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SOME FIXED POINT THEOREMS FOR WEAKLY
COMPATIBLE MULTIVALUED MAPPINGS

SATISFYING SOME GENERAL CONTRACTIVE
CONDITIONS OF INTEGRAL TYPE

I. ALTUN* AND D. TURKOGLU

Communicated by Fraydoun Rezakhanlou

Abstract. We prove some common fixed point theorems for mul-
tivalued mappings satisfying some general contractive conditions of
integral type under the condition of weak compatibility.

1. Introduction and preliminaries

In 1922, the Polish mathematician Stefan Banach proved a theorem
which ensures, under appropriate conditions, the existence and unique-
ness of a fixed point. His result is called Banach’s fixed point theorem
or the Banach contraction principle. This theorem provides a technique
for solving a variety of applied problems in mathematical sciences and
engineering. Many authors have extended, generalized and improved
Banach’s fixed point theorem in different ways. In [11], Jungck intro-
duced more generalized commuting mappings, called compatible map-
pings, which are more general than commuting and weakly commuting
mappings. This concept has been useful for obtaining more compre-
hensive fixed point theorems (see, [5], [10], [12], [13], [14], [16], [17],
[18], [19]). Recently, Branciari [4] obtained a fixed point result for a
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single mapping satisfying an analogue of Banach’s contraction princi-
ple for an integral type inequality. The authors in [1], [2], [3], [7], [15]
and [20] proved some fixed point theorems involving more general con-
tractive conditions. Here, we establish some fixed point theorems for
weakly compatible multivalued maps satisfying some general contrac-
tive inequalities of integral type.

Throughout this paper, let (X, d) denote a metric space and B(X)
stand for the set of all bounded subsets of X. The function δ and D of
B(X)× B(X) into [0,∞) are defined to be:

δ(A,B) = sup{d(a, b) : a ∈ A, b ∈ B},
D(A,B) = inf{d(a, b) : a ∈ A, b ∈ B},

for all A,B in B(X). If A = {a} is singleton, then we write δ(A,B) =
δ(a,B) and if B = {b}, then we put δ(A,B) = δ(a, b) = d(a, b). It is
easily seen that

δ(A,B) = δ(B,A) ≥ 0,
δ(A,B) ≤ δ(A,C) + δ(C,B),
δ(A,A) = diamA,

δ(A,B) = 0 implies A = B = {a},
for all A,B,C in B(X). We recall some definitions and basic lemmas of
Fisher [8] and Imdad et al. [9]. Let {An : n = 1, 2, ...} be a sequence of
subsets of X. We say that the sequence {An} converges to a subset A
of X if each point a in A is the limit of a convergent sequence {an} with
an in An, for n = 1, 2, . . ., and if for any ε > 0, there exists an integer N
such that An ⊆ Aε, for n > N , Aε being the union of all open spheres
with centers in A and radius ε. The following lemmas hold.

Lemma 1.1 ([8]). If {An} and {Bn} are sequences of bounded subsets
of (X, d) which converge to the bounded subsets A and B, respectively,
then the sequence {δ(An, Bn)} converges to δ(A,B).

Lemma 1.2 ([9]). If {An} is a sequence of bounded sets in the complete
metric space (X, d) and if lim

n→∞
δ(An, {y}) = 0, for some y ∈ X, then

{An} → {y}.

A set-valued mapping F of X into B(X) is continuous at the point x
in X if whenever {xn} is a sequence of points of X converging to x, the
sequence {Fxn} in B(X) converges to Fx. F is said to be continuous
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in X if it is continuous at each point x in X. We say that z is a fixed
point of F if z is in Fz. Furthermore, if U is any nonempty subset of
X, then we define the set F (U) by

F (U) = ∪
x∈U

Fx.

Also, if B is a self mapping of X, then by F (X) ⊆ B(X), we mean

F (X) = ∪
x∈X

Fx ⊆ B(X),

that is, for all x ∈ X, we have Fx ⊆ B(X).
The following theorem was established by Chang [6].

Theorem 1.3. Let (X, d) be a complete metric space, I and J be self-
maps of X, and S, T : X → B(X) be such that S(X) ⊂ J(X) and
T (X) ⊂ I(X). Moreover, assume that for all x, y ∈ X,

δ(Sx, Ty) ≤ ψ

(
max{d(Ix, Jy), δ(Ix, Sx), δ(Jy, Ty),

1
2 [D(Ix, Ty) +D(Jy, Sx)]

)
,

where ψ : R+ → R+ is nondecreasing and ψ(0) = 0, ψ(t) < t, for t > 0,
is upper semicontinuous, both (I, S) and (T, J) are compatible, and at
least one of I or J is continuous. Then I, J, S and T have a unique
common fixed point z in X. Furthermore, Sz = Tz = {Iz} = {Jz} =
{z}.

