COMPACTIFICATION OF κ -FRAMES ### M. MEHDI EBRAHIMI AND M. VOJDANI TABATABAEE ABSTRACT. In this paper we show that the category $\mathbf{KR}\kappa\mathbf{Frm}$, of all compact regular κ -frames and κ -frame homomorphisms, is a coreflective subcategory of the category $\kappa\mathbf{Frm}$, of all κ -frames and κ -frame homomorphisms. Then, a compactification for any completely regular κ -frame and any proximal κ -frame is given. The theory of κ -frames was introduced by Madden [3]. # 1. Background Here we recall some notions and notations from [2], [4]. 1.1 Let κ be any regular cardinal. A κ -set is a set of cardinality strictly less than κ . A κ -frame is a bounded lattice L which has joins of κ -subsets and satisfies the distributive law: $$x \land \bigvee S = \bigvee \{x \land s : s \in S\}$$ for $x \in L$ and S a κ -subset of L. A κ -frame homomorphism $h: L \to M$ is a lattice homomorphism preserving joins of κ -subsets. The resulting category is denoted by κ -frames was introduced by Madden [3]. MSC(2000): 06B10, 06D22, 18A40, 54D35 Keywords: Compact regular $\kappa\text{-frame},$ Completely regular ideal, Strongly regular ideal, Compactification, Proximal κ -frame Received: 16 October 2002, Accepted: 4 August 2003 © 2003 Iranian Mathematical Society. If $\kappa = w_1$, the smallest uncountable cardinal, a κ -frame is called a σ -frame. An example of a σ -frame is the lattice of cozero-sets of a topological space X. **1.2** An element a of a bounded lattice L is said to be rather below b, written $a \prec b$, if there exists $s \in L$, called the separating element, such that $a \wedge s = 0$ and $b \vee s = e$. An element a of a bounded lattice L is said to be *completely below* b, written $a \prec \prec b$, if there exists an interpolating sequence (c_{nk}) , $k = 0, 1, \dots, 2^n$ and $n = 0, 1, \dots$, between a and b, where $c_{00} = a$, $c_{01} = b$, $c_{nk} = c_{n+1,2k}$, $c_{nk} \prec c_{n,k+1}$. A frame L is called regular (completely regular) if each $a \in L$ is a join of elements rather below (completely below) it. - **1.3** A κ -frame L is called *compact* if whenever $e = \bigvee S$, for $S \subseteq L$, then $e = \bigvee F$ for some finite subset F of S. The category $\mathbf{KR}\kappa\mathbf{Frm}$, of all compact regular κ -frames, is a full subcategory of $\kappa\mathbf{Frm}$. A κ -frame homomorphism $h: M \to L$ is called a *compactification* of L if M is compact regular and h is surjective and dense, that is h(x) = 0 implies x = 0. - **1.4** Let L be a κ -frame. We call an ideal $J \subseteq L$ regular (completely regular) if for each $a \in J$ there exists $b \in J$ such that $a \prec b$ $(a \prec \prec b)$. ### 2. Compact regular κ -frames Our main aim in this section is to show that the category $\mathbf{KR}\kappa\mathbf{Frm}$ is a coreflective subcategory of the category $\kappa\mathbf{Frm}$. To prove this, we need to find a right adjoint to the inclusion functor $\mathcal{I}: \mathbf{KR}\kappa\mathbf{Frm} \to \kappa\mathbf{Frm}$. Let L be a κ -frame and $\mathcal{K}L$ be the set of all completely regular ideals generated by κ -subsets of L. In the following we show that $\mathcal{K}L$ is a compact regular κ -frame. # **Lemma 2.1.** The set KL is a κ -frame. **Proof.