
Bulletin of the Iranian Mathematical Society Vol. 36 No. 1 (2010), pp 117-135.

ITERATIVE METHODS FOR EQUILIBRIUM
PROBLEMS, VARIATIONAL INEQUALITIES AND

FIXED POINTS

S. SAEIDI

Communicated by Heydar Radjavi

Abstract. We introduce iterative methods for finding a common
element of the set of solutions of a system of equilibrium problems,
the set of fixed points for an infinite family of nonexpansive map-
pings and a family of strictly pseudocontractive mappings, and the
set of solutions of the variational inequalities for a family of α-
inverse-strongly monotone mappings in a Hilbert space. We estab-
lish some weak and strong convergence theorems of the sequences
generated by our proposed schemes. The strong convergence results
are obtained via the CQ method.

1. Introduction

Let C be a nonempty closed convex subset of a Hilbert space H. Let
F : C × C → R be a bifunction. The equilibrium problem for F is to
determine its equilibrium points; i.e., the set

EP (F ) := {x ∈ C : F (x, y) ≥ 0 ∀y ∈ C}.
Let G = {Fi}i∈I be a family of bifunctions from C × C to R. The

system of equilibrium problems for G = {Fi}i∈I is to determine common
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equilibrium points for G = {Fi}i∈I ; i.e., the set

(1.1) EP (G) := {x ∈ C : Fi(x, y) ≥ 0 ∀y ∈ C ∀i ∈ I}.

Many problems in applied sciences, such as monotone inclusion prob-
lems, saddle point problems, variational inequality problems, minimiza-
tion problems, Nash equilibria in noncooperative games, vector equilib-
rium problems, as well as certain fixed point problems reduce to finding
some element of EP (F ); see [3, 10, 11]. The formulation (1.1) extends
this formalism to systems of such problems, covering in particular vari-
ous forms of feasibility problems [2, 9].

Recall that a mapping S of C into H is called nonexpansive if

‖Sx− Sy‖ ≤ ‖x− y‖, ∀x, y ∈ C.

We denote by Fix(S), the set of fixed points of S.
S is strictly pseudocontractive if there exists κ with 0 ≤ κ < 1 such

that

‖Sx− Sy‖2 ≤ ‖x− y‖2 + κ‖(I − S)x− (I − S)y‖2, for all x, y ∈ C.

If k = 0, then S is nonexpansive.
Finding an optimal point in the intersection of the fixed point sets

of a family of nonexpansive mappings is a task arising frequently in
various areas of mathematical sciences and engineering. For example,
the well-known convex feasibility problem reduces to finding a point
in the intersection of the fixed point sets of a family of nonexpansive
mappings; see, e.g., [2, 8].

Recall that a mapping A : C → H is called α-inverse-strongly mono-
tone [4], if there exists a positive real number α such that

〈Ax−Ay, x− y〉 ≥ α‖Ax−Ay‖2, ∀x, y ∈ C.

It is easy to see that if A : C → H is α-inverse-strongly monotone, then
it is a 1

α -Lipschitzian mapping.
Let A : C → H be a mapping. The classical variational inequality

problem is to find u ∈ C such that

(1.2) 〈Au, v − u〉 ≥ 0, ∀v ∈ C.

The set of solutions of variational inequality (1.2) is denoted by
V I(C,A). Put A = I − T , where T : C → H is a strictly pseudo-
contractive mapping with κ. It is known that A is 1−κ

2 -inverse-strongly
monotone and A−1(0) = Fix(T ) = {x ∈ C : Tx = x}.
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Recently, under certain appropriate conditions, Tada and Takahashi
[21] obtained weak and strong convergence theorems for finding a com-
mon element of EP (F ) and Fix(S), where F is a bifunction and S a
nonexpansive mapping. Related work can also be found in [6, 7, 14, 17,
18, 19, 21, 26].

Here, motivated by [18, 21], we introduce iterative algorithms for find-
ing a common element of the set of solutions of a system of equilibrium
problems, the set of common fixed points for an infinite family of nonex-
pansive mappings and the set of solutions of variational inequalities for a
family of α-inverse-strongly monotone mappings from C into H. More-
over, we apply our results to the problem of finding a common fixed
point of a family of strictly pseudocontractive mappings. Our results
present extentions of several existing results.

2. Preliminaries

Let C be a nonempty closed and convex subset of H. Let F : C×C →
R be a bifunction. The equilibrium problem for F is to determine its
equilibrium points; i.e., the set

EP (F ) := {x ∈ C : F (x, y) ≥ 0 ∀y ∈ C}.

Given any r > 0, the operator JF
r : H → C defined by

JF
r (x) := {z ∈ C : F (z, y) +

1
r
〈y − z, z − x〉 ≥ 0 ∀y ∈ C}

is called the resolvent of F ; see [10].

