {Φ−1(ωX
dm+1

m+1 · · ·Xdn
n ) : ω ∈ Nm(τ)} ⊂ X ⊂

kn,

Bm(τ) := Bm(X, τ) := πm(Am(τ)) ⊂ km,

Cm(τ) := Cm(X, τ) := {πm(a) ∈ Bm(τ) : πm−1(a) 6∈ Bm−1(τ)}
⊂ km,

Dm(τ) := Dm(X, τ) := {a ∈ X : πm(a) ∈ Cm(τ)} ⊂ X;

Mm(τ) := Mm(X, τ) := {ω ∈ T [1, m] : ω < Xdm
m , ωX

dm+1

m+1 · · ·Xdn
n

∈ N},
where, with slight abuse of notation, we have

Nn(τ) := {ω ∈ T : ω < τ}, An(τ) := Bn(τ) := {a : Φ(a) < τ},

C1(τ) := B1(τ).

Example 9.2. With respect to the previous examples, if we choose
τ := X2X3 we have

N1 = A1 = B1 = C1 = D1 = M1 = ∅,
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and

N2 = {1, X1}, N3 = N \ {X2
3},

A2 = {b7, b8}, A3 = {bi, 1 ≤ i ≤ 8},
B2 = {(1, 1), (2, 0)}, B3 = {bi, 1 ≤ i ≤ 8},
C2 = {(1, 1), (2, 0)}, C3 = {b1, b2, b4, b5},
D2 = {b3, b6, b7, b8, b9}, D3 = {b1, b2, b4, b5},
M2 = {1, X1}, M3 = {1, X1, X

2
1 , X2, X1X2, X

2
2}.

Example 9.3. If we instead choose τ := X1X
2
3 we have

N1 = {1}, N2 = {1}, N3 = N,
A1 = {b9}, A2 = {b9}, A3 = {bi, 1 ≤ i ≤ 9},
B1 = {2}, B2 = {(2, 0)}, B3 = {bi, 1 ≤ i ≤ 9},
C1 = {2}, C2 = ∅, C3 = {b1, b2, b4, b5},
D1 = {b3, b8, b9}, D2 = ∅, D3 = {b1, b2, b4, b5, b6, b7},
M1 = {1}, M2 = ∅, M3 = N \ {X2

3}.

Lemma 9.4. With the notation above it holds

(1) #(Bm(τ)) = #(Am(τ)) = #(Nm(τ));
(2) Cerlienco–Mureddu Correspondence associates to Bm(τ) the

order ideal
N(Bm(τ)) = Nm(τ)

and the bijection Φ(Bm(τ)) defined by

Φ(Bm(τ))(πm(a))X
dm+1

m+1 · · ·Xdn
n = Φ(a), for each a ∈ Am;

(3) #(Cm(τ)) ≤ #(Mm(τ));
(4) Under Cerlienco–Mureddu Correspondence one has

N(Cm(τ)) ⊂ {ω ∈ T [1, m] : ω < Xdm
m }.

(5) X = ∪mDm(τ).

Proof.

(1) is trivial;
(2) Cerlienco–Mureddu Algorithm when applied to the ordered

set X associates each element a ∈ Am(τ) to the term

Φ(a) = Φ(πm(Am(τ)))(πm(a))X
dm+1

m+1 · · ·Xdn
n ;
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(3) in order to obtain Mm(τ) one has to remove from Nm(τ) the
subset

{ωXdm
m ∈ Nm(τ) : ω ∈ T [1, m− 1]} = {ωXdm

m : ω ∈ Nm−1(τ)}

while for each ω ∈ Nm−1(τ) there are dm + 1 points a ∈
Bm(τ) such that

Φ(Bm−1(τ))(πm−1(a)) = ω.