** Since $0 \prec \prec 0$ and $e \prec \prec e$, $\{0\}$ and L belong to $\mathcal{K}L$. Let $I, J \in \mathcal{K}L$ be generated by κ -subsets X, Y of L, respectively. Then $I \wedge J = I \cap J$ is regular, since $a \prec \prec b$, $c \prec \prec d$ imply $a \wedge c \prec \prec b \wedge d$, and it is generated by $X \wedge Y = \{x \wedge y : x \in X, y \in Y\}$. Thus $I \wedge J \in \mathcal{K}L$. Let $\{I_{\lambda} : \lambda \in \Lambda\}$ be a κ -subset of $\mathcal{K}L$ and for each λ , I_{λ} be generated by the κ -subset X_{λ} . Take J to be the ideal generated by the set $\bigcup X_{\lambda}$. We show that $J \in \mathcal{K}L$ and $\bigvee I_{\lambda} = J$. For each $a \in J$ there exists a finite set $\{x_1, ..., x_n\} \subseteq \bigcup X_{\lambda}$ such that $a \leq x_1 \vee ... \vee x_n$. Let $x_i \in X_{\lambda_i}$ for each i. By complete regularity of I_{λ_i} there exists $y_i \in I_{\lambda_i}$ such that $x_i \prec \prec y_i$. Hence $a \leq x_1 \vee ... \vee x_n \prec \prec y_1 \vee ... \vee y_n \in J$. Therefore $J \in \mathcal{K}L$, since it is a completely regular ideal and it is generated by a κ -set. Clearly $I_{\lambda} \subseteq J$ for each $\lambda \in \Lambda$. Let $I_{\lambda} \subseteq I \in \mathcal{K}L$ for each $\lambda \in \Lambda$. Take $a \in J$. Then $a \leq x_1 \vee ... \vee x_n$, where $x_i \in X_{\lambda_i}$ for each i. Since $X_{\lambda} \subseteq I_{\lambda} \subseteq I$ for each $\lambda \in \Lambda$, we have $a \in I$. Thus $J \subseteq I$. Hence $\bigvee I_{\lambda} = J$. Also we have $I \wedge \bigvee I_{\lambda} = \bigvee \{I \wedge I_{\lambda} : \lambda \in \Lambda\}$ for each $I \in \mathcal{K}L$ and κ -set $\{I_{\lambda}\}$ of $\mathcal{K}L$. Therefore $\mathcal{K}L$ is a κ -frame. \square **Note 2.2.** Let $x \prec y \prec z$ be in a κ -frame L and s,t be the separating elements of $x \prec y$ and $y \prec z$, respectively. Then $y \wedge t = 0$ and $y \vee s = e$ imply that $t \prec s$. **Lemma 2.3.** Let $x_1 \prec \prec x_2 \prec \prec x_3$ be in a κ -frame L. Then, there exist t, u in L such that $u \lor x_3 = e, t \land x_1 = 0$ and $u \prec \prec t$. **Proof.** By the definition of $\prec \prec$ there exists x_4 such that $x_1 \prec \prec x_4 \prec \prec x_2 \prec \prec x_3$. Let t, a, u be the separating elements, respectively. By the above note $u \prec a \prec t$, also $u \lor x_3 = e$ and $t \land x_1 = 0$. It is enough to show that $u \prec \prec t$. Take x_5, x_6 such that $x_4 \prec x_5 \prec x_6 \prec x_2$. Let b, c, d be the separating elements, respectively. By the above note $d \prec c \prec b$. Since $x_1 \prec x_4 \prec x_5$ and $x_6 \prec x_2 \prec x_3$ and t,b and d,u are separating elements, respectively, we have $u \prec d$ and $b \prec t$. Thus $u \prec c \prec t$. Take x_7, x_8, x_9, x_{10} such that $x_4 \prec x_7 \prec x_8 \prec x_5$ and $x_6 \prec x_9 \prec x_{10} \prec x_2$. Similar to the above discussion we can easily show that if f, g, h, i, j, k are the separating elements, respectively, then $u \prec k \prec j \prec i \prec c \prec h \prec g \prec f \prec t$. Thus $u \prec j \prec c \prec g \prec t$. Continuing this process, it shows that we can find an element between each two elements of this series. Hence $u \prec \prec t$. ## **Proposition 2.4.** The κ -frame KL is compact regular. **Proof.