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z-IDEALS AND z◦-IDEALS IN THE FACTOR RINGS OF
C(X)

A.R. ALIABAD, F. AZARPANAH* AND M. PAIMANN

Communicated by Masoud Khalkhali

Abstract. We characterize the z-ideals of the factor rings of C(X)
via z-ideals of C(X). We show that for pseudocompact spaces X,
J/I is a z-ideal in C(X)/I if and only if J is a z-ideal in C(X)
containing the m-closure Ī of the ideal I. Using this fact, it turns
out that the sum of two m-closed ideals (e-ideals) in C(X), when-
ever X is pseudocompact, is an m-closed ideal (e-ideal). z◦-ideals
of factor rings of C(X) are also investigated and it is shown that
for every two z◦-ideals I ⊆ J in C(X), J/I is a z◦-ideal in C(X)/I
if and only if every prime z◦-ideal in C(X) is minimal.

1. Introduction

Here, C(X) will denote the ring of real valued continuous functions
on a completely regular Hausdorff space X, all other rings are commu-
tative with identity and “ideal” means “proper ideal”. For f ∈ C(X),
Z(f) denotes the set of zeros of f and the collection of all zero-sets in
X is denoted by Z(X). Whenever I is an ideal in C(X) and Z[I] =
{Z(f) : f ∈ I}, we call I a z-ideal in C(X) if g ∈ C(X) and Z(g) ∈ Z[I]
imply that g ∈ I. Similarly, if we set Z◦[I] = {intXZ(f) : f ∈ I}, then I
is called a z◦-ideal if intXZ(g) ∈ Z◦[I] implies that g ∈ I. Equivalently,
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I is a z-ideal (z◦-ideal) in C(X) if f ∈ I, g ∈ C(X) and Z(f) ⊆ Z(g)
(intXZ(f) ⊆ intXZ(g)) imply that g ∈ I. These ideals which are both
algebraic and topological objects were first introduced in [15] and [13]
respectively and play a fundamental role in studying the ideal theory of
C(X) (z◦-ideals have been studied in [13] under the name of d-ideals).
These ideals are also studied further by others; for instance, see [3-5,
6, 11, 13, 16-18]. Here, we study the z-ideals and z◦-ideals of C(X)/I,
where I is an ideal of C(X). In Section 2, the equivalent definitions of
a z-ideal in C(X)/I are given and by these definitions, it turns out that
whenever J/I is a z-ideal in C(X)/I, then J must contain Ī, where Ī is
the intersection of all maximal ideals containing I. In case X is pseu-
docompact (compact) or I is a principal ideal of C(X), the z-ideals of
C(X)/I are characterized in terms of z-ideals of C(X). Regularity of the
ring C(X)/Ī, where X is compact, is also characterized and we observe
that if C(X)/I is regular, then every ideal containing I is closed (inter-
section of maximal ideals). In that section, we also obtain the z-ideals
of the factor rings of C(X) under some special conditions. In Section 3,
z◦-ideals of the factor rings of C(X) are investigated and several equiv-
alent definitions for z◦-ideals of C(X)/I are given. We characterize the
z◦-ideals of C(X)/I, where I is a z◦-ideal in C(X) and some impor-
tant counterexamples concerning z◦-ideals in the factor rings of C(X)
are given. For examples, we show that whenever J/I is a z◦-ideal in
C(X)/I and I is a z-ideal in C(X), then J is not necessarily a z-ideal.
We also observe that whenever I ⊆ J are z◦-ideals in C(X), then J/I
need not be a z◦-ideal in C(X)/I. Finally, we give an example of two
ideals I ⊆ J in C(X) such that I is semiprime, J and J/I are z◦-ideals
but I is not a z-ideal.