(4) In order that there is ω ∈ N(Cm(τ)) such that ω ≥ Xdm
m ,

Cerlienco–Mureddu Algorithm requires the existence of at
least dm + 1 points b0, . . . , bdm such that

πm(b0) = · · · = πm(bi) = · · · = πm(bdm),

so that πm−1(b0) ∈ Bm−1(τ).
(5) If a ∈ X is such that Φ(a) ≤ τ , then there is a minimal value

m ≤ n for which a ∈ Am(τ), πm(a) ∈ Bm(τ), πm(a) ∈ Cm(τ),
a ∈ Dm(τ).
If a ∈ X is such that Φ(a) = Xe1

1 · · ·Xen
n > τ , there is m ≤ n

such that em > dm, while ei = di, for each i > m; this
implies that there is b ∈ Am(τ) such that πm(b) = πm(a) so
that a ∈ Dm(τ).

ut

Remark 9.5. Let us denote, for each ν, 1 ≤ ν < n, and each
b ∈ πν(X),

µ(b) := # (a ∈ X : b = πν(a))},
and for each ν, 1 ≤ ν < n, and each δ ∈ N,

Yνδ := {πν(a) : exists ω ∈ T [1, ν] : Φ(a) = ωXδ
ν+1}.

Then

• Yνδ = {b ∈ πν(X) : δ < µ(b)},
• πν(X) = Yν0 ⊃ Yν1 ⊃ · · · ⊃ Yνδ ⊃ Yνδ+1 ⊃ · · · ,
• I(πν(X)) = I(Yν0) ⊂ I(Yν1) ⊂ · · · ⊂ I(Yνδ) ⊂ I(Yνδ+1) ⊂ · · · .

The result is, essentially a specialization of Kalkbrener’s Theorem
[8] ut
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10. Enhancing Lazard Structural Theorem

Let us now consider an ordered set of points

X := {a1, . . . , as} ⊂ kn, ai := (ai1, . . . , ain),

and let us denote N := N(X) and Φ := Φ(X) the result of
Cerlienco–Mureddu Correspondence which satisfies

Fact 10.1. It holds

(A): N := N(I(X)).
ut

Since N(X) is an order ideal,

T(X) := T \N(X)

is a monomial ideal whose minimal basis

G := {t1, . . . , tr}

will be ordered so that t1 < t2 < . . . < tr.
Denoting further

B := ({1} ∪ {Xiτ : τ ∈ N}) \N

we obviously obtain

Corollary 10.2. It holds

(B) G(I(X)) = G = {t1, . . . , tr}, t1 < t2 < . . . < tr;

(C) B(I(X)) = B.
ut

Let us extend the ordering of X to N = {τ1, . . . , τs} enumerating
it so that

for each σ, τσ = Φ(aσ),

and let us denote the ordering of X and N by ≺ so that

for each α, β, τα ≺ τβ, aα ≺ aβ ⇐⇒ α < β.
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Denote for each τ ∈ N

X(τ) := {a ∈ X : a ≺ Φ−1(τ)} = {a ∈ X : Φ(a) ≺ τ},
and, for each τ ∈ N ∪B:

• N(τ) := {ω ∈ N : ω ≺ τ},
• Mm(τ) := {ω ∈ Mm : ω ≺ τ},

so that

Corollary 10.3. It holds

(D): For each τ ∈ N there is a unique polynomial

fτ := τ −
∑

ω∈N(τ)

c(fτ , ω)ω

such that fτ (a) = 0, for each a ∈ X(τ).
(E): For each τ ∈ G there is a unique polynomial

fτ := τ −
∑
ω∈N

c(fτ , ω)ω

such that fτ (a) = 0, for each a ∈ X.

Proof. Since #X(τ) = #N(τ) and #X = #N, fτ can be com-
puted by interpolation. ut

In the same mood, but interpolation is not sufficient to prove it,
we can state

Fact 10.4. It holds

(F): For each τ ∈ B there is a polynomial

fτ := τ −
∑

ω∈N(τ)

c(fτ , ω)ω

such that fτ (a) = 0, for each a ∈ X.
ut

Corollary 10.5. It holds:

(G): The reduced Gröbner basis of I(X) is

G(I(X)) := {fτ : τ ∈ G};
moreover, for each τ ∈ N, T(fτ ) = τ.
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(H): The border basis of I(X) is

B(I(X)) := {fτ : τ ∈ B}.