Lemma 2.1. (See [10]) Let C be a nonempty closed convex subset of H
and F : C × C → R satisfy

(A1) F (x, x) = 0 for all x ∈ C;
(A2) F is monotone; i.e., F (x, y) + F (y, x) ≤ 0 for all x, y ∈ C.
(A3) for all x, y, z ∈ C,

lim inf
t→0

F (tz + (1− t)x, y) ≤ F (x, y);

(A4) for all x ∈ C, y 7−→ F (x, y) is convex and lower semicontinuous.

Then,



120 Saeidi

(1) JF
r is single-valued;

(2) JF
r is firmly nonexpansive; i.e.,

‖JF
r x− JF

r y‖2 ≤ 〈JF
r x− JF

r y, x− y〉, for all x, y ∈ H;

(3) fix(JF
r ) = EP (F );

(4) EP (F ) is closed and convex.

Recall that the metric (nearest point) projection PC from a Hilbert
space H to a closed convex subset C of H is defined as follows: given
x ∈ H, PCx is the only point in C with the property,

‖x− PCx‖ = inf{‖x− y‖ : y ∈ C}.

It is known that PC is a nonexpansive mapping and satisfies:

(2.1) ‖PCx− PCy‖2 ≤ 〈PCx− PCy, x− y〉, ∀x, y ∈ H.

PC is characterized as follows:

y = PCx ⇐⇒ 〈x− y, y − z〉 ≥ 0, ∀z ∈ C.

In the context of the variational inequality problem, this implies that

(2.2) u ∈ V I(C,A) ⇐⇒ u = PC(u− λAu), ∀λ > 0.

A set-valued mapping T : H → 2H is said to be monotone, if for all
x, y ∈ H, f ∈ Tx, and g ∈ Ty we have 〈f − g, x − y〉 ≥ 0. A monotone
mapping T : H → 2H is said to be maximal, if the graph G(T ) of T
is not properly contained in the graph of any other monotone mapping.
It is known that a monotone mapping is maximal, if and only if for
(x, f) ∈ H ×H, 〈f − g, x− y〉 ≥ 0, ∀(y, g) ∈ G(T ) we have f ∈ Tx. Let
A : C → H be an inverse-strongly monotone mapping and let NCv be
the normal cone to C at v ∈ C; i.e.,

NCv = {w ∈ H : 〈v − u,w〉 ≥ 0,∀u ∈ C},

and define,

Tv =
{
Av +NCv, v ∈ C;
∅, v 6∈ C.

Then, T is maximal monotone and 0 ∈ Tv if and only if v ∈ V I(C,A)
(see [12, 16]). It is easy to show that for given λ ∈ [0, 2α], the mapping
(I − λA) : C → H is nonexpansive.

Below, lemmas 2.2 and 2.3 were proved in [24].
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Lemma 2.2. Let {αn} be a sequence of real numbers such that 0 < a ≤
αn ≤ b < 0, for all n ∈ N. Let {vn} and {wn} be sequences of H such
that

lim sup
n→∞

‖vn‖ ≤ c, lim sup
n→∞

‖wn‖ ≤ c

and
lim sup

n→∞
‖αnvn + (1− αn)wn‖ = c, for some c > 0.

Then, limn→∞ ‖vn − wn‖ = 0.

Lemma 2.3. Let C be a nonempty closed convex subset of H. Let {xn}
be a sequence in H. Suppose that, for all y ∈ C,

‖xn+1 − y‖ ≤ ‖xn − y‖,

for every n ∈ N. Then, {PC(xn)} converges strongly to some z ∈ C.

Definition 2.4. Let {Si : C → C} be an infinite family of nonexpansive
mappings and {µi} be a nonnegative real sequence with 0 ≤ µi < 1,
∀i ≥ 1. For any n ≥ 1, define a mapping Wn : C → C as follows:

Un,n+1 := I,
Un,n := µnSnUn,n+1 + (1− µn)I,
Un,n−1 := µn−1Sn−1Un,n + (1− µn−1)I,

...
Un,k := µkSkUn,k+1 + (1− µk)I,
Un,k−1 := µk−1Sk−1Un,k + (1− µk−1)I,

...
Un,2 := µ2S2Un,3 + (1− µ2)I,

(2.3) Wn := Un,1 = µ1S1Un,2 + (1− µ1)I.

Such a mapping W is nonexpansive from C to C and is called the
W -mapping generated by Sn, Sn−1, . . . , S1 and µn, µn−1, . . . , µ1.

