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ITERATIVE METHODS FOR EQUILIBRIUM
PROBLEMS, VARIATIONAL INEQUALITIES AND
FIXED POINTS

S. SAEIDI

Communicated by Heydar Radjavi

ABSTRACT. We introduce iterative methods for finding a common
element of the set of solutions of a system of equilibrium problems,
the set of fixed points for an infinite family of nonexpansive map-
pings and a family of strictly pseudocontractive mappings, and the
set of solutions of the variational inequalities for a family of a-
inverse-strongly monotone mappings in a Hilbert space. We estab-
lish some weak and strong convergence theorems of the sequences
generated by our proposed schemes. The strong convergence results
are obtained via the CQ method.

1. Introduction

Let C be a nonempty closed convex subset of a Hilbert space H. Let
F : C x C — R be a bifunction. The equilibrium problem for F' is to
determine its equilibrium points; i.e., the set

EP(F):={zxeC: F(x,y) >0Vy € C}.

Let G = {F;}icr be a family of bifunctions from C' x C to R. The
system of equilibrium problems for G = {F;};cs is to determine common
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equilibrium points for G = {F;};ey; i.e., the set
(1.1) EP(G) ={zeC: Fi(z,y) >0Vyec CViel}

Many problems in applied sciences, such as monotone inclusion prob-
lems, saddle point problems, variational inequality problems, minimiza-
tion problems, Nash equilibria in noncooperative games, vector equilib-
rium problems, as well as certain fixed point problems reduce to finding
some element of EP(F); see [3, 10, 11]. The formulation (1.1) extends
this formalism to systems of such problems, covering in particular vari-
ous forms of feasibility problems [2, 9].
Recall that a mapping S of C into H is called nonexpansive if

1Sz =Syl < llz —yll, Vz,yeC.

We denote by Fix(S), the set of fixed points of S.
S is strictly pseudocontractive if there exists k with 0 < k < 1 such
that

1Sz — Syl> <l =yl + Kll(Z = S)a — (I = S)y|P, for all .y € C.

If kK =0, then S is nonexpansive.

Finding an optimal point in the intersection of the fixed point sets
of a family of nonexpansive mappings is a task arising frequently in
various areas of mathematical sciences and engineering. For example,
the well-known convex feasibility problem reduces to finding a point
in the intersection of the fixed point sets of a family of nonexpansive
mappings; see, e.g., [2, 8].

Recall that a mapping A : C — H is called a-inverse-strongly mono-
tone [4], if there exists a positive real number a such that

(Al‘ - Ayvx - y> > a||Ax - AyH27 V%?/ eC.

It is easy to see that if A: C — H is a-inverse-strongly monotone, then

it is a é—LipSChitZian mapping.
Let A: C' — H be a mapping. The classical variational inequality

problem is to find v € C' such that
(1.2) (Au,v —u) >0, Yv e C.

The set of solutions of variational inequality (1.2) is denoted by
VI(C,A). Put A =1—T, where T : C — H is a strictly pseudo-
contractive mapping with k. It is known that A is 177"—inverse—stromgly
monotone and A~1(0) = Fiz(T) = {z € C : Tx = z}.
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Recently, under certain appropriate conditions, Tada and Takahashi
[21] obtained weak and strong convergence theorems for finding a com-
mon element of EP(F) and Fiz(S), where F is a bifunction and S a
nonexpansive mapping. Related work can also be found in [6, 7, 14, 17,
18, 19, 21, 26].

Here, motivated by [18, 21], we introduce iterative algorithms for find-
ing a common element of the set of solutions of a system of equilibrium
problems, the set of common fixed points for an infinite family of nonex-
pansive mappings and the set of solutions of variational inequalities for a
family of a-inverse-strongly monotone mappings from C into H. More-
over, we apply our results to the problem of finding a common fixed
point of a family of strictly pseudocontractive mappings. Our results
present extentions of several existing results.