Proof. For each τ ∈ G ∪ B, τ is the only term in fτ which is
not a member of N so that T(fτ ) = τ.

For any τ ∈ N, T(fτ ) = τ because Cerlienco–Mureddu Corre-
spondence grants τ ∈ G(I(X(τ))) and N(I(X(τ))) = N(τ). ut

Linear interpolation, again, is all one needs to prove

Proposition 10.6. With the same notation as in Lemma 9.4 it
holds

(L): for each τ := Xd1
1 · · ·Xdn

n ∈ G, and each m, 1 ≤ m ≤ n,
there are polynomials

gmτ := Xdm
m +

∑
ω∈Mm(τ)

c(gmτ , ω)ω

such that gmτ (a) = 0, for each a ∈ Dm(τ);
(I): for each τ := Xd1

1 · · ·Xdn
n ∈ N and each m, 1 ≤ m ≤ n,

there are polynomials

gmτ := Xdm
m +

∑
ω∈Mm(τ)

c(gmτ , ω)ω

such that gmτ (a) = 0, for each a ∈ Dm(τ), a ≺ Φ−1(τ);

Proof.

(L): Since #(Cm(τ)) ≤ Mm(τ) interpolation allows to eval-
uate each c(gmτ , ω) so that gmτ (b) = 0,∀b ∈ Cm(τ) and
gmτ (a) = gmτ (πm(a)),∀a ∈ Dm(τ).

(I): One has just to apply (L) to the set X(τ).
ut

For each τ := Xd1
1 · · ·Xdn

n ∈ N, let us denote ν := ν(τ) ≤ n
the value such that dν 6= 0 while dµ = 0 for each µ > ν so that
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τ ∈ T [1, ν], gmτ = 1 for m > ν, and, denoting

hτ :=
n∏

m=1

gmτ ∈ k[X1, . . . , Xν−1][Xν ],

lτ :=
ν(τ)−1∏
m=1

gmτ ∈ k[X1, . . . , Xν−1],

pτ := gντ ∈ k[X1, . . . , Xν−1][Xν ],

it holds
hτ = lτpτ = lτX

dν
ν + · · ·

so that lτ ∈ k[X1, . . . , Xν−1] is the leading polynomial and the con-
tent of hτ while the monic polynomial pτ is the primitive component
of hτ .

Therefore we have

Corollary 10.7. With the notation above, it holds

(M): for each τ = Xd1
1 · · ·Xdν

ν ∈ N, there are

lτ ∈ k[X1, . . . , Xν−1]

and a monic polynomial

pτ = Xdν
ν +

∑
ω∈Mν(τ)

c(pτ , ω)ω ∈ k[X1, . . . , Xν−1][Xν ]

so that hτ := lτpτ are such that
• T(hτ ) = τ,
• lτ (πν−1(a)) = 0, for all a ∈ X(τ),
• pτ (a) = 0, for each a ∈ Dν(τ),
• hτ (a) = 0, for each a ∈ X such that a ≺ Φ−1(τ).

(N): for each i, 1 ≤ i ≤ r there are

li ∈ k[X1, . . . , Xν−1]

and a monic polynomial

pi = Xdν
ν +

∑
ω∈Mν(ti)

c(pi, ω)ω ∈ k[X1, . . . , Xν−1][Xν ]

so that hi := lipi are such that
• T(hi) = ti = Xd1

1 · · ·Xdν
ν ∈ G ∩ T [1, ν],

• li(πν−1(a)) = 0, for each a ∈ ∪ν−1
m=1Dm(ti),
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• pi(a) = 0, for each a ∈ Dν(ti),
• hi(a) = 0, for each a ∈ X.

ut

While #(Cm(τ)) ≤ Mm(τ), in general equality does not hold and
the polynomials gmτ are not unique. However, uniqueness can be
forced via Cerlienco–Mureddu Correspondence as follows: let us
denote, for each τ ∈ N ∪G and each m, 1 ≤ m ≤ n:

Rm(τ) := Rm(X, τ) := {b ∈ Cm(τ) :
∏m−1

ν=1 gντ (b) 6= 0},
Em(τ) := Em(X, τ) := N(Rm(τ)),
Sm(τ) := Sm(X, τ) := {πm(a) ∈ Rm(τ) : a ≺ Φ−1(τ)},
Fm(τ) := Fm(X, τ) := N(Sm(τ)).