The concept of W -mappings was introduced in [22, 23]. It is now one
of the main tools in studying convergence of iterative methods for ap-
proaching a common fixed of nonlinear mappings; more recent progresses
can be found in [1, 5, 7, 13, 25] and the references cited therein.
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Lemma 2.5. (Shimoji et al., [20]) Let C be a nonempty closed convex
subset of a Hilbert space H, {Si : C → C} be an infinite family of non-
expansive mappings with ∩∞i=1Fix(Si) 6= ∅, and {µi} be a real sequence
such that 0 < µi ≤ b < 1, ∀i ≥ 1. Then,

(1) Wn is nonexpansive and Fix(Wn) = ∩n
i=1Fix(Si) for each n ≥ 1;

(2) for each x ∈ C and for each positive integer k, limn→∞ Un,kx exists;
(3) the mapping W : C → C defined by

Wx := lim
n→∞

Wnx = lim
n→∞

Un,1x,

is a nonexpansive mapping satisfying Fix(W ) = ∩∞i=1Fix(Si) and it is
called the W -mapping generated by S1, S2, . . . and µ1, µ2, . . . .

3. Strong convergence of a general iterative method

The following is our main result.

Theorem 3.1. Let C be a nonempty closed convex subset of a Hilbert
space H, ϕ = {Si : C → C} an infinite family of nonexpansive map-
pings, G = {Fj : j = 1, . . . ,M} a finite family of bifunctions from
C × C into R which satisfy (A1)-(A4), A = {Ak : k = 1 . . . N} a finite
family of α-inverse-strongly monotone mappings from C into H, and
F := ∩N

k=1V I(C,Ak) ∩ Fix(ϕ) ∩ EP (G) 6= ∅.
Let {αn} be a sequence in [a, 1] for some a ∈ (0, 1), {λk,n}N

k=1 se-
quences in [c, d] ⊂ (0, 2α) and {rj,n}M

j=1 sequences in (0,∞) such that
lim infn rj,n > 0 for every j ∈ {1, . . . ,M}. For every n ∈ N, let Wn be
the W -mapping defined by (2.3).

If {xn} is the sequence generated by x1 = x ∈ H and ∀n ≥ 1,



un = JFM
rM,n

. . . JF2
r2,n

JF1
r1,n

xn,

vn = PC(I − λN,nAN ) . . . PC(I − λ2,nA2)PC(I − λ1,nA1)un,
yn = (1− αn)xn + αnWnvn,
Cn = {z ∈ H : ‖yn − z‖ ≤ ‖xn − z‖},
Qn = {z ∈ H : 〈xn − z, x− xn〉 ≥ 0},
xn+1 = PCn∩Qn(x),

then the sequences {xn} and {yn} converge strongly to PF (x).
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Proof. Take

J k
n := JFk

rk,n
. . . JF2

r2,n
JF1

r1,n
, ∀k ∈ {1, . . . ,M},

J 0
n := I,

and

Pk
n :=PC(I−λk,nAk). . .PC(I−λ2,nA2)PC(I−λ1,nA1), ∀k ∈ {1, . . . , N},

P0
n := I.

So, we can write

yn = (1− αn)xn + αnWnPN
n JM

n xn.

We shall divide the proof into several steps.

Step 1. The sequence {xn} is well defined.

Proof of Step 1. The sets Cn and Qn are closed and convex subsets
of H for every n ∈ N; see [15, 21]. So, Cn ∩Qn is a closed convex subset
of H for any n ∈ N. Let v ∈ F . Since, for each k ∈ {1, . . . ,M}, JFk

rk,n
is

nonexpansive, and from Lemma 2.1, we have

(3.1) ‖un − p‖ = ‖JM
n xn − v‖ = ‖JM

n xn − JM
n v‖ ≤ ‖xn − v‖.

On the other hand, since Ak : C → H is α-inverse-strongly monotone
and λk,n ∈ [c, d] ⊂ [0, 2α], then PC(I − λk,nAk) is nonexpansive. Thus
PN

n is nonexpansive. From Lemma 2.5 and (2.2), we have PN
n v = v =

Wnv. It follows that

‖yn − v‖ ≤ (1− αn)‖xn − v‖+ αn‖WnPN
n JM

n xn − v‖

(3.2) ≤ (1− αn)‖xn − v‖+ αn‖xn − v‖ = ‖xn − v‖.
So, we have v ∈ Cn; thus, F ⊂ Cn, for every n ∈ N. Next, we show by
induction that

F ⊂ Cn ∩Qn

for each n ∈ N. Since F ⊂ C1 and Q1 = H, we get F ⊂ C1 ∩ Q1.
Suppose that F ⊂ Ck∩Qk for k ∈ N. Then, there exists xk+1 ∈ Ck∩Qk

such that xk+1 = PCk∩Qk
(x). Therefore, for each z ∈ Ck ∩Qk, we have

〈xk+1 − z, x− xk+1〉 ≥ 0.

So, we get
F ⊂ Ck ∩Qk ⊂ Qk+1.
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From this and F ⊂ Cn (∀n), we have F ⊂ Ck+1 ∩ Qk+1. This means
that the sequence {xn} is well defined.

Step 2. The sequences {xn}, {yn}, {J k
n xn}M

k=1 and {Pk
nun}N

k=1 are
bounded and

(3.3) lim
n→∞

‖xn − x‖ = c, for some c ∈ R.