We first recall some general information then [9]. If I is an ideal in
C(X) and

⋂
Z[I] =

⋂
f∈I Z(f) is nonempty, I is called fixed; otherwise,

free. The fixed maximal ideals are the sets Mp = {f ∈ C(X) : p ∈ Z(f)},
for p ∈ X and free maximal ideals of C(X) are of the form Mp =
{f ∈ C(X) : p ∈ clβXZ(f), p ∈ βX \X}, where βX is the Stone-Čech
compactification of X. More generally, if A ⊆ βX, we let MA =
{f ∈ C(X) : A ⊆ clβXZ(f)}. The maximal ideals of C∗(X), the ring
of all bounded real-valued continuous functions on a completely regular
Hausdorff space X are precisely the sets M∗p

=
{
f ∈ C∗(X) : fβ(p) = 0

}
,

p ∈ βX, where fβ is the extension of f to βX; see [9]. M∗p
is fixed

or free accordingly as p ∈ X or p ∈ βX \ X. If M is a maximal ideal
in C(X) and C(X)

M
∼= R, then M is called real; otherwise, hyper-real.
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Mp
⋂

C∗(X) is always contained in M∗p
and Mp

⋂
C∗(X) = M∗p

if
and only if Mp is real; see [9], 7.9(c). Thus Mp

⋂
C∗(X) = M∗p

, for ev-
ery p ∈ υX, where υX is the realcompactification of X. We recall that
υX is the largest subspace of βX in which X is C-embedded. Thus,
every f ∈ C(X) has an extension to a function fυ ∈ C(υX) and the
mapping f → fυ is an isomorphism of C(X) onto C(υX); see [9].

For any ideal I in C(X), we recall θ(I) = {p ∈ βX : I ⊆ Mp} =⋂
f∈I clβXZ(f). Hence, M θ(I) is the intersection of all maximal ideals

containing I and clearly I ⊆ M θ(I); see [9]. For every f ∈ C(X) and
every positive unit π ∈ C(X), let Nπ(f) denote the set of all g ∈ C(X)
for which |f − g| < π. The topology defined on C(X) by taking the
family {Nπ(f) : f ∈ C(X) and π ∈ C(X) is a positive unit} as a base of
open sets is called m-topology; see [12], pp. 48-51. The closure of any
subset A of C(X) with m-topology will be denoted by Am or Ā. The
closure Ī of every ideal I in C(X) is an ideal and it is known that Ī is
the intersection of all maximal ideals containing I; i.e., Ī = M θ(I); see
[10, 20].

For any a in a ring R, the intersection of all maximal (minimal prime)
ideals containing a is denoted by Ma (Pa). One can easily see that an
ideal I in C(X) is a z-ideal (z◦-ideal) if and only if Mf ⊆ I (Pf ⊆ I),
∀f ∈ I; see 4A in [9] and [4, 18]. These algebraic definitions enable us
to define z-ideals (z◦-ideals) in general rings. Whenever f ∈ C(X), it is
easy to see that Mf = MclβXZ(f) = (f) = {g ∈ C(X) : Z(f) ⊆ Z(g)}.
Since every maximal ideal is a z-ideal and any intersection of z-ideals
is also a z-ideal, Jac(R), the Jacobson radical of a ring R and every
closed ideal in C(X) is a z-ideal. In fact, Jac(R) is the smallest z-ideal
in R and any z-ideal in R contains Jac(R). Minimal prime ideals in any
commutative reduced ring R with Jac(R) = (0) are also z-ideals, see
[4, 18]. Finally, rad(R), the nilradical of the ring R, is a z-ideal if and
only if rad(R)=Jac(R). In C(X), we have the following result which is
proved in [6, 19].

Proposition 1.1. An ideal I in C(X) is a z-ideal (z◦-ideal) if and only
if every prime ideal minimal over I is a z-ideal (z◦-ideal).

For every f ∈ C(X), Pf can be represented as an algebraic and a
topological object; see the following proposition which is proved in [3].