** Trivially $\mathcal{K}L$ is compact, since the frame of all ideals of L is compact. To prove the regularity let $I \in \mathcal{K}L$ be generated by a κ -subset X of L. For each $x \in X$ there exists $y_x \in I$ such that $x \prec \prec y_x$. Since $\prec \prec$ interpolates, there exists a sequence $\{x_i : i \in \mathbb{N}\} \subseteq L$ such that $x = x_0 \prec \prec x_1 \prec \prec \ldots \prec \prec y_x$. Let J_x be the ideal generated by $\{x_i : i \in \mathbb{N}\}$. Then $J_x \in \mathcal{K}L$ for each $x \in X$. We show that $I = \bigvee \{J_x : x \in X\}$, and $J_x \prec I$ for each $x \in X$. Given $a \in I$ there exists a finite subset $\{a_1, \ldots, a_n\}$ of X such that $a \leq a_1 \lor \ldots \lor a_n$. Trivially $a \in J_{a_1} \lor \ldots \lor J_{a_n}$. Hence $I \subseteq \bigvee \{J_x : x \in X\}$. Also, for each $x \in X$, $J_x \subseteq I$. Thus $I = \bigvee \{J_x : x \in X\}$. It is enough to show that $J_x \prec I$ for each $x \in X$. Take $z, w \in I$ such that $y_x \prec \prec z \prec \prec w$. By the above lemma, there exist t, u such that $w \lor u = e, y_x \land t = 0$, and $u \prec \prec t$. Let $u = u_0 \prec \prec u_1 \prec \prec \prec \prec t$ and K_x be the ideal generated by $\{u_i : i \in \mathbb{N}\}$. Then $K_x \in \mathcal{K}L$ and $e = u \lor w \in K_x \lor I$. Thus $K_x \lor I = L$. Also, if $a \in K_x \cap J_x$ then $a \le u_m$ and $a \le x_n$ for some $m, n \in \mathbb{N}$. Thus $a \le t \land y_x = 0$. Hence $K_x \cap J_x = \{0\}$. Therefore K_x is a separating element of $J_x \prec I$. Hence $\mathcal{K}L$ is a regular κ -frame. \square **Proposition 2.5.** The assignment $K : \kappa Frm \to KR \kappa Frm$ given by $$\mathcal{K}(f:L\to M)=\mathcal{K}(f):\mathcal{K}L\to\mathcal{K}M$$ where $K(f)(I) = \langle f[X] \rangle$ and I is generated by the κ -subset X of L, is a functor. **Proof.** By the above proposition \mathcal{K} is well-defined on objects. Since $x \prec \prec y$ implies $f(x) \prec \prec f(y)$ it is easy to see that \mathcal{K} is well-defined on morphisms. Also, $\mathcal{K}(f \circ g) = \mathcal{K}(f) \circ \mathcal{K}(g)$ and $\mathcal{K}(id_L) = id_{\mathcal{K}L}$. Hence \mathcal{K} is a functor. \square Now we show that $\mathcal{I} \dashv \mathcal{K}$. First we introduce the counit of this adjunction. **Lemma 2.6.** The map $\kappa_L : \mathcal{K}L \to L$ given by $\kappa_L(I) = \bigvee X$, where I is generated by the κ -set X, is a κ -frame homomorphism. Moreover, $\varepsilon = (\kappa_L)_{L \in \kappa Frm}$ is a natural transformation. **Proof.** The map κ_L is well-defined, since $\langle X \rangle = \langle Y \rangle$ implies that $\bigvee X = \bigvee Y$. Trivially $\kappa_L(0) = 0$, $\kappa_L(L) = \bigvee \{e\} = e$, and if $I = \langle X \rangle, J = \langle Y \rangle \in \mathcal{K}L$, then $$\kappa_L(I \wedge J) = \bigvee (X \cap Y) = \bigvee X \wedge \bigvee Y = \kappa_L(I) \wedge \kappa_L(J).$$ Furthermore κ_L preserves joins of κ -sets, since $$\kappa_L(\bigvee I_\lambda) = \bigvee(\bigcup_\lambda X_\lambda) = \bigvee_\lambda(\bigvee X_\lambda) = \bigvee_\lambda(\kappa_L(I_\lambda)).$$ Thus κ_L is a κ -frame homomorphism. Also for any κ -frame map $h: L \to M$, $h \circ \kappa_L = \kappa_M \circ \mathcal{K}(h)$. Since, if I is generated by the κ -set X of L then $$h \circ \kappa_L(I) = h(\bigvee X) = \bigvee (h[X]) = \kappa_M(\langle h[X] \rangle) = \kappa_M \circ \mathcal{K}(h)(I).