Proof of Step 2. From xn+1 = PCn∩Qn(x), we have

‖xn+1 − x‖ ≤ ‖z − x‖, ∀z ∈ Cn ∩Qn.

Since PF (x) ∈ F ⊂ Cn ∩Qn, we have

(3.4) ‖xn+1 − x‖ ≤ ‖PF (x)− x‖,

for every n ∈ N. Therefore, {xn} is bounded. From (3.1) and (3.2), the
sequences {J k

n xn}M
k=1, {Pk

nun}N
k=1 and {yn} are also bounded.

It is easy to show xn = PQn(x). From this and xn+1 ∈ Qn, we have

‖x− xn‖ ≤ ‖x− xn+1‖,

for every n ∈ N. Since {xn} is bounded, there exists c ∈ R such that
(3.3) holds.

Step 3. limn→∞ ‖xn − xn+1‖ = 0.

Proof of Step 3. Since xn = PQn(x), xn+1 ∈ Qn and (xn + xn+1)/2 ∈
Qn, we have

‖x− xn‖2 ≤ ‖x− xn + xn+1

2
‖2

= ‖1
2
(x− xn) +

1
2
(x− xn+1‖2

=
1
2
‖x− xn‖2 +

1
2
‖x− xn+1‖2 − 1

4
‖xn − xn+1‖2.

So, we get

1
4
‖xn − xn+1‖2 ≤ 1

2
‖x− xn+1‖2 − 1

2
‖x− xn‖2.

From (3.3), we obtain limn→∞ ‖xn − xn+1‖2 = 0.

Step 4. limn→∞ ‖xn − yn‖ = 0.
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Proof of Step 4. From xn+1 ∈ Cn, we have

‖xn − yn‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − yn‖ ≤ 2‖xn − xn+1‖.
Now, apply Step 3.

Step 5. limn→∞ ‖J k
n xn − J k+1

n xn‖ = 0, ∀k ∈ {0, 1, . . . ,M − 1}.

Proof of Step 5. Let v ∈ F and k ∈ {0, 1, . . . ,M − 1}. Since JFk+1
rk+1,n is

firmly nonexpansive, we obtain

‖v − J k+1
n xn‖2 = ‖JFk+1

rk+1,nv − J
Fk+1
rk+1,nJ k

n xn‖2

≤ 〈JFk+1
rk+1,nJ k

n xn − v,J k
n xn − v〉

=
1
2
(‖JFk+1

rk+1,nJ k
n xn − v‖2 + ‖J k

n xn − v‖2 − ‖J k
n xn − J

Fk+1
rk+1,nJ k

n xn‖2).

It follows that

‖J k+1
n xn − v‖2 ≤ ‖xn − v‖2 − ‖J k

n xn − J k+1
n xn‖2.

Therefore, by the convexity of ‖.‖2, we have

‖yn − v‖2 ≤ (1− αn)‖xn − v‖2 + αn‖Wnvn − v‖2

≤ (1− αn)‖xn − v‖2 + αn‖J k+1
n xn − v‖2

≤ (1− αn)‖xn − v‖2 + αn(‖xn − v‖2 − ‖J k
n xn − J k+1

n xn‖2)

= ‖xn − v‖2 − αn‖J k
n xn − J k+1

n xn‖2.

Since {αn} ⊂ [a, 1], we get

a‖J k
n xn − J k+1

n xn‖2 ≤ αn‖J k
n xn − J k+1

n xn‖2

≤ ‖xn − v‖2 − ‖yn − v‖2 ≤ ‖xn − yn‖(‖xn − v‖+ ‖yn − v‖).
From this and Step 4, we get the desired result.

Step 6. limn→∞ ‖xn −Wnvn‖ = 0.

Proof of Step 6. Observe that

αnWnvn = yn − (1− αn)xn.

So, we have
a‖xn −Wnvn‖ ≤ αn‖xn −Wnvn‖

= ‖yn − (1− αn)xn − αnxn‖ ≤ ‖yn − xn‖.
From this and Step 4, we obtain limn→∞ ‖xn −Wnvn‖ = 0.
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Step 7. limn→∞ ‖Pk
nun − Pk+1

n un‖ = 0, ∀k ∈ {0, 1, . . . , N − 1}.

Proof of Step 7. Since {Ak : k = 1 . . . N} is α-inverse-strongly mono-
tone, by the the choice of {λk,n} for given v ∈ F and k ∈ {0, 1, . . . , N −
1}, we have

‖Pk+1
n un − v‖2

= ‖PC(I − λk+1,nAk+1)Pk
nun − PC(I − λk+1,nAk+1)v‖2

≤ ‖(I − λk+1,nAk+1)Pk
nun − (I − λk+1,nAk+1)v‖2

≤ ‖Pk
nun − v‖2 + λk+1,n(λk+1,n − 2α)‖Ak+1Pk

nun −Ak+1v‖2

≤ ‖xn − v‖2 + c(d− 2α)‖Ak+1Pk
nun −Ak+1v‖2.