Proposition 1.2. For every f ∈ C(X), we have Pf = {g ∈ C(X) :
Ann(f) ⊆ Ann(g)} = {g ∈ C(X) : intXZ(f) ⊆ intXZ(g)}.
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This proposition immediately shows that an ideal I in C(X) is a z◦-
ideal if and only if f ∈ I, g ∈ C(X) and Ann(f) ⊆ Ann(g) imply that
g ∈ I. Since for every f ∈ C(X), we have Mf ⊆ Pf , every z◦-ideal in
C(X) is a z-ideal but not conversely; see [3, 5] for more details of z◦-
ideals. In a commutative ring, any ideal consisting entirely of zerodivisor
is called a nonregular ideal. By Proposition 1.1, whenever f ∈ C(X)
is not zerodivisor, i.e., intZ(f) = ∅, then Pf = C(X) and hence every
(proper) z◦-ideal in C(X) is a nonregular ideal.

Recall that if I and J are ideals in a commutative ring R, the ideal
quotient (I : J) is defined by (I : J) = {a ∈ R : aJ ⊆ I}. In particular,
(0 : J) = Ann(J). Whenever J is a principal ideal generated by a ∈ R,
then the ideal (I : (a)) is sometimes denoted by (I : a). It is clear that
(I : a) = I,∀a /∈ I, if and only if I is prime and (I : a) = R if and only if
a ∈ I. For more details of ideal quotients, see [1, 14] and for undefined
terms and notations, the reader is referred to [1, 8, 9, 14].

2. z-ideals in the factor rings of C(X)

Here, we identify all of z-ideals in C(X)/I for an arbitrary ideal I
in C(X). It is conjectured that an ideal J/I is a z-ideal in C(X)/I
if and only if J is a z-ideal in C(X) containing Ī. But, we have not
completely succeeded to settle this conjecture. We give a positive answer
to this conjecture in case X is pseudocompact and in some other cases.
Regularity of the ring C(X)/Ī is also characterized in this section. For
compact spaces X, we show that C(X)/Ī is a regular ring if and only
if θ(I) is finite. For an ideal I in C(X) and every f ∈ C(X), we denote
by MI, f the intersection of all maximal ideals containing I and f . It is
easy to see that MI, fg = MI, f

⋂
MI, g = MI, f MI, g and MI, f +MI, g ⊆

MI, f2+g2 , for all f, g ∈ C(X) and for any ideal I in C(X). Since for
each ideal I in a ring R, the intersection of all maximal ideals in R/I
containing I + f ∈ R/I is MI, f/I, the definition of z-ideals in R/I may
be abbreviated as follows.

Definition 2.1. Let I and J be two ideals in a ring R such that I ⊆ J .
J/I is said to be a z-ideal in R/I if for every f ∈ J , we have MI, f ⊆ J .

Since for every ideal I in C(X) we have MI, f = {g ∈ C(X) :
θ(I)

⋂
clβXZ(f) ⊆ clβXZ(g)} = M θ(I)∩clβXZ(f) = I + (f) = (I, f),

∀f ∈ C(X), the proof of the following proposition is evident.
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Proposition 2.2. Let I ⊆ J be two ideals in C(X). Then, the following
statements are equivalent.

(a) J/I is a z-ideal in C(X)/I.
(b) For every f ∈ J and g ∈ C(X), whenever θ(I)

⋂
clβXZ(f) ⊆

clβXZ(g), then g ∈ J .
(c) For every f ∈ J , we have M θ(I)∩clβXZ(f) ⊆ J .
(d) For every f ∈ J , (I, f) ⊆ J .
(e) J =

∑
f∈J MI, f =

∑
f∈J (I, f).

If I ⊆ J are two ideals in a ring R, then clearly the necessary condition
for J/I to be a z-ideal in R/I is that J be a z-ideal in R containing MI .
In particular, if J/I is a z-ideal in C(X)/I, then J is a z-ideal in C(X)
containing I.