2. Preliminaries

Let C be a nonempty closed and convex subset of H. Let F': CxC —
R be a bifunction. The equilibrium problem for F' is to determine its
equilibrium points; i.e., the set

EP(F):={zxeC: F(z,y) >0Vy e C}.
Given any 7 > 0, the operator J!" : H — C defined by
1
JE(z) = {zEC:F(z,y)—F;(y—z,z—az) >0vVy e C}
is called the resolvent of F'; see [10].

Lemma 2.1. (See [10]) Let C be a nonempty closed convex subset of H
and F : C x C — R satisfy

(Al) F(x,z) =0 for all z € C;
(A2) F is monotone; i.e., F(z,y) + F(y,x) <0 for all z,y € C.
(A3) for all x,y,z € C,

lign iglfF(tz + (1 —-t)z,y) < F(z,y);
(A4) for all x € C, y — F(z,y) is convex and lower semicontinuous.

Then,
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(1) JE is single-valued;

(2) JE is firmly nonexpansive; i.e.,

HJTF‘T_JrFy‘P < <J7F.T—ny,.’1}—y>, fO’f’ allx7yeH;

(3) fiz(J[) = EP(F);
(4) EP(F) is closed and convez.

Recall that the metric (nearest point) projection Po from a Hilbert
space H to a closed convex subset C of H is defined as follows: given
x € H, Poz is the only point in C' with the property,

|z — Pox| = nf{[lz —y| - y € C}.
It is known that Po is a nonexpansive mapping and satisfies:
(2.1)  ||Pcx — Poyl|® < (Pox — Poy,z —y), Va,y € H.
P is characterized as follows:
y=Porx <— (z—y,y—2)>0, Vze C.
In the context of the variational inequality problem, this implies that
(2.2) ueVI(C,A) <= u= Po(u— NAu), Y\ > 0.

A set-valued mapping T : H — 2 is said to be monotone, if for all
x,y € H, f € Tx, and g € Ty we have (f — g,z —y) > 0. A monotone
mapping T : H — 2! is said to be maximal, if the graph G(T) of T
is not properly contained in the graph of any other monotone mapping.
It is known that a monotone mapping is maximal, if and only if for
(x,f)e HxH,(f —g,x—y) >0,Y(y,9) € G(T) we have f € Tz. Let
A : C — H be an inverse-strongly monotone mapping and let Nov be
the normal cone to C' at v € C} i.e.,

Nev={we H: (v—u,w) >0,Vu € C},

and define,
| Av+ Nev, veC,
Tv= { 0, v¢gC.
Then, T is maximal monotone and 0 € T if and only if v € VI(C, A)
(see [12, 16]). It is easy to show that for given A € [0, 2¢], the mapping
(I —XA) : C — H is nonexpansive.
Below, lemmas 2.2 and 2.3 were proved in [24].
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Lemma 2.2. Let {a,} be a sequence of real numbers such that 0 < a <
an <b <0, for alln € N. Let {v,} and {w,} be sequences of H such
that
limsup ||v,]| < ¢, limsup ||w,] < ¢
n—oo n—oo

and

lim sup ||apvn + (1 — an)wy|| = ¢, for some c > 0.
n—oo

Then, lim, . [|vn, — wy|| = 0.

Lemma 2.3. Let C be a nonempty closed convex subset of H. Let {x,}
be a sequence in H. Suppose that, for all y € C,

[Znt1 =yl < llzn =y,

for every n € N. Then, {Pc(xy)} converges strongly to some z € C.

