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ON THE RATIONAL RECURSIVE SEQUENCE

XN+1 = γXN−K + (AXN + BXN−K) / (CXN −DXN−K)

E.M.E. ZAYED AND M.A. EL-MONEAM*

Communicated by Mohammad Asadzadeh

Abstract. Our main objective is to study some qualitative behav-
ior of the solutions of the difference equation

xn+1 = γxn−k + (axn + bxn−k) / (cxn − dxn−k) , n = 0, 1, 2, ...,

where the initial conditions x−k,..., x−1, x0 are arbitrary positive
real numbers and the coefficients γ, a, b, c and d are positive con-
stants, while k is a positive integer number.

1. Introduction

Our goal is to investigate some qualitative behavior of the solutions
of the difference equation,

(1.1) xn+1 = γxn−k +
axn + bxn−k

cxn − dxn−k
, n = 0, 1, 2, ...,

where the initial conditions x−k,..., x−1, x0 are arbitrary positive real
numbers and the coefficients γ, a, b, c and d are positive constants, while
k is a positive integer number. The case where any of α, a, c, d is allowed
to be zero gives different special cases of the equation (1) which are
studied by many authors (see for example, [3, 6, 8, 12, 17, 29]). For

MSC(2000): Primary: 39A10, 39A11, 39A99; Secondary: 34C99.

Keywords: Difference equations, prime period two solution, locally asymptotically stable,

global attractor, convergence.

Received: 15 July 2008, Accepted: 07 March 2009.

∗ Corresponding author

c© 2010 Iranian Mathematical Society.

103



104 Zayed and El-Moneam

related work, see also [1, 2, 4, 5, 7, 9-11, 13-16, 18-28, 30–40]. The
study of these equations is challenging and rewarding and still in its
infancy. We believe that the nonlinear rational difference equations are
of paramount importance in their own rights. Furthermore, the results
about such equations offer prototypes for the development of the basic
theory of the global behavior of nonlinear difference equations. Note
that Eq. (1.1) can be considered as a generalization of that obtained in
[8, 33].

Definition 1.1. A difference equation of order (k + 1) is of the form

(1.2) xn+1 = F (xn, xn−1, ..., xn−k), n = 0, 1, 2, ...,

where F is a continuous function which maps some set Jk+1 into J and
J is a set of real numbers. An equilibrium point x̃ of this equation
is a point that satisfies the condition x̃ = F (x̃, x̃, ...., x̃) . That is, the
constant sequence {xn}∞n=−k with xn = x̃, for all n ≥ −k, is a solution
of that equation.

Definition 1.2. Let x̃ ∈ (0,∞) be an equilibrium point of the difference
equation (1.2). Then, we have:
(i) An equilibrium point x̃ of the difference equation (1.2) is called locally
stable if for every ε > 0 there exists δ > 0 such that, if x−k, ..., x−1, x0 ∈
(0,∞) with |x−k − x̃|+ ... + |x−1 − x̃|+ |x0 − x̃| < δ, then |xn − x̃| < ε,
for all n ≥ −k.

(ii) An equilibrium point x̃ of the difference equation (1.2) is called
locally asymptotically stable if it is locally stable and there exists γ > 0
such that, if x−k, ..., x−1, x0 ∈ (0,∞) with |x−k − x̃|+ ... + |x−1 − x̃|+
|x0 − x̃| < γ, then

lim
n→∞

xn = x̃.

(iii) An equilibrium point x̃ of the difference equation (1.2) is called a
global attractor if x−k, ..., x−1, x0 ∈ (0,∞), then

lim
n→∞

xn = x̃.

(iv) An equilibrium point x̃ of the equation (1.2) is called globally asymp-
totically stable if it is locally stable and a global attractor.

(v) An equilibrium point x̃, of the difference equation (2) is called un-
stable if it is not locally stable.
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Definition 1.3. A sequence {xn}∞n=−k is said to be periodic with period
p if xn+p = xn, for all n ≥ −k. A sequence {xn}∞n=−k is said to be
periodic with prime period p if p is the smallest positive integer having
this property.

The linearized equation of the difference equation (1.2) about the
equilibrium point x̃ is the linear difference equation,

(1.3) yn+1 =
k∑

i=0

∂F (x̃, x̃, ..., x̃)
∂xn−i

yn−i.