Example 2.3. Let I be an ideal in a ring R. Since Jac(R/I) = MI/I,
MI/I is the smallest z-ideal in R/I. In particular, if I is an ideal in
C(X), then I/I is the smallest z-ideal in C(X)/I. On the other hand,
if I ⊆ J are two ideals in a ring R and MI = MJ , then J/I is a z-ideal
in R/I if and only if J/I is the smallest z-ideal in R/I; i.e., if and only
if J = MI = MJ . It is easy to see that J/I is a z-ideal in R/I if and
only if J/MI is a z-ideal in R/MI . It is also clear that if I, J ⊆ K are
three ideals in R (C(X)) and MJ ⊆ MI (θ(I) ⊆ θ(J)), then K/I is a
z-ideal in R/I (C(X)/I) if K/J is a z-ideal in R/J (C(X)/J).

By the following lemma and corollary, the answer to our conjecture
for the rings C(X) modulo principal ideals (or the closure of principal
ideals) is positive.

Lemma 2.4. Suppose that I is an ideal and J is a z-ideal in a ring R
(C(X)) such that I ⊆ Mf (clβXZ(f) ⊆ θ(I)) for some f ∈ J . Then,
J/I is a z-ideal in R/I (C(X)/I).

Proof. Let M be a maximal ideal in R such that f, g ∈ M . Since M
is a z-ideal, Mf ⊆ M and by our hypothesis, I ⊆ M . This means that
MI, g ⊆ Mf, g, ∀g ∈ J . Now, we have Mf, g = Mf2+g2 ⊆ J for J is a
z-ideal and f2 + g2 ∈ J . Hence, MI, g ⊆ J ; ∀g ∈ J , i.e., J/I is a z-ideal
in R/I. �
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Corollary 2.5. For each non-unit f ∈ C(X), the ideal J in C(X)
containing f is a z-ideal if only and if J/(f) (J/Mf ) is a z-ideal in
C(X)/(f) (C(X)/Mf ).

It is known that a Hausdorff space X is normal if and only if every
closed subset of X is C-embedded. By the following proposition, when-
ever X is a normal Hausdorff space and f ∈ C(X), then every ideal of
C(X)/Mf is a z-ideal if and only if Z(f) is a P -space (a space in which
every Gδ-set or every zero-set is open).

Proposition 2.6. (a) For f ∈ C(X), every ideal of C(X)/(f) is a
z-ideal if and only if Z(f) is an open P -space.
(b) If f ∈ C(X) and Z(f) is C-embedded in X, then every ideal of
C(X)/Mf is a z-ideal if and only if Z(f) is a P -space.

Proof. First, we show that if Z(f) is C-embedded in X, then C(X)
Mf

∼=
C(Z(f)). To see this, we define ϕ : C(X) → C(Z(f)) so that ϕ(g) =
g|

Z(f)
, ∀g ∈ C(X). Since Z(f) is C-embedded, clearly ϕ is an onto

homomorphism and Ker(ϕ) = Mf . This shows that C(X)
Mf

∼= C(Z(f)).

Now, if every ideal of C(X)/(f) is a z-ideal, then (f
1
3 )/(f) is a z-ideal in

C(X)/(f), and so (f
1
3 ) is a z-ideal in C(X). This implies that Z(f

1
3 ) =

Z(f) is open. Therefore, Mf = (f) and Z(f) is C-embedded, for Z(f)
is an open set. But C(X)

Mf
= C(X)

(f)
∼= C(Z(f)) implies that every ideal of

C(Z(f)) is a z-ideal; i.e., Z(f) is an open P -space. Conversely, if Z(f)
is an open P -space, then it is C-embedded and hence C(X)

Mf
= C(X)

(f)
∼=

C(Z(f)). Now, since every ideal of C(Z(f)) is a z-ideal, every ideal of
C(X)/(f) is a z-ideal and this proves part (a). To prove part (b), we
have C(X)

Mf

∼= C(Z(f)), and clearly every ideal of C(X)/Mf is a z-ideal
if and only if every ideal of C(Z(f)) is a z-ideal if and only if Z(f) is a
P -space. �

By the above proposition and Problem 4K in [9], whenever X is com-
pact (more generally, whenever X is locally compact or pseudocompact)
and I is a principal ideal (f), then every ideal of C(X)/I is a z-ideal
if and only if Z(f) consists only a finite number of isolated points. If
X is a compact space and I is any arbitrary ideal in C(X), then we
have the following result. Our proof of the following result shows that
the equivalence of parts (b) and (h) is true for any completely regular
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Hausdorff space X. Moreover, this equivalence shows that if C(X)/I is
regular, then every ideal containing I is closed.