Then:

Corollary 10.8. With this notation it holds

(P): for each τ := Xd1
1 · · ·Xdn

n ∈ G, and each m, 1 ≤ m ≤ n
there are unique polynomials

γmτ := Xdm
m +

∑
ω∈Em(τ)

c(γmτ , ω)ω

such that γmτ (a) = 0, for each a ∈ Dm(τ);
(O): for each τ := Xd1

1 · · ·Xdn
n ∈ N, and each m, 1 ≤ m ≤ n

there are unique polynomials

γmτ := Xdm
m +

∑
ω∈Fm(τ)

c(γmτ , ω)ω

such that γmτ (a) = 0, for each a ∈ Dm(τ), a ≺ Φ−1(τ);
(Q): for each τ = Xd1

1 · · ·Xdν
ν ∈ N, there are

λτ ∈ k[X1, . . . , Xν−1]

and a unique monic polynomial

ρτ = Xdν
ν +

∑
ω∈Fν(τ)

c(ρτ , ω)ω ∈ k[X1, . . . , Xν−1][Xν ]

so that kτ := λτρτ are such that
• T(kτ ) = τ,
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• λτ (πν−1(a)) = 0, for each a ∈ X(τ),
• ρτ (a) = 0, for each a ∈ Dν(τ),
• kτ (a) = 0, for each a ∈ X : a ≺ Φ−1(τ).

(R): for each i, 1 ≤ i ≤ r there are

λi ∈ k[X1, . . . , Xν−1]

and a unique monic polynomial

ρi = Xdν
ν +

∑
ω∈Eν(ti)

c(ω)ω ∈ k[X1, . . . , Xν−1][Xν ]

so that ki := λiρi are such that
• T(ki) = ti = Xd1

1 · · ·Xdν
ν ∈ G ∩ T [1, ν],

• λi(πν−1(a)) = 0, for each a ∈ ∪ν−1
m=1Dm(ti),

• ρi(a) = 0, for each a ∈ Dν(ti),
• ki(a) = 0, for each a ∈ X;

ut

Corollary 10.9. It holds

(S): {h1, . . . , hr} and {k1, . . . , kr} are minimal Gröbner
bases of I(X);

(U): For each ν, 1 ≤ ν < n, and each δ ∈ N let j(νδ) be the
value such that tj(νδ) < Xδ

ν+1 ≤ tj(νδ)+1; then {l1, . . . , lj(νδ)}
and {λ1, . . . , λj(νδ)} are a Gröbner basis of I(Yνδ);

(T): For each ν, 1 ≤ ν < n let jν the value such that tjν <
Xν+1 ≤ tjν+1; then {h1, . . . , hjν} and {k1, . . . , kjν} are min-
imal Gröbner bases of I(X)∩ k[X1, . . . , Xν ] and of I(πν(X)).

ut

Proof.

(S): is obvious;
(U): is a direct application of (S) to the set of points Yνδ via

Remark 9.5
(T): is a particular instance of (U); minimality is trivial.

ut

Remark 10.10. The only difference between the three bases

{f1 : . . . , fr}, {h1, . . . , hr} and {k1, . . . , kr}
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is that the first is reduced unlike the others. On the other side, for
each i, we have

T(fi) = T(hi) = T(ki) = ti.