Now, assume that the characteristic equation associated with (1.3) is

(1.4) p (λ) = p0λ
k + p1λ

k−1 + ... + pk−1λ + pk = 0,

where,
pi = ∂F (x̃, x̃, ..., x̃) /∂xn−i.

Theorem 1.1. (See [18]). Assume that pi ∈ R, i = 1, 2, ..., and k ∈
{0, 1, 2, ...}. Then,

(1.5)
k∑

i=1

|pi| < 1

is a sufficient condition for the asymptotic stability of the difference
equation,

(1.6) xn+k + p1xn+k−1 + ..... + pkxn = 0, n = 0, 1, 2, ....

Theorem 1.2. (The linearized stability theorem; see[15,18,19]).
Suppose F is a continuously differentiable function defined on an open
neighbourhood of the equilibrium x̃. Then, the following statements are
true.
(i) If all roots of the characteristic equation (1.4) of the linearized equa-
tion (1.3) have absolute value less than one, then the equilibrium point x̃
is locally asymptotically stable.
(ii) If at least one root of Eq.(1.4) has absolute value greater than one,
then the equilibrium point x̃ is unstable.

The following Theorem will be useful for the proof of our main results.
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Theorem 1.3. (See[15, p.18]) . Let F : [a, b]k+1 −→ [a, b] be a continu-
ous function, where k is a positive integer, and [a, b] is an interval of real
numbers and consider the difference equation (1.2). Suppose that F sat-
isfies the following conditions:
(i) For every integer i with 1 ≤ i ≤ k+1, the function F (z1, z2, ..., zk+1)
is weakly monotonic in zi, for fixed z1, z2, ..., zi−1, zi+1, ..., zk+1.
(ii) If (m,M) is a solution of the system

(1.7) m = F (m1,m2, ...,mk+1) and M = F (M1,M2, ...,Mk+1),

then m = M, where for each i = 1, 2, ..., k + 1, we set

mi =

 m if Fis nondecreasing in zi

M if Fis nonincreasing in zi

and

Mi =

 M if Fis nondecreasing in zi

m if Fis nonincreasing in zi.

Then, there exists exactly one equilibrium point x̃ of the difference equa-
tion (1.2), and every solution of (1.2) converges to x̃.

2. Periodic solutions

Theorem 2.1. If k is an even positive integer and c 6= d, then Eq.
(1.1) has no positive solution of prime period two.

Proof. Assume that there exists a distinctive positive solution

..., P,Q, P,Q, ...

of prime period two of Eq. (1.1). If k is even, then xn = xn−k. It
follows from Eq. (1.1) that

P = γQ +
aQ + bQ

cQ− dQ
and Q = γP +

aP + bP

cP − dP
,

provided that c 6= d. Hence, we have (P −Q) (γ + 1) = 0. Thus, P = Q,
which is a contradiction. The proof of Theorem 2.1 is now complete. �
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Theorem 2.2. If k is an odd positive integer, γ > 1, and b > a, then
the difference equation (1.1) has no positive solution of prime period
two.

Proof. Assume that there exists a distinctive positive solution

..., P,Q, P,Q, ...

of prime period two of Eq. (1.1). If k is odd, then xn+1 = xn−k. It
follows from the difference equation (1.1) that

P = γP +
aQ + bP

cQ− dP
and Q = γQ +

aP + bQ

cP − dQ
.

Consequently, we obtain:

(2.1) cPQ− dP 2 = γcPQ− γdP 2 + aQ + bP,

and

(2.2) cPQ− dQ2 = γcPQ− γdQ2 + aP + bQ.

By subtracting, we deduce:

(2.3) P + Q =
b− a

d (γ − 1)
,

while by adding we obtain:

(2.4) PQ = − a (b− a)
d (c + d) (γ − 1)2

.

Since γ > 1 and b > a, then PQ is negative. But P and Q are both
positive, and we have a contradiction. Therefore, the proof of Theorem
2.2 is complete. �

Theorem 2.3. If k is an odd positive integer, then the necessary and
sufficient condition for the difference equation (1.1) to have a positive
prime period two solution is that the inequality

(2.5) (c + d) (a− b) > 4ad
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is valid, provided that a > b and 0 < γ < 1.

Proof. First, suppose that there exists a positive prime period two so-
lution

..., P,Q, P,Q, ...

of the difference equation (1.1). If k is odd, then xn+1 = xn−k. We
shall prove that the condition (2.5) holds. It follows from the difference
equation (1.1) that

P = γP +
aQ + bP

cQ− dP
and Q = γQ +

aP + bQ

cP − dQ
.