From this, we have

‖yn − v‖2 ≤ (1− αn)‖xn − v‖2 + αn‖WnPN
n un − v‖2

≤ (1− αn)‖xn − v‖2 + αn‖Pk+1
n un − v‖2

≤ (1−αn)‖xn − v‖2 +αn(‖xn − v‖2 + c(d− 2α)‖Ak+1Pk
nun −Ak+1v‖2)

= ‖xn − v‖2 + c(d− 2α)αn‖Ak+1Pk
nun −Ak+1v‖2.

So,

c(2α− d)αn‖Ak+1Pk
nun −Ak+1v‖2 ≤ ‖xn − v‖2 − ‖yn − v‖2

≤ ‖xn − yn‖(‖xn − v‖+ ‖yn − v‖).
Since αn ⊂ [a, 1], we obtain

(3.5) ‖Ak+1Pk
nun −Ak+1v‖ → 0 (n→∞).

From (2.1) and the fact that I − λk+1,nAk+1 is nonexpansive, we have

‖Pk+1
n un − v‖2 = ‖PC(I − λk+1,nAk+1)Pk

nun − PC(I − λk+1,nAk+1)v‖2

≤ 〈(Pk
nun − λk+1,nAk+1Pk

nun)− (v − λk+1,nAk+1v),Pk+1
n un − v〉

=
1
2
{‖(Pk

nun−λk+1,nAk+1Pk
nun)−(v−λk+1,nAk+1v)‖2 +‖Pk+1

n un−v‖2

−‖(Pk
nun − λk+1,nAk+1Pk

nun)− (v − λk+1,nAk+1v)− (Pk+1
n un − v)‖2}

≤ 1
2
{‖Pk

nun − v‖2 + ‖Pk+1
n un − v‖2

−‖Pk
nun − Pk+1

n un − λk+1,n(Ak+1Pk
nun −Ak+1v)‖2}

=
1
2
{‖Pk

nun − v‖2 + ‖Pk+1
n un − v‖2 − ‖Pk

nun − Pk+1
n un‖2

+2λk+1,n〈Pk
nun − Pk+1

n un, Ak+1Pk
nun −Ak+1v〉

−λ2
k+1,n‖Ak+1Pk

nun −Ak+1v‖2}.
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This implies that

‖Pk+1
n un − v‖2 ≤ ‖Pk

nun − v‖2 − ‖Pk
nun − Pk+1

n un‖2

+2λk+1,n〈Pk
nun − Pk+1

n un, Ak+1Pk
nun −Ak+1v〉

−λ2
k+1,n‖Ak+1Pk

nun −Ak+1v‖2

≤ ‖xn − v‖2 − ‖Pk
nun − Pk+1

n un‖2

+2λk+1,n〈Pk
nun − Pk+1

n un, Ak+1Pk
nun −Ak+1v〉.

From this, we have

‖yn − v‖2 ≤ (1− αn)‖xn − v‖2 + αn‖Pk+1
n un − v‖2

≤ (1− αn)‖xn − v‖2 + αn{‖xn − v‖2 − ‖Pk
nun − Pk+1

n un‖2

+2λk+1,n〈Pk
nun − Pk+1

n un, Ak+1Pk
nun −Ak+1v〉}

≤ ‖xn − v‖2 − αn‖Pk
nun − Pk+1

n un‖2

+2λk+1,n‖Pk
nun − Pk+1

n un‖‖Ak+1Pk
nun −Ak+1v‖,

which implies,

a‖Pk
nun − Pk+1

n un‖2 ≤ αn‖Pk
nun − Pk+1

n un‖2 ≤ ‖xn − v‖2 − ‖yn − v‖2

+2λk+1,n‖Pk
nun − Pk+1

n un‖‖Ak+1Pk
nun −Ak+1v‖.

Hence it follows from Step 4 and (3.5) that ‖Pk
nun − Pk+1

n un‖ → 0.

Step 8. The weak ω-limit set of {xn}, ωw(xn), is a subset of F .

Proof of Step 8. Let z0 ∈ ωw(xn) and let {xnm} be a subsequence of
{xn} weakly converging to z0. From steps 5 and 7, we also obtain that

J k
nm
xnm ⇀ z0,

for all k ∈ {1, . . . ,M}, and

Pk
nm
unm ⇀ z0,

for all k ∈ {1, . . . , N}. In particular, unm ⇀ z0 and vnm ⇀ z0. We need
to show that z0 ∈ F . First, we prove z0 ∈ ∩N

i=1V I(C,Ai). For this
purpose, let k ∈ {1, . . . , N} and Tk be the maximal monotone mapping
defined by

Tkx =
{
Akz +NCz, z ∈ C;
∅, z 6∈ C.