The following definition was given by Jungck and Rhoades [12].

Definition 1.4. Let A : X → X and F : X → B(X) be two mappings.
The pair (A,F ) is weakly compatible if A and F commute at coinci-
dence points; i.e., for each point u in X such that Fu = {Au}, we have
FAu = AFu. (Note that the equation Fu = {Au} implies that Fu is a
singleton).

2. Common fixed point theorems

Theorem 2.1. Let A and B be mappings of a metric space (X, d) into
itself, and F,G be mappings from X into B(X) such that

(2.1) F (X) ⊆ B(X) and G(X) ⊆ A(X).
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Also, the mappings A,B, F and G satisfy the following inequality,

∫ δ(Fx,Gy)

0
ϕ(t)dt ≤ α

∫ max{d(Ax,By),δ(Ax,Fx),δ(By,Gy)}

0
ϕ(t)dt

+ (1− α)

[
a

∫ D(Ax,Gy)
2

0
ϕ(t)dt+ b

∫ D(By,Fx)
2

0
ϕ(t)dt

]
,(2.2)

for all x, y ∈ X, where 0 ≤ α < 1, a ≥ 0, b ≥ 0, a+ b < 1 and ϕ : R+ →
R+ is a Lebesgue-integral mapping which is summable, non-negative and
such that

(2.3)
∫ ε

0
ϕ(t)dt > 0 for all ε > 0.

Suppose that any one of A(X) or B(X) is complete. If both pairs (A,F )
and (B,G) are weakly compatible, then there exists a unique z ∈ X such
that {z} = {Az} = {Bz} = Fz = Gz.

Proof. Let x0 be an arbitrary point in X. By (2.1), we choose a point
x1 in X such that Bx1 ∈ Fx0 = Z0. For this point x1, there exists a
point x2 in X such that Ax2 ∈ Gx1 = Z1, and so on. Continuing in this
manner, we can define a sequence {xn} as follows:

(2.4) Bx2n+1 ∈ Fx2n = Z2n, Ax2n+2 ∈ Gx2n+1 = Z2n+1,

for n = 0, 1, .... For simplicity, we put Vn = δ(Zn, Zn+1), for n = 0, 1, ....
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By (2.2) and (2.4), we have∫ V2n

0
ϕ(t)dt(2.5)

=
∫ δ(Z2n,Z2n+1)

0
ϕ(t)dt

=
∫ δ(Fx2n,Gx2n+1)

0
ϕ(t)dt

≤ α

∫ max{d(Ax2n,Bx2n+1),δ(Ax2n,Fx2n),δ(Bx2n+1,Gx2n+1)}

0
ϕ(t)dt

+(1− α)

a∫ D(Ax2n,Gx2n+1)

2

0
ϕ(t)dt

+ b

∫ D(Bx2n+1,Fx2n)

2

0
ϕ(t)dt


≤ α

∫ max{δ(Gx2n−1,Fx2n),δ(Fx2n,Gx2n+1)}

0
ϕ(t)dt

+(1− α)a
∫ δ(Gx2n−1,Gx2n+1)

2

0
ϕ(t)dt

≤ α

∫ max{V2n−1,V2n}

0
ϕ(t)dt+ (1− α)a

∫ V2n−1+V2n
2

0
ϕ(t)dt(2.6)

for n = 1, 2, ....
Now if V2n ≥ V2n−1, then from (2.6) we have,∫ V2n

0
ϕ(t)dt ≤ α

∫ V2n

0
ϕ(t)dt+ (1− α)a

∫ V2n

0
ϕ(t)dt

= (α+ (1− α)a)
∫ V2n

0
ϕ(t)dt

<

∫ V2n

0
ϕ(t)dt,

which is a contradiction. Thus, V2n < V2n−1 and so from (2.6) we have,

(2.7)
∫ V2n

0
ϕ(t)dt ≤ (α+ (1− α)a)

∫ V2n−1

0
ϕ(t)dt.
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Similarly, we have

(2.8)
∫ V2n+1

0
ϕ(t)dt ≤ (α+ (1− α)b)

∫ V2n

0
ϕ(t)dt.