Consequently, we have,

(2.6) cPQ− dP 2 = γcPQ− γdP 2 + aQ + bP,

and

(2.7) cPQ− dQ2 = γcPQ− γdQ2 + aP + bQ.

By subtracting (2.6) from (2.7), we deduce:

(2.8) P + Q =
a− b

d (1− γ)
.

while, by adding (2.6) and (2.7), we have

(2.9) PQ =
a (a− b)

d (c + d) (1− γ)2
,

where a > b and 0 < γ < 1. Assume that P and Q are two positive
distinct real roots of the quadratic equation,

(2.10) t2 − ( P + Q) t + PQ = 0.

Thus, we deduce:

(2.11)
(

a− b

d (1− γ)

)2

>
4a (a− b)

d (c + d) (1− γ)2
.

From (2.11), we obtain the condition (2.5). Thus, the necessary condi-
tion is satisfied. Conversely, suppose that the condition (2.5) is valid.
Then, we deduce immediately from (2.5) that the inequality (2.11) holds.
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Consequently, there exist two positive distinct real numbers P and Q
such that

(2.12) P =
(a− b) + β

2d (1− γ)
and Q =

(a− b)− β

2d (1− γ)
,

where β =
√

(a− b)2 − 4ad (a− b) / (c + d). Thus, P and Q represent
two positive distinct real roots of the quadratic equation (2.10). Now,
we prove that P and Q form a positive prime period two solution of the
difference equation (1.1). To this end, we assume that

x−k = P, x−k+1 = Q, ..., x−1 = P, and x0 = Q.

We wish to show that

x1 = P and x2 = Q.

To this end, we deduce from the difference equation (1.1) that

(2.13) x1 = γx−k +
ax0 + bx−k

cx0 − dx−k
= γP +

aQ + bP

cQ− dP
.

Thus, we deduce from (2.12) and (2.13) that

x1 − P =
aQ + bP

cQ− dP
− (1− γ) P(2.14)

=
aQ + bP − c (1− γ) PQ + d (1− γ) P 2

cQ− dP
=

a
[

(a−b)−β
2d(1−γ)

]
+b

[
(a−b)+β
2d(1−γ)

]
−c (1−γ)

[
a(a−b)

d(c+d)(1−γ)2

]
+d (1−γ)

[
(a−b)+β
2d(1−γ)

]2

c
[

(a−b)−β
2d(1−γ)

]
−d

[
(a−b)+β
2d(1−γ)

]
.
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Multiplying the denominator and numerator of (2.14) by 4d2 (1−γ)2 ,
we get:

x1 − P =(2.15)

4d2 (1− γ)2
(
a

[
(a−b)−β
2d(1−γ)

]
+ b

[
(a−b)+β
2d(1−γ)

]
− c (1− γ)

[
a(a−b)

d(c+d)(1−γ)2

])
4d2 (1− γ)2

(
c
[

(a−b)−β
2d(1−γ)

]
− d

[
(a−b)+β
2d(1−γ)

])

+
4d2 (1− γ)2

(
d (1− γ)

[
(a−b)+β
2d(1−γ)

]2
)

4d2 (1− γ)2
(
c
[

(a−b)−β
2d(1−γ)

]
− d

[
(a−b)+β
2d(1−γ)

])
=

2ad (1−γ) [(a−b)−β]+2bd (1−γ) [(a−b)+β]−4cd (1−γ)
[

a(a−b)
(c+d)

]
2cd (1− γ) [(a− b)− β]−2d2 (1−γ) [(a−b)+β]

+
d (1− γ) [(a− b) + β]2

2cd (1− γ) [(a− b)− β]− 2d2 (1− γ) [(a− b) + β]

=
2a [(a− b)− β] + 2b [(a− b) + β]− 4c

[
a(a−b)
(c+d)

]
+ [(a− b) + β]2

2 [c [(a− b)− β]− d [(a− b) + β]]

=
2 (a−b) (a+b)−2 (a−b) β−4c

[
a(a−b)
(c+d)

]
+(a− b)2+2 (a−b) β+β2

2 [c [(a− b)−β]− d [(a− b) + β]]

=
2

(
a2 − b2

)
− 4c

[
a(a−b)
(c+d)

]
+ (a− b)2 + β2

2 [c [(a− b)− β]− d [(a− b) + β]]

=
2

(
a2 − b2

)
− 4c

[
a(a−b)
(c+d)

]
+ (a− b)2 + (a− b)2 − 4ad(a−b)

c+d

2 [c [(a− b)− β]− d [(a− b) + β]]
= 0.