Theorem 2.7. Let X be a compact space and I be an ideal in C(X).
Then, the following statements are equivalent.

(a) For every ideal J containing Ī, J/I is a z-ideal in C(X)/I.
(b) Every ideal of C(X)/Ī is a z-ideal.
(c) Every principal ideal of C(X)/Ī is a z-ideal.
(d) Ī + (f) = Ī + Mf = Ī + (f), ∀f ∈ C(X).
(e) For every f, g ∈ C(X), if Z(f) ⊆ Z(g), then there exists h ∈

C(X) such that θ(I) ⊆ Z(g − hf).
(f) For every f, g ∈ C(X), whenever Z(f) ⊆ Z(g), then g|θ(I) is a

multiple of f |θ(I) in C(θ(I)).
(g) θ(I) is finite.
(h) C(X)/Ī is a regular ring; i.e., every prime ideal of C(X)/Ī is

maximal.

Proof. (a) ⇔ (b) ⇒ (c) are evident.
(c) ⇒ (d). Clearly, Ī +(f) ⊆ Ī +(f). Now, let h+g ∈ Ī +(f) = Ī +Mf ,
where h ∈ Ī and g ∈ Mf . Then, θ(I)

⋂
Z(f) ⊆ Z(h + g). But, Ī+(f)

Ī
is

a z-ideal by part (c) and hence h + g ∈ Ī + (f).
(d) ⇒ (e). If Z(f) ⊆ Z(g), then g ∈ Ī + (f), for Ī + (f) is a z-ideal
and hence g ∈ Ī + (f) by part (d). Therefore, ∃h ∈ C(X) such that
g − hf ∈ Ī; i.e., θ(I) ⊆ Z(g − hf).
(e) ⇒ (f). If Z(f) ⊆ Z(g), then g − hf ∈ Ī implies that g|θ(I) =
h|θ(I)f |θ(I).
(f) ⇒ (g). We claim that θ(I) is a P -space. Since θ(I) is compact, if we
prove our claim, then we are through, for in that case θ(I) will be finite;
see [9], 4K. So, let f, g ∈ C(θ(I)). We show that (f, g) ⊆ (f2 + g2); see
4J in [9]. Since θ(I) is C-embedded in X, there exist extensions f̄ and

ḡ in C(X) of f and g, respectively. Now, Z(f
2

+ g
2
) = Z(f̄)

⋂
Z(ḡ)

and part (f) imply that f = f̄ |θ(I) and g = ḡ|θ(I) are in principal ideal

(f̄
2

|θ(I) + ḡ
2 |θ(I)) = (f2 + g2); i.e., (f, g) = (f2 + g2).

(g) ⇒ (h). Let P be a prime ideal in C(X) containing Ī and θ(I) =
{x1, · · · , xn}. Hence, Ī = Mθ(I) =

⋂n
i=1 Mxi ⊆ P implies that Mxj ⊆ P

for some 1 ≤ j ≤ n; i.e., P is maximal.
(h) ⇒ (b). Since every prime ideal containing Ī is maximal, every prime
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ideal containing J is also maximal and this implies that J/I is an inter-
section of maximal ideals.

Now, we answer the question concerning the characterization of z-
ideals in the factor rings of C(X), where X is pseudocompact. First, we
need the following lemma.

Lemma 2.8. (a) Let A and B be two compact subsets of the space X
and G be a Gδ-set in X. If A

⋂
B ⊆ G, then there exist two zero-sets E

and F in X such that A ⊆ E, B ⊆ F and E
⋂

F ⊆ G.
(b) X is normal if and only if MA + MB = MA∩B, for every pair of

closed sets A and B in X.