Definition 2.4. Let {S; : C' — C} be an infinite family of nonexpansive
mappings and {u;} be a nonnegative real sequence with 0 < p; < 1,
Vi > 1. For any n > 1, define a mapping W,, : C' — C as follows:

Un,n—H =1,

Un,n = NnSnUn,n—‘rl + (1 - /an)Ia

Un,n—l = Nn—lSn—lUn,n + (1 - ,Ufn—l)lv

Unjie = eSkUn g1 + (1 — pg) 1,
Uno—1 := p—1Sk—1Un e + (1 — pi—1)1,

Ung = p252Un 3 + (1 — p2)1,
(2.3) Wn = Un,l = ,ulSlUng + (1 - Hl)I-

Such a mapping W is nonexpansive from C' to C' and is called the
W-mapping generated by S, Sn—1,...,51 and fy, fhn—1,- -+, f41-

The concept of W-mappings was introduced in [22, 23]. It is now one
of the main tools in studying convergence of iterative methods for ap-
proaching a common fixed of nonlinear mappings; more recent progresses
can be found in [1, 5, 7, 13, 25] and the references cited therein.
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Lemma 2.5. (Shimoji et al., [20]) Let C be a nonempty closed convex
subset of a Hilbert space H, {S; : C — C'} be an infinite family of non-
expansive mappings with N2, Fix(S;) # 0, and {p;} be a real sequence
such that 0 < p; <b< 1,Vi>1. Then,

(1) W, is nonexpansive and Fix(W,) = NI’ Fiz(S;) for each n > 1;
(2) for each x € C and for each positive integer k, lim, .o Up 2 exists;

(3) the mapping W : C' — C' defined by

Wz = lim Wyx = lim U,
n—oo n—oo
is a nonexpansive mapping satisfying Fix(W) = N2, Fix(S;) and it is
called the W -mapping generated by S1,52,... and p1, pa, ... .

3. Strong convergence of a general iterative method

The following is our main result.

Theorem 3.1. Let C be a nonempty closed convexr subset of a Hilbert
space H, ¢ = {S; : C — C} an infinite family of nonexpansive map-
pings, G = {F; : j = 1,...,M} a finite family of bifunctions from
C x C into R which satisfy (A1)-(A4), A={Ax:k=1...N} a finite
family of a-inverse-strongly monotone mappings from C into H, and
F :=n_VI(C, Ax) N Fiz(p) N EP(G) # 0.

Let {ay} be a sequence in [a,1] for some a € (0,1), {M\pn}i | se-
quences in [c,d] C (0,2«) and {Tj,n}j]\il sequences in (0,00) such that
liminf, r;, > 0 for every j € {1,...,M}. For everyn € N, let W,, be
the W -mapping defined by (2.3).

If {z,} is the sequence generated by x1 = x € H and ¥Yn > 1,

(=I5 TSR TR,
Un = Pc(I - )\N,nAN) e Pc'(I - AQ’nAQ)PC(I - )\17nA1)un,
Yn = (1 — an)Tn + anWpon,
Cn={z€H:|lyn — 2| < |lzn — 2]},
Qn={2€H:(xy,—z,x—x,) >0},

Tnt1 = Po,ng, (%),

then the sequences {xy} and {y,} converge strongly to Pr(x).
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Proof. Take
T = Jpk 2 O Yk e {1, M},
Tn =1,
and
PF = Po(I—MpnAp). . . Po(I—AgnA2)Po(I =M nAr), VE € {1,...,N},
772 = 1.

So, we can write
Yyn = (1 —ap)zpn + aanP,]LV‘waxn.

We shall divide the proof into several steps.

Step 1. The sequence {z,} is well defined.

Proof of Step 1. The sets C,, and @Q,, are closed and convex subsets
of H for every n € N; see [15, 21]. So, C,, N Qy, is a closed convex subset
of H for any n € N. Let v € F. Since, for each k € {1,..., M}, Jgkn is

nonexpansive, and from Lemma 2.1, we have
B un —pll = 17 20 — ol = 17 2 — T 0|l < Jlan —oll.
On the other hand, since Ay : C' — H is a-inverse-strongly monotone

and A, € [c,d] C [0,20a], then Po(I — A, Ag) is nonexpansive. Thus

PN is nonexpansive. From Lemma 2.5 and (2.2), we have PNv = v =

W,v. It follows that
lyn = vl < (1 = an)llzn — o]l + @[ Wa Py T @0 — o

3:2) < (1 —an)llzn — vl + anllzn — vl = |20 — o]

So, we have v € Cy; thus, F C Cy, for every n € N. Next, we show by
induction that

FCC,NQn
for each n € N. Since F C C; and Q1 = H, we get F C C1 N Q.
Suppose that F C CpNQy for k € N. Then, there exists zp11 € CrNQy
such that x41 = Pc,nq, (z). Therefore, for each z € C N Q, we have
(Thy1 — 2, — 2p41) > 0.