Hence, for any given (z, u) ∈ G(Tk), we have u − Akz ∈ NCz. Since
Pk

nun ∈ C, by the definition of NC , we have

(3.6) 〈z − Pk
nun, u−Akz〉 ≥ 0.
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On the other hand, since Pk
nun = PC(Pk−1

n un−λk,nAkPk−1
n un), we have

〈z − Pk
nun,Pk

nun − (Pk−1
n un − λk,nAkPk−1

n un)〉 ≥ 0.

So,

〈z − Pk
nun,

Pk
nun − Pk−1

n un

λk,n
+AkPk−1

n un〉 ≥ 0.

By (3.6) and the α-inverse monotonicity, we have

〈z − Pk
nm
unm , u〉 ≥ 〈z − Pk

nm
unm , Akz〉

≥ 〈z − Pk
nm
unm , Akz〉

−〈z − Pk
nm
unm ,

Pk
nm
unm − Pk−1

nm
unm

λk,nm

+AkPk−1
nm

unm〉

= 〈z − Pk
nm
unm , Akz −AkPk

nm
unm〉

+〈z − Pk
nm
unm , AkPk

nm
unm −AkPk−1

nm
unm〉

−〈z − Pk
nm
unm ,

Pk
nm
unm − Pk−1

nm
unm

λk,nm

〉

≥ 〈z − Pk
nm
unm , AkPk

nm
unm −AkPk−1

nm
unm〉

−〈z − Pk
nm
unm ,

Pk
nm
unm − Pk−1

nm
unm

λk,nm

〉.

Since ‖Pk
nJM

n xn − Pk−1
n JM

n xn‖ → 0, Pk
nm
unm ⇀ z0 and {Ak : k =

1, . . . , N} are Lipschitz continuous, we have

lim
m→∞

〈z − Pk
nm
unm , u〉 = 〈z − z0, u〉 ≥ 0.

Again, since Tk is maximal monotone, then 0 ∈ Tkz0. This shows that
z0 ∈ V I(C,Ak). From this, it follows that

(3.7) z0 ∈ ∩N
i=1V I(C,Ai).

Now, we note that by (A2) for given y ∈ C and k ∈ {0, 1, . . . ,M −1},
we have

1
rk+1,n

〈y − J k+1
n xn,J k+1

n xn − J k
n xn〉 ≥ Fk+1(y,J k+1

n xn).

Thus,

(3.8) 〈y−J k+1
nm

xnm ,
J k+1

nm
xnm − J k

nm
xnm

rk+1,nm

〉 ≥ Fk+1(y,J k+1
nm

xnm).
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By condition (A4), Fi(y, .), ∀i, is lower semicontinuous and convex,
and thus weakly semicontinuous. Step 5 and the condition lim infn rj,n >
0 imply that

J k+1
nm

xnm − J k
nm
xnm

rk+1,nm

→ 0,

in norm. Therefore, letting m→∞ in (3.8) yields

Fk+1(y, z0) ≤ lim
m
Fk+1(y,J k+1

nm
xnm) ≤ 0,

for all y ∈ C and k ∈ {0, 1, . . . ,M −1}. Replacing y with yt := ty+(1−
t)z0, t ∈ (0, 1), and using (A1) and (A4), we obtain

0 = Fk+1(yt, yt) ≤ tFk+1(yt, y) + (1− t)Fk+1(yt, z0) ≤ tFk+1(yt, y).

Hence, Fk+1(ty + (1− t)z0, y) ≥ 0, for all t ∈ (0, 1) and y ∈ C. Letting
t → 0+ and using (A3), we conclude Fk+1(z0, y) ≥ 0, for all y ∈ C and
k ∈ {0, . . . ,M − 1}. Therefore,

(3.9) z0 ∈
M⋂

k=1

EP (Fk) = EP (G).

We next show z0 ∈ ∩∞i=1Fix(Si). By Lemma 2.5, we have, for every
z ∈ C,

(3.10) Wnmz →Wz,

and Fix(W ) = ∩∞i=1Fix(Ti). Assume that z0 6∈ Fix(W ). Then, z0 6=
Wz0. From the Opial’ s property of Hilbert space, (3.7), (3.9), (3.10)
and Step 6, we have

lim inf
m

‖xnm − z0‖ < lim inf
m

‖xnm −Wz0‖

≤ lim inf
m

(‖xnm −Wnmvnm‖

+‖WnmPN
nm
JM

nm
xnm −WnmPN

nm
JM

nm
z0‖+ ‖Wnmz0 −Wz0‖)

≤ lim inf
m

‖xnm − z0‖.

This is a contradiction. Therefore, z0 must belong to Fix(W ) =
∩∞i=1Fix(Si).