Therefore we have

• f1 = h1 = k1 and
• fi − hi ∈ (h1, . . . , hi−1), fi − ki ∈ (k1, . . . , ki−1) for each

i, 1 < i ≤ r,

whence

• fi ∈ (h1, . . . , hi), fi ∈ (k1, . . . , ki) for each i, 1 ≤ i ≤ r.

Fact 10.11. It holds

(W): For each i, 2 ≤ i ≤ r, pi ∈ (hj, j < i) : li and ρi ∈
(kj, j < i) : λi.

ut

Fact 10.12. It holds

(X): for each τ ∈ N, fτ (Φ
−1(τ)) 6= 0, hτ (Φ

−1(τ)) 6= 0,
kτ (Φ

−1(τ)) 6= 0.
ut

Corollary 10.13. It holds

(Z): L(X) is triangular to {f−1
τ (Φ−1(τ))fτ , τ ∈ X},

{h−1
τ (Φ−1(τ))hτ , τ ∈ X} and {k−1

τ (Φ−1(τ))kτ , τ ∈ X}.
ut

11. Another algorithmic proof

In order to complete the proof all we need is to directly apply
Möller Algorithm.

The proof being by induction, we begin with

Lemma 11.1. If #X = 1 conditions (A), (F), (W), (X) hold.

Proof. When we have a single point (a1, . . . , an) ∈ kn, we have
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• N = {1},
• B = G = {X1, . . . , Xn},
• f1 = 1,
• fXi

= Xi − ai, for each i,

and the properties are obviously satisfied. ut
This giving a starting point for induction, let us assume we have

a set

X := {a1, . . . , as} ⊂ kn, s > 1,

and let us denote X′ := {a1, . . . , as−1} for which we assume
conditions (A-Z) hold.

In particular:

Φ′ := N′ 7→ X′ is Cerlienco–Mureddu Correspondence,

G′ := G(I(X′)) = {ω1, . . . , ωr}, ω1 < ω2 < . . . < ωr,

B′ := B(I(X′)),

f ′ω, ω ∈ B′, are the polynomials whose existence is implied by
(F),

Fi := f ′ωi
are the polynomials whose existence is implied by (E),

so that

{Fi : 1 ≤ i ≤ r} is the reduced Gröbner basis of I(X′);

l′i, p
′
i, h

′
i are the polynomials whose existence is implied by (N),

λ′i, q
′
i, ρ

′
i are the polynomials whose existence is implied by (R).

Setting

I := min
<
{j, 1 ≤ j ≤ r : Fj(as) 6= 0}

then it holds
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Lemma 11.2. If X′ satisfies conditions (A-Z) then

Ψ(X)(as) = ωI .

Proof. Let ωI = Xd1
1 . . . Xdn

n and let m + 1 := max(i : di 6= 0),
so that

FI ∈ k[X1, . . . , Xm+1].

Since, by (T), for each ν,

I(X′) ∩ k[X1, . . . , Xν ] = I(πν(X
′)),

and

Fj ∈ k[X1, . . . , Xν ], ν ≤ m =⇒ j < I

we deduce that

Fj(πν(as)) = Fj(as) = 0, for each Fj ∈ k[X1, . . . , Xν ], ν ≤ m,
while

FI(πm+1(as)) = FI(as) 6= 0.
This allows to deduce that

m = max (j : exists i < s : πj(ai) = πj(as)) .

Therefore πm+1(as) 6∈ {πm+1(a), a ∈ X′}; also

dm = #{ai, i < s : πm(ai) = πm(as)};

in fact, for each δ < dm, since

T(Fj) = ωj < Xδ
m < Xdm

m =⇒ j < I,

and Fj(πm(as)) = 0, (U) allows to deduce that

πm(as) ∈ Ymδ :=

{
b ∈ πm(X′) : δ < # {a ∈ X′ : b = πm(a)}

}
and πm(as) /∈ Ymdm .

As a consequence we consider the sets of points

W := {ai : Φ′(ai) = τiX
dm
m+1, τi ∈ T [1, m]} ∪ {as} and Z := πm(W);

in this setting Cerlienco–Mureddu Correspondence gives a relation
between each point πm(ai) and the corresponding term τi; also, by
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(U), the ideal I(πm+1(W)) has the Gröbner basis {l′1, . . . , l′jmdm
}

where
l′j(πm(as)) = 0,∀j < I while l′I(πm(as)) 6= 0.