So, we get
FCCrNQr C Qpe1-
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From this and F C C), (Vn), we have F C Cii1 N Qk11. This means
that the sequence {x,} is well defined.

Step 2. The sequences {z,}, {yn}, {TFz,}}, and {PFu,} | are
bounded and

(3.3) lim ||z, — x| = ¢, for some ¢ € R.
n—oo

Proof of Step 2. From z,4+1 = Pc,nq, (), we have
[2nt1 =z <]z =2, Yz € Co N Q.
Since Pr(x) € F C Cp, N Qy, we have
(3.4) [ent1 =zl < [|PF(z) — ],

for every n € N. Therefore, {z,} is bounded. From (3.1) and (3.2), the
sequences {JFx, 1L, {Pku, }Y | and {y,} are also bounded.
It is easy to show z, = Pg, (x). From this and z,4+1 € @y, we have

[z = |l <[l = zniall;
for every n € N. Since {z,} is bounded, there exists ¢ € R such that
(3.3) holds.

Step 3. limy, o0 || Zn — Zny1|| = 0.

Proof of Step 3. Since z, = Py, (z), Tnt1 € Qn and (zy, + 2n41)/2 €
Q., we have
Tn + Tnti 2

& = zul? < o — 22

1

1
= Hi(w —xn) + (7 — xn-&-lHQ

2
1 1 1
= §||93 — 2a|* + §||55 — Tp | — 1”% — Tyt

So, we get

1 1 1

2z = Znpr | < llz = a1 - gllz = Znl|*.
From (3.3), we obtain lim, .o |2 — Zn11]|?> = 0.

Step 4. limy, o0 || Zn, — ynl|| = 0.
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Proof of Step 4. From x,4; € C,, we have

|lzn — ynH <z — zppa|l + Hxn-&-l — Ynll < 2|z — xn+1H'

Now, apply Step 3.

Step 5. lim, oo | TF2, — TFH 2, || =0, VE € {0,1,...,M —1}.

Proof of Step 5. Let v € F and k € {0,1,.. —1}. Since Jrk’flln
firmly nonexpansive, we obtain
k+1 2 F) F k.. |12
lv = T wnll® = 1m0 — el Tl

g
<{ Tﬁqlnjkxn v,jn Ty, — V)
<||Jrk’it£nj"a:n —l* T = ll* = | Twn — Tl Thwal?).
It follows that
1T+ e = 01> <l = ol* = | Tpen — T .
Therefore, by the convexity of ||.||?, we have
lyn = ol* < (1 = an)llzn — 0] + an[Wavy — vl
< (1 —an)lz, - UHQ + anerlerlwn - UH2
< (1= an)llzn = v + an(llzn = 0] = Ty — T4+ anll?)
= [lon — ”HQ - an”nzlfxn - jr]fonHQ-
Since {an} C [a, 1], we get
aHwan - jr]erlxn”Q < an”uﬁcwn - jr]erlxn”Q

< ln = 01> = llyn = 01> < 20 =yl (lzn = vl + lyn —ol)).
From this and Step 4, we get the desired result.

Step 6. limy, oo ||Zn, — Whoy| = 0.

Proof of Step 6. Observe that
anWpvy, = yn — (1 — an)xp.
So, we have
allzn, — Wovn|| < anllzn — Whv,||
= lyn — (1 — an)rn — anznll < |lyn — z4l|.

From this and Step 4, we obtain lim,,_,« ||z, — Whv,|| = 0.
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Step 7. limy oo ||PFu, — P lu,|| =0, VE € {0,1,...,N —1}.