$$ Thus ε is a natural transformation. \square To show that κ_L is couniversal we need the following lemma. **Lemma 2.7.** Let $h: M \to L$ be a κ -frame homomorphism with compact regular domain M. Then, there exists a κ -frame homomorphism $\overline{h}: M \to \mathcal{K}L$ such that $\kappa_L \circ \overline{h} = h$. **Proof.** Let $a \in M$. By regularity of M there exists a κ -set $\{a_{\lambda} : a_{\lambda} \prec a, \lambda \in \Lambda\}$ such that $a = \bigvee a_{\lambda}$. It is easy to show that, similar to compact regular frames, the rather below relation interpolates in any compact regular κ -frame, and so $\prec \prec = \prec$ in M. Hence for each λ there exists a set $\{a_{\lambda i} : i \in \mathbb{N}\}$ such that $a_{\lambda} = a_{\lambda_0} \prec \prec a_{\lambda_1} \prec \prec \ldots \prec \prec a$. Let J_a be the ideal generated by $\{h(a_{\lambda i}) : \lambda \in \Lambda, i \in \mathbb{N}\}$. Then $J_a \in \mathcal{K}L$. We define $\overline{h} : M \to \mathcal{K}L$ by $\overline{h}(a) = J_a$ for each $a \in M$. We show that \overline{h} is well-defined. Let $$a = \bigvee \{x_{\lambda i} : x_{\lambda_0} \prec \prec \dots \prec \prec a, \lambda \in \Lambda\}$$ $$= \bigvee \{y_{\beta j} : y_{\beta_0} \prec \prec \dots \prec \prec a, \beta \in \Lambda\}.$$ Take $J_1 = \langle \{h(x_{\lambda i})\} \rangle$ and $J_2 = \langle \{h(y_{\beta j})\} \rangle$. Let $s_{\lambda i}$ be the separating element of $x_{\lambda i} \prec x_{\lambda i+1}$. Then $s_{\lambda i} \wedge x_{\lambda i} = 0$ and $s_{\lambda i} \vee x_{\lambda i+1} = e$. Thus $e = s_{\lambda i} \vee a = \bigvee \{s_{\lambda i} \vee y_{\beta j} : \beta \in \Lambda, j \in \mathbb{N}\}$. Compactness of M implies that $s_{\lambda i} \vee y_{\beta_1 j_1} \vee ... \vee y_{\beta_n j_n} = e$. This shows that $x_{\lambda i} \prec y_{\beta_1 j_1} \vee ... \vee y_{\beta_n j_n}$ and so $h(x_{\lambda i}) \prec h(y_{\beta_1 j_1}) \vee ... \vee h(y_{\beta_n j_n})$. Hence $J_1 \subseteq J_2$. Similarly $J_2 \subseteq J_1$. This gives that h is well-defined. Clearly $$\kappa_L \circ \overline{h}(a) = \bigvee \{ h(a_{\lambda i}) : \lambda \in \Lambda, i \in \mathbb{N} \}$$ = $h(\bigvee \{ a_{\lambda i} : \lambda \in \Lambda, i \in \mathbb{N} \}) = h(a).$ It is enough to show that \overline{h} is a κ -frame homomorphism. Trivially $\overline{h}(0) = \{0\}$, and $\overline{h}(e) = \langle \{h(e)\} \rangle = \langle \{e\} \rangle = L$. Let $a = \bigvee \{x_{\lambda i} : x_{\lambda_0} \prec \prec \ldots \prec \prec a, \ \lambda \in \Lambda \}$ and $b = \bigvee \{y_{\beta j} : y_{\beta_0} \prec \prec \ldots \prec \prec b, \ \beta \in \Lambda \}$. Then $a \wedge b = \bigvee \{x_{\lambda i} \wedge y_{\beta j} : \lambda \in \Lambda, \beta \in \Lambda, i, j \in \mathbb{N} \}$. Hence $J_{a \wedge b} = \langle \{h(x_{\lambda i} \wedge y_{\beta j})\} \rangle = J_a \wedge J_b$, since h preserves meets. Now let $\{a_t : t \in K\}$ be a κ -subset of M and $$a_t = \bigvee \{a^t_{\lambda i} : a^t_{\lambda 0} \prec \prec \dots \prec \prec a_t, \lambda \in \Lambda\}.