So the same argument grants that Cerlienco–Mureddu Corre-
spondence returns Φ(πm((as)) = Xd1

1 . . . X
dm−1

m−1 . ut
As a consequence, the application of Möller Algorithm to X =

X′ ∪ {as} produces

qs := c−1FI , with c = FI(as);
N := N′ ∪ {ωI};
B := (B′ \ {ωI}) ∪ {XiωI , 1 ≤ i ≤ n};
fτ := f ′τ − fτ (as)qs for each τ ∈ B′ \ {ωI}, τ > ωI and
fτ := f ′τ , for each τ ∈ B′ \ {ωI}, τ < ωI since f ′τ (as) = 0;
for each τ := XiωI 6∈ B′

fτ := (Xi − ais)FI −
∑

Xiω∈B′
c(FI , ω)fXiω

where
FI = ωI +

∑
ω∈N′

c(FI , ω)ω.

Proposition 11.3. If X′ satisfies conditions (A-Z) then X satisfies
conditions (A), (F), (W), (X).

Proof.

(A): is obvious;
(F): is obvious;
(W): on the basis of Remark 10.10 we know that FI ∈ (h′1, . . . , h′I);

also all we need to prove is that, for each i,

hi ∈ (h1, . . . , hi−1) = {hj,T(hj) < T(hi)}.
Therefore
• if T(hi) = ti ∈ G′, i < I, we have

hi = h′i ∈ (h′1, . . . , h′i−1) = (h1, . . . , hi−1);

• if T(hi) = ti ∈ G′, i > I, we have

hi = h′i − aFI ∈ (h′1, . . . , h′i−1) = (h1, . . . , hi−1)

so that, also (h′1, . . . , h′i) = (h1, . . . , hi).
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• Finally, for τ = XitI we have lτ = l′I , and

lτpτ = hτ ≡ fτ ≡ (Xi − ais)FI ≡ (Xi − ais)l
′
Ip

′
I ≡ 0

modulo (h′1, . . . , h′I) = (h1, . . . , hI)
The same argument proofs the claim for {k1, . . . , kr}.

(X): fωI
(as) 6= 0 for construction; hωI

(as) 6= 0 and kωI
(as) 6= 0

because both hωI
− fωI

and kωI
− fωI

have a representation
in terms of {Fi, i < I} and Fi(as) = 0, for each i < I. ut

In conclusion we have:

Theorem 11.4.
(A) N := N(I(X)).
(B) G(I(X)) = G = {t1, . . . , tr}, t1 < t2 < . . . < tr;
(C) B(I(X)) = B.
(D) For each τ ∈ N there is a unique polynomial

fτ := τ −
∑

ω∈N(τ)

c(fτ , ω)ω

such that fτ (a) = 0, for each a ∈ X(τ).
(E) For each τ ∈ G there is a unique polynomial

fτ := τ −
∑
ω∈N

c(fτ , ω)ω

such that fτ (a) = 0, for each a ∈ X.
(F) For each τ ∈ B there is a polynomial

fτ := τ −
∑

ω∈N(τ)

c(fτ , ω)ω

such that fτ (a) = 0, for each a ∈ X.
(G) The reduced Gröbner basis of I(X) is

G(I(X)) := {fτ : τ ∈ G};

moreover, for each τ ∈ N, T(fτ ) = τ.
(H) The border basis of I(X) is

B(I(X)) := {fτ : τ ∈ B}.
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(I) for each τ := Xd1
1 · · ·Xdn

n ∈ N and each m, 1 ≤ m ≤ n, there
are polynomials

gmτ := Xdm
m +

∑
ω∈Mm(τ)