Proof of Step 7. Since {A; : k =1... N} is a-inverse-strongly mono-
tone, by the the choice of {\,,} for given v € F and k € {0,1,...,N —
1}, we have
1Pa =
= [|1Po( = Mot 1,0 Ak+1) P, — Po(I = Aer1nApr)o]|?
<N = Mot 1,0Ak41)Pliug — (I = Nt 1.n A1)
< 1Prun = 0l + Mot 10Nt 1,0 = 20) | A1 P — Apgao]®
<l = ol* + e(d = 20)[| Ap 11 Pun — Agr1v]®,
From this, we have
lyn = ol < (1 = an)llzn — 0l + anl[Wa Py up — vl
< (1 —an)lfan - U||2 + an\|77,lf+1un - UH2
< (1= an)llzn = ol + an(llen = vl* + ¢(d = 20) | A1 Prun — Agr10]?)
= |0 — v[|* + c(d — 20) || Ap 41 PFun — Agirv]?.
So,
k 2 2 2
(2o — d)an|| Ap 1 P — Ap10]|” < lzn — 0" = llyn — v
< Mzn = ynll(l2n = vl + llyn —©l)).
Since oy, C [a, 1], we obtain
(3.5) | Ags1PEu, — Aprv]| — 0 (n — o0).

From (2.1) and the fact that I — A1 ,Ak41 is nonexpansive, we have
1Pa = 012 = |Pe( = 1,0 Ari1)Prtn — Pe(I = Aps1,n Ao
< A{(Phun — Met1.0Ak41Phun) — (0 = Moy 1,0 Ak10), P, — v)

1
=5 (Phtn = A1, n Ak i1 Phtn) = (0= A1 Ag110) |2+ | PRy — o2
—[[(Paun = A1 Ak11Prun) = (V= Mey1nAgp1v) — (PR luy — )%}
1
< LIPEun — vl + [PE o
—[1Prun = Pyt — M1, n(Aps1 Prtn — Agr10)[1P}

1
= S U1 Prun = vl” + 1Py = 0[* = [[Prun — P |

+2)‘k+1,n<7)7]fun - Pr’f““ny Ak+17jrlfun — Ap1v)

_)‘%Jrl,nHAk-i-l,PﬁUn — Apy1v]?}.
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This implies that
1P = 0|2 < [PRun — vl|* = | Prun — PR unlf?
F2X 1,0 Py, — PE oy, A1 Pluy, — Agy1v)
A1l Ak 1Phun — Aol
< lan — ”HQ - HPT’fun - Prl§+1un‘|2
2N 10 Py, — PE g, A1 Pl — Apyv).
From this, we have
lyn = ol < (1 = an)llzn — o[ + an|| Py un — of|?
< (1= an)llzn = ol + an{llzn — ol = |Prun — P u,|?
21,0 PRy — PY g, Ajp1 PRy, — Apiav)}
< |z — U||2 - O‘nnpﬁun - P£+lun"2
2211, PRun — Po || Ag i Prun — Aol
which implies,
aHPﬁun - PﬁﬂunHQ < Oénupsun - P7]§+1un‘|2 < ln = vl1* = llyn = v[?
+2)‘k+1,nHP¢’fun - Pﬁ+1un” ||Ak+17)r’fun — Ag1v].
Hence it follows from Step 4 and (3.5) that ||P¥u,, — PF+1u,| — 0.

Step 8. The weak w-limit set of {zp}, wy(xy), is a subset of F.

Proof of Step 8. Let zy € wy(xy,) and let {x,,, } be a subsequence of
{z,} weakly converging to zy. From steps 5 and 7, we also obtain that
jjfmxnm — 20,

for all k € {1,..., M}, and

k
anunm — 20,

for all k € {1,..., N}. In particular, u,,, — zo and v,,, — z9. We need
to show that zp € F. First, we prove 29 € N, VI(C, A;). For this
purpose, let £ € {1,..., N} and T} be the maximal monotone mapping
defined by

| Agz+ Ncz, ze€C;
Tkx_{ 0, z¢C.