Step 9. The sequences {xn} and {yn} converge strongly to PF (x).
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Proof of Step 9. Let z0 ∈ ωw(xn) and let {xnm} be a subsequence of
{xn} weakly converging to z0. From Step 8 and (3.4), we have

‖x− PF (x)‖ ≤ ‖x− z0‖ ≤ lim inf
m→∞

‖x− xnm‖

≤ lim sup
m→∞

‖x− xnm‖ ≤ ‖x− PF (x)‖.

Hence,
lim

m→∞
‖x− xnm‖ = ‖x− z0‖ = ‖x− PF (x)‖.

Since z0 ∈ F and H is a Hilbert space, we obtain

xnm −→ z0 = PF (x).

Since z0 ∈ ωw(xn) was arbitrary, we get xn −→ PF (x). �

Corollary 3.2. Let C, ϕ, G, {αn} and {rn,j}M
j=1 be as in Theorem 3.1.

Let ψ = {Tj : j = 1 . . . N} be a finite family of strictly pseudocontractive
mappings with 0 ≤ κ < 1 from C into C such that F := Fix(ϕ) ∩
Fix(ψ) ∩ EP (G) 6= ∅ and {λk,n}N

k=1 be sequences in [c, d] ⊂ (0, 1− κ).
If {xn} is the sequence generated by x1 = x ∈ H and ∀n ≥ 1,

un = JFM
rM,n

. . . JF2
r2,n

JF1
r1,n

xn,

vn = ((1− λN,n)I + λN,nTN ) . . . ((1− λ2,n)I + λ2,nT2)((1− λ1,n)I
+λ1,nT1)un,

yn = (1− αn)xn + αnWnvn,
Cn = {z ∈ H : ‖yn − z‖ ≤ ‖xn − z‖},
Qn = {z ∈ H : 〈xn − z, x− xn〉 ≥ 0},
xn+1 = PCn∩Qn(x),

then the sequences {xn} and {yn} converge strongly to PF (x).

Proof. Put Aj = I − Tj for every j ∈ {1, . . . , N}. Then Aj is
1−k
2 -inverse-strongly monotone. We have that Fix(Tj) is the solution

set of V I(C,Aj); i.e., Fix(Tj) = V I(C,Aj). Therefore, Fix(ψ) =
∩N

k=1V I(C,Ak) and it suffices to apply Theorem 3.1. �

The following is a weak convergence theorem.

Theorem 3.3. Let C, ϕ, G, A, F , {λk,n}N
k=1 and {rn,j}M

j=1 be as in
Theorem 3.1. Let {αn} be a sequence in [a, b] for some a, b ∈ (0, 1).

If {xn} is the sequence generated by x1 = x ∈ H and ∀n ≥ 1,
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
un = JFM

rM,n
. . . JF2

r2,n
JF1

r1,n
xn,

vn = PC(I − λN,nAN ) . . . PC(I − λ2,nA2)PC(I − λ1,nA1)un,
xn+1 = (1− αn)xn + αnWnvn,

then the sequence {xn} converges weakly to z0 ∈ F , where z0
= limn→∞ PF (xn).

Proof. We apply the notations used in the proof of Theorem 3.1. Let
v ∈ F . Then,

(3.11) ‖xn+1−v‖ ≤ αn‖xn−v‖+(1−αn)‖WnPN
n JM

n xn−v‖ ≤ ‖xn−v‖.
So, there exists c ∈ R such that

(3.12) c = lim
n→∞

‖xn − v‖.

Hence, {xn} is bounded. Next, for v ∈ F , as in Step 5 of Theorem 3.1,
we get

‖J k+1
n xn − v‖2 ≤ ‖xn − v‖2 − ‖J k

n xn − J k+1
n xn‖2,

for all k ∈ {0, 1, . . . ,M − 1}. Therefore, we have

‖xn+1 − v‖2 ≤ αn‖xn − v‖2 + (1− αn)‖WnPN
n JM

n xn − v‖2

≤ αn‖xn − v‖2 + (1− αn)‖J k+1
n xn − v‖2

≤ αn‖xn − v‖2 + (1− αn)(‖xn − v‖2 − ‖J k
n xn − J k+1

n xn‖2)
= ‖xn − v‖2 − (1− αn)‖J k

n xn − J k+1
n xn‖2.

So, we obtain

(1− b)‖J k
n xn − J k+1

n xn‖ ≤ ‖xn − v‖2 − ‖xn+1 − v‖2.

From (3.12), we get

(3.13) lim
n→∞

‖J k
n xn−J k+1

n xn‖ = 0,

for all k ∈ {0, 1, . . . ,M − 1}. Since

‖WnPN
n JM

n xn − v‖ ≤ ‖JM
n xn − v‖ ≤ ‖xn − v‖,

from (3.12), we have

lim sup
n→∞

‖WnPN
n JM

n xn − v‖ ≤ c.