$$ Then $J_{a_t} = \langle \{h(a^t_{\lambda i})\} \rangle$. Thus $\forall (J_{a_t}) = \langle \{h(a^t_{\lambda i}), t \in K\} \rangle = J_{\bigvee a_t}$, since $\forall a_t = \bigvee \{a^t_{\lambda i} : \lambda \in \Lambda, t \in K\}$. Therefore \overline{h} is a κ -frame homomorphism. \square **Proposition 2.8.** The map κ_L is an \mathcal{I} -couniversal arrow for the κ -frame L. **Proof.** We have that $\mathcal{K}L$ is a compact regular κ -frame and κ_L is a κ -frame homomorphism. Let $h: M \to L$ be a κ -frame homomorphism with compact regular domain M. Then $\overline{h}: M \to \mathcal{K}L$, given by $\overline{h}(a) = J_a$, is a κ -frame homomorphism such that $\kappa_L \circ \overline{h} = h$. It is enough to show that \overline{h} is unique. Let $g: M \to \mathcal{K}L$ be a κ -frame homomorphism such that $\kappa_L \circ g = h$. Let $$a = \bigvee \{a_{\lambda i} : a_{\lambda 0} \prec \prec \dots \prec \prec a, \lambda \in \Lambda\} \in M$$ since in compact regular κ -frames $\prec = \prec \prec$. For each $\lambda \in \Lambda$, $i \in \mathbb{N}$ $$\kappa_L \circ g(a_{\lambda i}) = \bigvee g(a_{\lambda i}) = h(a_{\lambda i}) \in J_a = \overline{h}(a).$$ Thus $g(a_{\lambda i}) \subseteq \overline{h}(a)$ for each $\lambda \in \Lambda, i \in \mathbb{N}$, and so $g(a) \subseteq \overline{h}(a)$. Now let $s_{\lambda i}$ be the separating element of $a_{\lambda i} \prec a_{\lambda i+1}$. Then $g(a_{\lambda i}) \wedge g(s_{\lambda i}) = 0$ and $g(a_{\lambda i+1}) \vee g(s_{\lambda i}) = L$. Take $z \in g(a_{\lambda i+1}), \ t \in g(s_{\lambda i})$ such that $z \vee t = e$. Then for each $y \in g(a_{\lambda i}), \ y = (y \wedge z) \vee (y \wedge t) = y \wedge z \leq z$, and so $g(a_{\lambda i}) \subseteq \downarrow z$. Thus $h(a_{\lambda i}) = \bigvee g(a_{\lambda i}) \leq z$. Also we have that $z \in g(a_{\lambda i+1}) \subseteq g(a)$. Therefore $h(a_{\lambda i}) \in g(a)$ for each $\lambda \in \Lambda, i \in \mathbb{N}$, and so $\overline{h}(a) \subseteq g(a)$. This shows that \overline{h} is unique. \square Corollary 2.9. (a) The category $KR\kappa Frm$ is a coreflective subcategory of the category κFrm . (b) The category $\mathbf{KR} \kappa \mathbf{Frm}$ has all products and all equalizers and hence it is a complete category. # 3. Compactification of κ -frames In this section a compactification for regular and proximal κ -frames are given. **Proposition 3.1.** For any completely regular κ -frame L, the map $\kappa_L : \mathcal{K}L \to L$ is a compactification of L. **Proof.** By Proposition 2.4, KL is a compact regular κ -frame. Trivially κ_L is a dense map. It is enough to show that it is surjective. Let $a \in L$. By complete regularity of L there exists a κ -subset $\{a_{\lambda}: a_{\lambda} \prec \prec a, \lambda \in \Lambda\}$ such that $a = \bigvee \{a_{\lambda}: \lambda \in \Lambda\}$. For each λ there exists a sequence $\{a_{\lambda i}: i \in \mathbb{N}\}$ such that $a_{\lambda} = a_{\lambda_0} \prec \prec a_{\lambda_1} \prec \prec \ldots \prec a$. Take I_a to be the ideal generated by $\{a_{\lambda i}: \lambda \in \Lambda, i \in \mathbb{N}\}$. Then $I_a \in \mathcal{K}L$ and $\kappa_L(I_a) = a$. Hence κ_L is surjective. \square Here we recall the definition of proximal κ -frames from [6] and show that any proximal κ -frame has a compactification. **Definition 3.2.