Hence, for any given (z,u) € G(T}), we have u — Agz € N¢z. Since
Pku,, € C, by the definition of N¢, we have

(3.6) (z — Pruy,u— Apz) > 0.
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On the other hand, since P*u,, = Po(PFtu, — )\kmAkP,]’f_lun), we have
(z = Prtin, Py — (PR un = Apn kP~ ) > 0.

So,

Pk, — Pk=ly
Ak,n

By (3.6) and the a-inverse monotonicity, we have

(z — Pﬁmunm,w > (z— Pﬁmunm, Agz)

(z — Pﬁun, L Akai_lun> > 0.

Z <Z - P?I’fmunm? Ak-Z)

PE uy,, — PElu,
- e APy )

k
—(z— P, Unp, "
7nm

=(z— Pﬁmunm, Apz — Akpﬁmunm)

+(z— PﬁmunW Akpﬁmunm — AkPﬁ;lunm>

k k—1
)‘k,nm
> (z— Pﬁmunm, AkPﬁmunm - AkPk_lunm>

Nm
)\k,nm >

Since |PEgMx, — PF1gMz,|| — 0, P* w,, — 20 and {A; : k =

Nm
1,..., N} are Lipschitz continuous, we have

k
- <Z - an unm I

k
—(z =Py, Unp,s

lm (2 —PE w,,.,u) = (2 — 20,u) > 0.

m—o0
Again, since T} is maximal monotone, then 0 € Tzy. This shows that
2o € VI(C, Ay). From this, it follows that
(3.7) 20 € N VI(C, A).

Now, we note that by (A2) for given y € C and k € {0,1,..., M —1},
we have
1

Tk+1n

(y — T e, T e, — TFe,) > Fa(y, 75 ,).

Thus,
jyliilfnnm — jq—lfmmnm

rkJrl,nm

(3.8) (y—T¥ ) > Fyop1(y, T an,,).
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By condition (A4), Fi(y,.), Vi, is lower semicontinuous and convex,
and thus weakly semicontinuous. Step 5 and the condition lim inf,, r;, >
0 imply that

j#f::lxnm - jy]fmxnm

77€+1,nm

— 0,

in norm. Therefore, letting m — oo in (3.8) yields
Fry1(y, 20) < lim Fo1(y, TiHan,,) <0,

forally € C and k € {0,1,..., M —1}. Replacing y with y; := ty+ (1 —
t)zp, t € (0,1), and using (Al) and (A4), we obtain

0= Frp1(ye, ye) < tFr1(ye,y) + (1 =) Fag1 (ye, 20) < (Yt y)-

Hence, Fy1(ty + (1 —t)z0,y) > 0, for all ¢ € (0,1) and y € C. Letting
t — 0" and using (A3), we conclude Fy1(z0,y) > 0, for all y € C' and
ke€{0,...,M — 1}. Therefore,

M
(3.9) 20 € (| EP(F;) = EP(G).
k=1

We next show zyp € N2, Fiz(S;). By Lemma 2.5, we have, for every
z € C,

(3.10) W, z— Wz,

and Fiz(W) = N2, Fix(T;). Assume that zg ¢ Fix(W). Then, zy #
Wzp. From the Opial’ s property of Hilbert space, (3.7), (3.9), (3.10)
and Step 6, we have

liminf ||z, — 20| < liminf ||z, — Wzo|
m m
< liminf(||xn,, — Wh,, Un,, ||
m
HIWa P T . = W P Tk 20l + W20 — Wol)
< liminf ||z,,, — 20l
m