From (2.7) and (2.8), we have∫ Vn

0
ϕ(t)dt ≤ c

∫ Vn−1

0
ϕ(t)dt,

and so, ∫ Vn

0
ϕ(t)dt ≤ cn

∫ V0

0
ϕ(t)dt,

for n = 1, 2, ..., where c = max{α + (1 − α)a, α + (1 − α)b}. Thus, we
have

lim
n→∞

∫ Vn

0
ϕ(t)dt = 0,

which from (2.3) implies that

lim
n→∞

Vn = lim
n→∞

δ(Zn, Zn+1) = 0.

Now, we want to show that

lim
n,m→∞

δ(Zn, Zm) = 0.

For this, it is sufficient to show that

lim
n,m→∞

δ(Z2n, Z2m) = 0.

Suppose that this not true. Then, there is an ε > 0 such that for an
even integer 2k there exist even integers 2m(k) > 2n(k) > 2k such that

(2.9) δ(Z2n(k), Z2m(k)) ≥ ε.

For every even integer 2k, let 2m(k) be the least positive integer exceed-
ing 2n(k) satisfying (2.9) and such that

(2.10) δ(Z2n(k), Z2m(k)−2) < ε.

Now,

ε ≤ δ(Z2n(k), Z2m(k))

≤ δ(Z2n(k), Z2m(k)−2) + δ(Z2m(k)−2, Z2m(k)−1) + δ(Z2m(k)−1, Z2m(k)).

Then, by (2.9) and (2.10), it follows that

(2.11) lim
k→∞

δ(Z2n(k), Z2m(k)) = ε.
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Also, by triangular inequality, we have

∣∣δ(Z2n(k), Z2m(k)−1)− δ(Z2n(k), Z2m(k))
∣∣ ≤ δ(Z2m(k)−1, Z2m(k)).

By using (2.11), we get

(2.12) lim
k→∞

δ(Z2n(k), Z2m(k)−1) = ε.

Now,

0 < δ :=
∫ ε

0

ϕ(t)dt = lim
k→∞

∫ δ(Z2n(k),Z2m(k))

0

ϕ(t)dt

≤ lim
k→∞

∫ δ(Z2n(k),Z2n(k)+1)+δ(Z2n(k)+1,Z2m(k))

0

ϕ(t)dt

= lim
k→∞

∫ δ(Z2n(k)+1,Z2m(k))

0

ϕ(t)dt

= lim
k→∞

∫ δ(Fx2m(k),Gx2n(k)+1)

0

ϕ(t)dt

≤ lim
k→∞

(
α

∫ max{d(Ax2m(k),Bx2n(k)+1),δ(Ax2m(k),Fx2m(k)),δ(Bx2n(k)+1,Gx2n(k)+1)}

0

ϕ(t)dt

+(1− α)

a∫ D(Ax2n(k),Gx2m(k)+1)

2

0

ϕ(t)dt+ b

∫ D(Bx2m(k)+1,F x2n(k))

2

0

ϕ(t)dt


≤ lim

k→∞

(
α

∫ max{δ(Gx2n(k)−1,Fx2m(k)),δ(Gx2n(k)−1,Fx2n(k)),δ(Fx2m(k),Gx2m(k)+1)}

0

ϕ(t)dt

+(1− α)

a∫ δ(Gx2m(k)−1,Gx2n(k)+1)

2

0

ϕ(t)dt+ b

∫ δ(F x2n(k),F x2m(k))

2

0

ϕ(t)dt


≤ lim

k→∞

(
α

∫ max{δ(Z2m(k)−1,Z2n(k)),δ(Z2m(k)−1,Z2m(k)),δ(Z2n(k),Z2n(k)+1)}

0

ϕ(t)dt

+(1− α)

a∫ δ(Z2m(k)−1,Z2n(k)+1)

2

0

ϕ(t)dt+ b

∫ δ(Z2n(k),Z2m(k))

2

0

ϕ(t)dt


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≤ lim
k→∞

(
α

∫ δ(Z2m(k)−1,Z2n(k))

0
ϕ(t)dt

+(1− α)

a∫ δ(Z2m(k)−1,Z2m(k))+δ(Z2m(k),Z2n(k))+δ(Z2n(k),Z2n(k)+1)

2

0
ϕ(t)dt

+b
∫ δ(Z2n(k),Z2m(k))

2

0
ϕ(t)dt


≤ α

∫ ε

0
ϕ(t)dt+ (1− α)(a+ b)

∫ ε

0
ϕ(t)dt

= (α+ (1− α)(a+ b))δ,

which is a contradiction. Therefore, we have

lim
n,m→∞

δ(Zn, Zm) = 0.