Moreover, we have

lim
n→∞

‖αn(xn − v)+(1− αn)(WnPN
n JM

n xn − v)‖= lim
n→∞

‖xn+1 − v‖=c.
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By Lemma 2.2, we obtain

(3.14) lim
n→∞

‖WnPN
n JM

n xn − xn‖ = 0.

We can show that

(3.15) lim
n→∞

‖Pk
nun−Pk+1

n un‖ = 0, ∀k ∈ {0, 1, . . . , N−1}.

Indeed, for k ∈ {0, 1, . . . , N − 1}, like Step 7 of Theorem 3.1, we get

‖Pk+1
n un − v‖2 ≤ ‖xn − v‖2 + c(d− 2α)‖Ak+1Pk

nun −Ak+1v‖2.

From this, we have

‖xn+1 − v‖2 ≤ (1− αn)‖xn − v‖2 + αn‖vn − v‖2

≤ (1− αn)‖xn − v‖2 + αn‖Pk+1
n un − v‖2

≤ (1−αn)‖xn− v‖2 +αn{‖xn− v‖2 + c(d− 2α)‖Ak+1Pk
nun−Ak+1v‖2}

= ‖xn − v‖2 + c(d− 2α)αn‖Ak+1Pk
nun −Ak+1v‖2.

So, from (3.12), we have

c(2α− d)αn‖Ak+1Pk
nun −Ak+1v‖2

≤ ‖xn − v‖2 − ‖xn+1 − v‖2 → 0.
Since 0 < a ≤ αn, we obtain

(3.16) ‖Ak+1Pk
nun−Ak+1v‖ → 0 (n→∞).

Again, like Step 7 of Theorem 3.1, we have

‖Pk+1
n un − v‖2 ≤ ‖xn − v‖2 − ‖Pk

nun − Pk+1
n un‖2

+2λk+1,n〈Pk
nun − Pk+1

n un, Ak+1Pk
nun −Ak+1v〉.

Then,

‖xn+1 − v‖2 ≤ (1− αn)‖xn − v‖2 + αn‖Pk+1
n un − v‖2

≤ (1− αn)‖xn − v‖2 + αn{‖xn − v‖2 − ‖Pk
nun − Pk+1

n un‖2

+2λk+1,n〈Pk
nun − Pk+1

n un, Ak+1Pk
nun −Ak+1v〉}

≤ ‖xn − v‖2 − a‖Pk
nun − Pk+1

n un‖2

+2λk+1,n‖Pk
nun − Pk+1

n un‖‖Ak+1Pk
nun −Ak+1v‖,

which implies

a‖Pk
nun − Pk+1

n un‖2 ≤ ‖xn − v‖2 − ‖xn+1 − v‖2

+2λk+1,n‖Pk
nun − Pk+1

n un‖‖Ak+1Pk
nun −Ak+1v‖.

Hence, it follows from (3.12) and (3.16) that ‖Pk
nun − Pk+1

n un‖ → 0.
This completes the proof of (3.15).
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Now, applying (3.13), (3.14) and (3.15), as in Step 8 of Theorem 3.1,
we can show that the weak ω-limit set of {xn}, ωw(xn), is a subset of
F . Now, (3.12) and the Opial’s property of Hilbert space imply that
ωw(xn) is singleton. Therefore, xn ⇀ z0 for some z0 ∈ F .

Let zn = PF (xn). Since z0 ∈ F , we have

〈xn − zn, zn − z0〉 ≥ 0.

Using (3.11) and Lemma 2.3, we have that {zn} converges strongly to
some y0 ∈ F . Since xn ⇀ z0, we have

〈z0 − y0, y0 − z0〉 ≥ 0.

Therefore, we obtain z0 = y0 = limn→∞ PF (xn). �

Corollary 3.4. Let C, ϕ, G, {αn} and {rn,j}M
j=1 be as in Theorem 3.3.

Let ψ = {Tj : j = 1 . . . N} be a finite family of strictly pseudocontractive
mappings with 0 ≤ κ < 1 from C into C such that F := Fix(ϕ) ∩
Fix(ψ) ∩ EP (G) 6= ∅ and {λk,n}N

k=1 be sequences in [c, d] ⊂ (0, 1− κ).
If {xn} is the sequence generated by x1 = x ∈ H and ∀n ≥ 1,


un = JFM

rM,n
. . . JF2

r2,n
JF1

r1,n
xn,

vn = ((1− λN,n)I + λN,nTN ) . . . ((1− λ2,n)I + λ2,nT2)((1− λ1,n)I
+λ1,nT1)un,

xn+1 = (1− αn)xn + αnWnvn,

then the sequence {xn} converges weakly to z0 ∈ F , where z0 =
limn→∞ PF (xn).

Remark 3.5. We may put

vn = PC(I−λN,n(I−TN )) . . . PC(I−λ2,n(I−T2))PC(I−λ1,n(I−T1))un,

in the schemes of corollaries 3.2 and 3.4, and obtain schemes for families
of non-self strictly pseudocontractive mappings.
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