This is a contradiction. Therefore, zp must belong to Fiz(W) =

Step 9. The sequences {z,} and {y,} converge strongly to Pr(x).
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Proof of Step 9. Let 2y € wy(xy,) and let {x,,, } be a subsequence of
{z,} weakly converging to zy. From Step 8 and (3.4), we have
|2 — Pr(2)]| < ||z — 2o <liminf |z —zp,,|
m—0o0
< limsup ||z — p,, || < ||z = Pr(z)].
m—0o0
Hence,
i = ]| = [l = 2]l = lla = Pr(a)].
Since zg € F and H is a Hilbert space, we obtain
Tn,, — 20 = Pr(z).
Since zp € wy(x,) was arbitrary, we get x, — Pr(z). O
Corollary 3.2. Let C, ¢, G, {a,} and {rmj}jj‘il be as in Theorem 3.1.
Letp ={T; : j=1...N} be a finite family of strictly pseudocontractive
mappings with 0 < k < 1 from C into C such that F := Fiz(e) N

Fiz(¥) N EP(G) # 0 and {M\pn}h_, be sequences in [c,d) C (0,1 — k).
If {x,,} is the sequence generated by x1 = x € H and ¥n > 1,

U = JEM gk g
TM,n 2,n " T1ln n;
Up = ((1 — >\N,n)[ + )\N,nTN) - ((1 — )\Qm)I + )\Q’nTg)((l — )\l,n)I
+A10T1) U,

Yn = (1 - an)xn + an Wy,

Cn={2€H: |lyn — 2[| < [[zn — 2|},

Qn={z€H:(xvy,—2z,z— 1, >0},
| Tn1 = Po,nq, (2),

then the sequences {xy} and {y,} converge strongly to Pr(x).

Proof. Put A; = I — T} for every j € {1,...,N}. Then A; is

15":-invers.e—strongly monotone. We have that Fiz(T}) is the solution
set of VI(C,A)); ie., Fix(T;) = VI(C,Aj). Therefore, Fiz(y) =

ﬂkN:1VI(C’, Ap) and it suffices to apply Theorem 3.1. O

The following is a weak convergence theorem.

Theorem 3.3. Let C, ¢, G, A, F, {\en}i, and {rn,j}j]\/il be as in
Theorem 3.1. Let {a,} be a sequence in [a,b] for some a,b € (0,1).
If {x,,} is the sequence generated by x1 = x € H and ¥n > 1,



Iterative methods for equilibrium problems 131

_ JF F, 7F
un—JmflV{n...J 2 JI ax,,

T2,n "Timn
Un = Pc'(f — )\N,nAN) v Pc(I — /\27nA2)Pc(I — )\17nA1)un,
Tnt+1 = (1 - an)xn + OéanUn,

then the sequence {x,} converges weakly to zy € F, where 2z
= limy 00 Pr(zp).

Proof. We apply the notations used in the proof of Theorem 3.1. Let
v € F. Then,

(3.11)  |zpp1—vf < O‘n||wn_UH+(1_O‘n)HWnpfzvjéwxn_UH < [|zn—].
So, there exists ¢ € R such that
(3.12) c= lim |z, —v].
n—oo
Hence, {z,} is bounded. Next, for v € F, as in Step 5 of Theorem 3.1,
we get
1Th = ol* < llan = ol® = | Tgan — Tyl
for all k € {0,1,..., M — 1}. Therefore, we have
[Zns1 = vl* < apllzn — of* + (1 = an) [WaPY T @ — 0|
< apllzy — UHZ +(1— an)Hj?erla:n - UH2
< anllzn = ol* + (1 = an) (|2 = ol* = [| T4 — T3 2a?)
= ||@y — UH2 —(1- an)”uﬁcwn - jr]erlxn”Q-
So, we obtain
(1= D) Txzn = Tyl < llwn = o)) = @1 — ol
From (3.12), we get
(3.13) lim || TXz,—T5 z,| =0,
n—oo
for all k € {0,1,...,M — 1}. Since
HWnPfleT{Wxn —vf < er{\/[xn —v|| < flzn — ol
from (3.12), we have

limsup [|[W,PY TMz, —v|| <ec.

n—oo

Moreover, we have

lim |ap(z, —v)+(1 — an)(WnPfleyxn — )| :nh—{{.lo |xnt1 — v]|=c.