Thus, if zn is an arbitrary point in the set Zn, for n = 0, 1, · · · , it follows
that

lim
n,m→∞

d(zn, zm) ≤ lim
n,m→∞

δ(Zn, Zm) = 0.

Therefore, the sequence {zn} and hence any subsequence thereof is a
Cauchy sequence in X.

Now, suppose B(X) is complete. Let {xn} be the sequence defined
by (2.4). Since Bx2n+1 ∈ Fx2n = Z2n, for n = 0, 1, ..., we have

d(Bx2m+1, Bx2n+1) ≤ δ(Z2m, Z2n) < ε,

for m,n ≥ n0, n0 = 1, 2, .... Therefore, by the above, the sequence
{Bx2n+1} is Cauchy, and hence Bx2n+1 → p = Bq ∈ B(X), for some
q ∈ X. But, Ax2n ∈ Gx2n−1 = Z2n−1, by (2.4), so that we have

d(Ax2n, Bx2n+1) ≤ δ(Z2n−1, Z2n) = V2n−1 → 0,

as n→∞. Consequently, Ax2n→p. Moreover, we have for n = 1, 2, 3, ...,

δ(Fx2n, p) ≤ δ(Fx2n, Ax2n) + d(Ax2n, p) = V2n + d(Ax2n, p).
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Therefore, δ(Fx2n, p) → 0. In a similar manner, it follows that δ(Gx2n−1, p)
→ 0. Now, using the inequality (2.2), we have∫ δ(Fx2n,Gq)

0
ϕ(t)dt ≤α

∫ max{d(Ax2n,Bq),δ(Ax2n,Fx2n),δ(Bq,Gq)}

0
ϕ(t)dt

+(1− α)

[
a

∫ D(Ax2n,Gq)
2

0
ϕ(t)dt+ b

∫ D(Bq,Fx2n)
2

0
ϕ(t)dt

]
and so we have∫ δ(Fx2n,Gq)

0
ϕ(t)dt ≤ α

∫ max{d(Ax2n,Bq),δ(Ax2n,Fx2n),δ(Bq,Gq)}

0
ϕ(t)dt

+(1− α)

[
a

∫ δ(Ax2n,Gq)
2

0
ϕ(t)dt+ b

∫ δ(Bq,Fx2n)
2

0
ϕ(t)dt

]
.

We get as n→∞∫ δ(p,Gq)

0
ϕ(t)dt ≤ α

∫ δ(p,Gq)

0
ϕ(t)dt+ (1− α)a

∫ δ(p,Gq)
2

0
ϕ(t)dt

≤ (α+ (1− α)a)
∫ δ(p,Gq)

0
ϕ(t)dt,

which is a contradiction if δ(p,Gq) > 0. Thus, we have δ(p,Gq) = 0 and
so we have {p} = Gq = {Bq}.

ButG(X) ⊆ A(X), and so r ∈ X exists such that {Ar} = Gq = {Bq}.
Now, if δ(Fr,Gq) > 0 so that we have∫ δ(Fr,Gq)

0
ϕ(t)dt ≤ α

∫ max{d(Ar,Bq),δ(Ar,Fr),δ(Bq,Gq)}

0
ϕ(t)dt

+(1− α)

[
a

∫ D(Ar,Gq)
2

0
ϕ(t)dt+ b

∫ D(Bq,Fr)
2

0
ϕ(t)dt

]
,

then we have∫ δ(Fr,p)

0
ϕ(t)dt ≤ alpha

∫ δ(p,Fr)

0
ϕ(t)dt+ (1− α)b

∫ δ(p,Fr)
2

0
ϕ(t)dt

≤ (α+ (1− α)b)
∫ δ(p,Fr)

0
ϕ(t)dt,

which is a contradiction. Thus, we have δ(Fr, p) = 0. It follows that
Fr = {p} = Gq = {Ar} = {Bq}.
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Since Fr = {Ar} and the pair (A,F ) is weakly compatible, then
we obtain Fp = FAr = AFr = Ap. Now, using (2.2) we have, if
δ(Fp,Gq) > 0,∫ δ(Fp,Gq)