c(gmτ , ω)ω

such that gmτ (a) = 0, for each a ∈ Dm(τ), a ≺ Φ−1(τ);
(L) for each τ := Xd1

1 · · ·Xdn
n ∈ G, and each m, 1 ≤ m ≤ n, there

are polynomials

gmτ := Xdm
m +

∑
ω∈Mm(τ)

c(gmτ , ω)ω

such that gmτ (a) = 0, for each a ∈ Dm(τ);
(M) for each τ = Xd1

1 · · ·Xdν
ν ∈ N, there are

lτ ∈ k[X1, . . . , Xν−1]

and a monic polynomial

pτ = Xdν
ν +

∑
ω∈Mν(τ)

c(pτ , ω)ω ∈ k[X1, . . . , Xν−1][Xν ]

so that hτ := lτpτ are such that

• T(hτ ) = τ,
• lτ (πν−1(a)) = 0, for all a ∈ X(τ),
• pτ (a) = 0, for each a ∈ Dν(τ),
• hτ (a) = 0, for each a ∈ X such that a ≺ Φ−1(τ).

(N) for each i, 1 ≤ i ≤ r there are

li ∈ k[X1, . . . , Xν−1]

and a monic polynomial

pi = Xdν
ν +

∑
ω∈Mν(ti)

c(pi, ω)ω ∈ k[X1, . . . , Xν−1][Xν ]

so that hi := lipi are such that

• T(hi) = ti = Xd1
1 · · ·Xdν

ν ∈ G ∩ T [1, ν],
• li(πν−1(a)) = 0, for each a ∈ ∪ν−1

m=1Dm(ti),
• pi(a) = 0, for each a ∈ Dν(ti),
• hi(a) = 0, for each a ∈ X.
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(O) for each τ := Xd1
1 · · ·Xdn

n ∈ N, and each m, 1 ≤ m ≤ n there
are unique polynomials

γmτ := Xdm
m +

∑
ω∈Fm(τ)

c(γmτ , ω)ω

such that γmτ (a) = 0, for each a ∈ Dm(τ), a ≺ Φ−1(τ);
(P) for each τ := Xd1

1 · · ·Xdn
n ∈ G, and each m, 1 ≤ m ≤ n there

are unique polynomials

γmτ := Xdm
m +

∑
ω∈Em(τ)

c(γmτ , ω)ω

such that γmτ (a) = 0, for each a ∈ Dm(τ);
(Q) for each τ = Xd1

1 · · ·Xdν
ν ∈ N, there are

λτ ∈ k[X1, . . . , Xν−1]

and a unique monic polynomial

ρτ = Xdν
ν +

∑
ω∈Fν(τ)

c(ρτ , ω)ω ∈ k[X1, . . . , Xν−1][Xν ]

so that kτ := λτρτ are such that

• T(kτ ) = τ,
• λτ (πν−1(a)) = 0, for each a ∈ X(τ),
• ρτ (a) = 0, for each a ∈ Dν(τ),
• kτ (a) = 0, for each a ∈ X : a ≺ Φ−1(τ).

(R) for each i, 1 ≤ i ≤ r there are

λi ∈ k[X1, . . . , Xν−1]

and a unique monic polynomial

ρi = Xdν
ν +

∑
ω∈Eν(ti)

c(ω)ω ∈ k[X1, . . . , Xν−1][Xν ]

so that ki := λiρi are such that

• T(ki) = ti = Xd1
1 · · ·Xdν

ν ∈ G ∩ T [1, ν],
• λi(πν−1(a)) = 0, for each a ∈ ∪ν−1

m=1Dm(ti),
• ρi(a) = 0, for each a ∈ Dν(ti),
• ki(a) = 0, for each a ∈ X;

(S) {h1, . . . , hr} and {k1, . . . , kr} are minimal Gröbner bases of
I(X);
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(T) For each ν, 1 ≤ ν < n let jν be the value such that tjν < Xν+1 ≤
tjν+1; then {h1, . . . , hjν} and {k1, . . . , kjν} are minimal Gröbner
bases of I(X) ∩ k[X1, . . . , Xν ] and of I(πν(X)).