** A strong inclusion on a κ -frame L is a binary relation \triangleleft on L such that - i) If $x \le a \lhd b \le y$ then $x \lhd y$. - ii) $\lhd \subseteq L \times L$ is a sublattice. That is, $0 \lhd 0, e \lhd e, x, y \lhd a, b$ imply $x \lhd a \land b, x \lor y \lhd a$. - iii) If $x \triangleleft a$ then $x \prec y$. - iv) If $x \triangleleft y$ then there exists z with $x \triangleleft z \triangleleft y$. - v) If $x \triangleleft y$ then there exist $a, b \in L$ with $b \triangleleft a, b \lor y = e$ and $a \land x = 0$. - vi) Each $a \in L$ is a join of a κ -set of elements strongly included in a. The pair (L, \triangleleft) is called a proximal κ -frame. **Definition 3.3.** For a strong inclusion \triangleleft on a κ -frame L, an ideal I of L is said to be *strongly regular* if for each element x in I there exists an element y in I with $x \triangleleft y$. **Proposition 3.4.** Any proximal κ -frame has a compactification. **Proof.** For a proximal κ -frame L consider $C_{\kappa}L$, the set of all κ -set generated strongly regular ideals of L. Taking strongly below relation instead of completely rather below relation one can show that $C_{\kappa}L$ is a compact regular κ -frame. Also the join map $\rho_L: C_{\kappa}L \to L$ given by $\rho_L(I) = \bigvee X$ whenever I is generated by the κ -set X of L, is a compactification of L. \square **Remark 3.5.** In the case of zero-dimensoinal κ -frames, that is, κ -frames L which are generated by their Boolean part $\mathcal{B}L$ of the complemented elements of L, the relation $x \triangleleft y$ iff $x \leq b \leq y$ for some $b \in \mathcal{B}L$ is a strong inclusion. Thus κ -subset generated strongly regular ideals of L are exactly ideals of L which are generated by a κ -subset of $\mathcal{B}L$. Hence $\mathcal{K}L$ is the set of ideals of L generated by a κ -subset of $\mathcal{B}L$. ### Acknowledgment The authors would like to thank the referees for their suggestions and correcting the statement of Proposition 3.1 for completely regular κ -frames rather than regular ones. Also we would like to thank one of the referees for suggesting us to consider κ -frames as partial frames and then using the more general approach of [5]. But we preferred to leave it as it is which is more common to us for σ and κ -frames. We are also grateful for the financial support of Shahid Beheshti University. #### References - [1] B. Banaschewski and C. Gilmour, Stone-Cech compactification and dimension theory for regular σ -frames, J. London Math. Soc., **39** (2) (1989), 1-8. - [2] P. T. Johnstone, *Stone Spaces*, Cambridge studies in advanced mathematics, Cambridge University Press, 1982. - [3] J. J. Madden, κ -frames, J. Pure and Appl. Alg., **70** (1991), 107-127. - [4] N. Marcus, κ -compact frames, Kyungpook Math. J., Vol. **42** (2002), 147-164 - [5] J. Paseka, Covers in generalized frames, Proceedings of the International Conference, Summer School on General Algebra and Orderd Sets 1994. Olomouc: Palacky University Olomouc, 1994, 84-182. - [6] J. Walters, Compactifications and uniformities on sigma frames, Comment. Math. Univ. Carolinae., 32 (1) (1991), 189-198. ### M. Mehdi Ebrahimi Department of Mathematics Shahid Beheshti University Tehran 19839 Iran ıan e-mail:m-ebrahimi@cc.sbu.ac.ir #### M. Vojdani Tabatabaee Department of Mathematics Shahid Beheshti University Tehran 19839 ${\rm Iran}$ e-mail:mvojdani2000@yahoo.com