0
ϕ(t)dt ≤ α

∫ max{d(Ap,Bq),δ(Ap,Fp),δ(Bq,Gq)}

0
ϕ(t)dt

+(1− α)

[
a

∫ D(Ap,Gq)
2

0
ϕ(t)dt+ b

∫ D(Bq,Fp)
2

0
ϕ(t)dt

]
,

and so∫ δ(Fp,p)

0
ϕ(t)dt ≤ α

∫ d(Fp,p)

0
ϕ(t)dt

+(1− α)

[
a

∫ δ(Fp,p)
2

0
ϕ(t)dt+ b

∫ δ(Fp,p)
2

0
ϕ(t)dt

]

≤ (α+ (1− α)(a+ b))
∫ d(Fp,p)

0
ϕ(t)dt,

which is a contradiction. Thus, δ(Fp, p) = 0 and so Fp = {p} = {Ap}.
Similarly, {p} = Gp = {Bp} if the pair (B,G) is weakly compatible.
Therefore, we obtain {p} = {Ap} = {Bp} = Fp = Gp.

To see that p is unique, suppose that {p′} = {Ap′} = {Bp′} = Fp′ =
Gp′, for some p′ ∈ X. Then, from (2.2), we have∫ δ(Fp,Gp′)

0
ϕ(t)dt ≤ α

∫ max{d(Ap,Bp′),δ(Ap,Fp),δ(Bp′,Gp′)}

0
ϕ(t)dt

+(1− α)

a∫ D(Ap,Gp′)
2

0
ϕ(t)dt+ b

∫ D(Bp′,Fp)
2

0
ϕ(t)dt


and so, ∫ d(p,p′)

0
ϕ(t)dt ≤ (α+ (1− α)(a+ b))

∫ d(p,p′)

0
ϕ(t)dt,

which is a contradiction. Thus, we have p = p′.
The other case (that is assuming the completeness of A(X)) can be

proved by a similar argument as above.
We can prove the following theorems as in proof of Theorem 2.1.
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Theorem 2.2. Let A and B be mappings of a metric space (X, d) into
itself and F and G be mappings from X into B(X) such that

F (X) ⊆ B(X) and G(X) ⊆ A(X).

Also, the mappings A,B, F and G satisfy the following inequality,∫ δ(Fx,Gy)

0
ϕ(t)dt

≤ α

∫ max{d(Ax,By),δ(Ax,Fx),δ(By,Gy),
D(Ax,Gy)

2
,
D(By,Fx)

2
}

0
ϕ(t)dt,

for all x, y ∈ X, where 0 ≤ α < 1 and ϕ : R+ → R+ is a Lebesgue-
integral mapping which is summable, non-negative and such that∫ ε

0
ϕ(t)dt > 0 for all ε > 0.

Suppose that any one of A(X) or B(X) is complete. If both pairs (A,F )
and (B,G) are weakly compatible, then there exists a unique z ∈ X such
that {z} = {Az} = {Bz} = Fz = Gz.

Theorem 2.3. Let A and B be mappings of a metric space (X, d) into
itself and F and G be mappings from X into B(X) such that

F (X) ⊆ B(X) and G(X) ⊆ A(X).

Also, the mappings A,B, F and G satisfy the following inequality∫ δ(Fx,Gy)

0
ϕ(t)dt

≤ ψ

(∫ max{d(Ax,By),δ(Ax,Fx),δ(By,Gy),
D(Ax,Gy)

2
,
D(By,Fx)

2
}

0
ϕ(t)dt

)
,

for all x, y ∈ X, where ψ : R+ → R+ is nondecreasing and ψ(0) =
0, ψ(t) < t, for t > 0, and ϕ : R+ → R+ is a Lebesgue-integral mapping
which is summable, non-negative and such that∫ ε

0
ϕ(t)dt > 0 for all ε > 0.

Suppose that any one of A(X) or B(X) is complete. If both pairs (A,F )
and (B,G) are weakly compatible, then there exists a unique z ∈ X such
that {z} = {Az} = {Bz} = Fz = Gz.
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Remark 2.4. If ϕ(t) = 1 in Theorem 2.3, then we obtain a generalized
version of Theorem 1.3.

Remark 2.5. By Theorem 2.1 (or Theorem 2.2 or Theorem 2.3), we
have a generalized version of and Theorem 2.1 of [4], Theorem 2.1 of [15]
for multivalued mappings.

Remark 2.6. Similarly, we can have several fixed point theorems in the
literature as special cases of Theorems 2.1, 2.2 and 2.3.
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