(U) For each ν, 1 ≤ ν < n, and each δ ∈ N let j(νδ) be the value such
that tj(νδ) < Xδ

ν+1 ≤ tj(νδ)+1; then {l1, . . . , lj(νδ)} and {λ1, . . . , λjνδ)}
are Gröbner bases of I(Yνδ);

(W) For each i, 2 ≤ i ≤ r, pi ∈ (hj, j < i) : li and ρi ∈ (kj, j < i) :
λi.

(X) for each τ ∈ N, fτ (Φ
−1(τ)) 6= 0, hτ (Φ

−1(τ)) 6= 0, kτ (Φ
−1(τ)) 6=

0.
(Z) L(X) is triangular to

{f−1
τ (Φ−1(τ))fτ , τ ∈ X},

{h−1
τ (Φ−1(τ))hτ , τ ∈ X} and {k−1

τ (Φ−1(τ))kτ , τ ∈ X}. ut

12. Congedo

The reader can easily realize that (under the present assump-
tions, i.e. simple points forcing the ideal to be radical) Gianni-
Kalkbrenner Theorem [5, 7] is a direct corollary of (M).

However, the following trivial example

I := {X2X3 −X2
1 , X

3
1 , X2X

2
1 , X

2
3 , X

2
1X3, X

2
2} ⊂ k[X1, X2, X3]

shows that a primary ideal does not necessarily satisfy conditions
(I-W) and the relevant part of (Z); and the example

I := (X2
1 , X2 + X1, X3) ∩ (X2

1 , X2 −X1, X3 − 1)

= {X2
1 , X1X2, X

2
2 , X1X3 −

1

2
X1 −

1

2
X2, X2X3 −

1

2
X1 −

1

2
X2,

X2
3 −X3}

shows that Thereom 11.4 does not hold at all for zero-dimensional
ideals, at least trivially.

On the other side we recently discovered that in 1995 Cerlienco
and Mureddu [3] generalized their Correspondence to
zero-dimensional ideals

I :=
⋃

i=1,n

`ai
(Mi)



44 Marinari and Mora

where, for each i

ai = (ai1, . . . , ain) ∈ kn

`ai
: P 7→ P is the traslation

`ai
(f) = f(X1 − ai1, . . . , X1 − ain) for each f(X1, . . . , Xn) ∈ P

Mi ⊂ T is a monimal ideal.

We have the impression that in this setting Thereom 11.4 still
holds, up to the elementary adaptations needed in order to properly
define, in conditions (I-R), the monomial sets and the linear func-
tionals on which to perform linear interpolation, and that the proof
presented here requires just Leibnitz Formula to grant correcteness
of conditions (M-N) and (Q-R).

Moreover Gianni-Kalkbrener Theorem is satisfied by configura-
tions of multiple points but apparently is not provable by our ap-
proach and the example presented above gives us the feeling that a
deeper analysis could suggest how to properly adapt Thereom 11.4.

So the description of the Gröbnerian Structure of configurations
of multiple points still requires proper investigation.
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[1] B. Buchberger, H. M. Möller, The construction of multivariate polynomials
with preassigned zeros, L. N. Comp. Sci. 144 (1982)24–31.

[2] L. Cerlienco, M. Mureddu, Algoritmi combinatori per l’interpolazione poli-
nomiale in dimensione ≥ 2, Preprint (1990).

[3] L. Cerlienco, M. Mureddu, From algebraic sets to monomial linear bases
by means of combinatorial algorithms, Discrete Math. 139 (1995)73–87.

[4] J. Faugère, P. Gianni, D. Lazard, T. Mora, Efficient computation of zero-
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Symb. Comp. 24 (1997)51-58.

[9] D. Lazard, Ideal basis and primary decomposition: Case of two variables,
J. Symb. Comp. 1 (1985)261–270.

[10] F. S. Macaulay, Some properties of enumeration in the theory of modular
systems, Proc. London Math. Soc. 26 (1927)531–555.
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