Thus, x1 = P. Similarly, we can show,

x2 = γx1−k +
ax1 + bx1−k

cx1 − dx1−k
= γQ +

aP + bQ

cP − dQ
= Q.

Using the mathematical induction, we have,

xn = P and xn+1 = Q, for all n ≥ −k.

Thus, the difference equation (1.1) has a positive prime period two so-
lution,

..., P,Q, P,Q, ...

Hence, the proof is now complete. �
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3. Local stability of the equilibrium point

Here, we study the local stability character of the solutions of the dif-
ference equation (1.1) . The equilibrium points of the difference equation
(1.1) are given by the relation

(3.1) x̃ = γx̃ +
ax̃ + bx̃

cx̃− dx̃
.

If (1− γ) (c− d) > 0, then the only positive equilibrium point x̃ of the
difference equation (1.1) is given by

(3.2) x̃ =
a + b

(1− γ) (c− d)
,

where 0 < γ < 1 and c > d. Let F : (0,∞)k+1 −→ (0,∞) be a
continuous function defined by

(3.3) F (u0, u1) = γu1 +
au0 + bu1

cu0 − du1
,

provided that cu0 6= du1. Therefore,

∂F (u0, u1)
∂u0

= − (ad + bc) u1

(cu0 − du1)
2 and

∂F (u0, u1)
∂u1

= γ+
(ad + bc) u0

(cu0 − du1)
2 .

(3.4)

Then, we see that

∂F (x̃, x̃)
∂u0

= −(1− γ) (ad + bc)
(a + b) (c− d)

= ρ0

and
∂F (x̃, x̃)

∂u1
= γ +

(1− γ) (ad + bc)
(a + b) (c− d)

= ρ1.

Then, the linearized equation of the difference equation (1.1) about x̃ is:

(3.5) yn+1 − ρ0 yn − ρ1 yn−k = 0.

Theorem 3.1. Assume that 0 < γ < 1, c > d and

(3.6) 2 (1− γ) (ad + bc) + γ (a + b) (c− d) < (a + b) (c− d) .

Then, the equilibrium point x̃ of the difference equation (1.1) is locally
asymptotically stable.
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Proof. From (3.5), we get:

|ρ0|+ |ρ1| =
∣∣∣∣− (1− γ) (ad + bc)

(a + b) (c− d)

∣∣∣∣ +
∣∣∣∣γ +

(1− γ) (ad + bc)
(a + b) (c− d)

∣∣∣∣
=

(1− γ) (ad + bc)
(a + b) (c− d)

+ γ +
(1− γ) (ad + bc)
(a + b) (c− d)

=
2 (1− γ) (ad + bc) + γ (a + b) (c− d)

(a + b) (c− d)

=
2 (1− γ) (ad + bc) + γ (a + b) (c− d)

(a + b) (c− d)
.(3.7)

From (3.6) and (3.7), we deduce that

(3.8) |ρ0|+ |ρ1| < 1.

It is followed by Theorem 1.1 that Eq. (1.1) is locally asymptotically
stable. Thus, the proof of Theorem 3.1 is now complete. �

4. Global attractor of the equilibrium point

Here, we investigate the global attractivety character of the solutions
of the difference equation (1.1) .

Theorem 4.1. The equilibrium point x̃ of the difference equation (1.1)
is a global attractor if 0 < γ < 1.

Proof. By using (3.4), we can see that the function F (u0, u1) which is
defined by (3.3) is decreasing in u0 and increasing in u1. Suppose that
(m,M) is a solution of the system

(4.1) m = F (M,m) and M = F (m, M).

Then, we get:

m = F (M,m) = γm +
aM + bm

cM − dm
,

M = F (m,M) = γM +
am + bM

cm− dM
,

and we have,

(4.2)
aM + bm

m (cM − dm)
= (1− γ) and

am + bM

M (cm− dM)
= (1− γ) .
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From (4.2) we deduce that M = m. It follows by Theorem 1.3 that x̃
is a global attractor of the difference equation (1.1) . Thus, the proof of
Theorem 4.1 is now complete. �
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