n—oo
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By Lemma 2.2, we obtain
(3.14) lim_ W PY TM g, — z,|| = 0.
We can show that
(3.15) lim ||PFu,—Pklu,| =0, Vk € {0,1,...,N—1}.
n—oo
Indeed, for k € {0,1,..., N — 1}, like Step 7 of Theorem 3.1, we get
1P —0l|* < |z — ol* + e(d — 20) || Ag 1 PRun — Aggro]|*.
From this, we have
Znt1 = ol? < (1 = an)llzn — ol + anllon — ol
< (1 —oap)llan — ”HQ + anHPﬁHun - UHQ
< (1= ag)|len —ol® +an{llzn — o] +c(d = 20) || Apa Prug — Apsrv]|*}
= ||n — ]| + c(d — 20) || Ap41PFun — Agirv]|?.
So, from (3.12), we have
c(2a — d)om || Ap 1 Pruy, — Apyqv))?
< llan = ol* = [J#ns1 —v]|* — 0.
Since 0 < a < a,, we obtain
(3.16) | Ags1Prup—App1v]| — 0 (n — o0).
Again, like Step 7 of Theorem 3.1, we have
1P —ol* < [l — 0 = [ Prun — P+ un||?
+2Mk+1,n <7Dr]§un - Perlum Ak+17)7]~f“n — Ag11v).
Then,
a1 =0l < (1= an) 20 = o* + an| Py un — ||
< (1—an)llzn — UH2 + an{llzn — UHZ - H,Pr]f“n - PﬁJrlun”Q
+2>\k+1,n (Pffun — ’PfLJrlun, Ak+177,lfun — Ak+1v)}
<l = vl1* = al Prun — Py un
+2)‘k+1,nHPrlfun - PﬁﬂunH | A1 Prun — Agpvl),
which implies
a| PR — Py lun|® < |z — of* = 21 — of|?
20410l Prttn — Pt ||| Ap1 P, — Ao

Hence, it follows from (3.12) and (3.16) that ||Pku, — P 1u,| — 0.
This completes the proof of (3.15).
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Now, applying (3.13), (3.14) and (3.15), as in Step 8 of Theorem 3.1,
we can show that the weak w-limit set of {x,}, wy(z,), is a subset of
F. Now, (3.12) and the Opial’s property of Hilbert space imply that
ww(xy,) is singleton. Therefore, x,, — zy for some zg € F.

Let z, = Pr(xy). Since zg € F, we have

(n — Zn, 2n — 20) > 0.

Using (3.11) and Lemma 2.3, we have that {z,} converges strongly to
some yg € F. Since x, — zp, we have

(20 — Y0, Yo — 20) > 0.

Therefore, we obtain zg = yp = lim,,—cc Pr(zy). O

Corollary 3.4. Let C, ¢, G, {an} and {rmj}jM:l be as in Theorem 3.3.

Letp ={Tj:j=1...N} be a finite family of strictly pseudocontractive

mappings with 0 < k < 1 from C into C' such that F := Fiz(e) N

Fiz(¥) N EP(G) # 0 and {M\pn i, be sequences in [c,d) C (0,1 — k).
If {x,,} is the sequence generated by x1 =x € H and ¥Yn > 1,

— 7Fum Fy 7k
Up = Jp SR T T,

Vp = ((1 — ANyn)I + )\N,nTN) ... ((1 — )\2771)[ + )\27nT2)((1 — )\1771)[
+A 1011 ) U,
Tn+l1l = (1 - an)xn + aanUnv

then the sequence {x,} converges weakly to zy € F, where zp =
lim,, 00 Pr(zy).

Remark 3.5. We may put
vy =Po(I—=ANn(I—=TN))... Pc(I—Xo (I =T2))Pc(I =X n(I—T1))un,

in the schemes of corollaries 3.2 and 3.4, and obtain schemes for families
of non-self strictly pseudocontractive mappings.
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