Proof. (a) Let G =
⋂∞

n=1 Un, where the Un are open sets. Given
n ∈ N, for every a ∈ A

⋂
B, there exists a zero-set Zn, a such that

a ∈ intZn, a ⊆ Zn, a ⊆ Un, and for every a ∈ A \ B, there exists a zero-
set Zn, a such that Zn, a

⋂
B = ∅ and Zn, a is a neighborhood of a. since

A ⊆
⋃

a∈A Zn, a and A is compact, there are a1, · · · ak ∈ A such that
A ⊆

⋃k
i=1 Zn, ai . Take the zero-set Zn =

⋃k
i=1 Zn, ai Then, Zn

⋂
B =(⋃k

i=1 Zn, ai

) ⋂
B =

[(⋃
ai∈A∩B Zn, ai

) ⋃ (⋃
ai∈A\B Zn, ai

)] ⋂
B ⊆ Un,

for
(⋃

ai∈A\B
Zn, ai

) ⋂
B = ∅. Now, consider the zero-set E =

⋂∞
n=1 Zn.

We have A ⊆ E and E
⋂

B ⊆ G. Again, we will employ the same
procedure for the compact set B and we find a zero-set F such that
E

⋂
F ⊆ G and B ⊆ F . This completes the proof.

(b) Let X be a normal space. If f ∈ MA∩B, then the function g,
defined by g = f on A and g = 0 on B, is continuous on the closed set
A∪B. By Tietze’s extension Theorem, g can be extended to a function
h ∈ C(X). Thus, f = (f − h) + h ∈ MA + MB. Conversely, suppose
that MA + MB = MA∩B, for every pair of closed sets A and B in X. If
A∩B = ∅, then MA + MB = MA∩B = C(X), and therefore, there exist
functions f ∈ MA and g ∈ MB such that f + g = 1. �

The following corollary and remark show that the sum of two closed
ideals in C(X), where X is compact (pseudocompact), is a closed ideal.

Corollary 2.9. If A and B are two compact subsets of X, then the sum
of two closed ideals MA and MB in C(X) is a closed ideal. In particular,
If X is compact, then the sum of every two closed ideals in C(X) is a
closed ideal.
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Proof. We show that MA +MB = MA∩B. Clearly, MA +MB ⊆ MA∩B.
Now, suppose that h ∈ MA∩B. Then, A

⋂
B ⊆ Z(h). Since Z(h)

is a Gδ-set and A and B are compact sets, by Lemma 2.7 there are
f, g ∈ C(X) such that A ⊆ Z(f), B ⊆ Z(g) and Z(f)

⋂
Z(g) ⊆ Z(h).

Now, f2 + g2 ∈ MA + MB and MA + MB is a z-ideal, and hence h ∈
MA +MB. In particular, if X is compact, then X is normal and by part
(b) of Lemma 2.7, the proof is evident. �

Remark 2.10. It is easy to see that for any two closed subsets A and
B of the space βX, we have MAMB = MA

⋂
MB = MA∪B. But, the

equality MA + MB = MA∩B is equivalent to our conjecture stated at
the beginning of this section. By Lemma 2.8, this equality also holds in
C(X) for a pseudocompact space X. For if X is pseudocompact, then
C(X) = C∗(X) ∼= C(βX). Since the sum of two closed ideals in C(βX)
is a closed ideal, this fact also holds in C(X); i.e., if A and B are two
closed sets in βX, then MA + MB is a closed ideal MC in C(X), where
C ⊆ βX is a closed set. Moreover, C = A

⋂
B, for MA,MB ⊆ MC

imply that C ⊆ A
⋂

B; see [7], Lemma 1.6. Now, let x ∈ A
⋂

B and
x /∈ C. Then, ∃f ∈ C(X) such that C ⊆ clβXZ(f) and x /∈ clβXZ(f).
Hence, f ∈ MC = MA +MB, and so there exist f1 ∈ MA and f2 ∈ MB

such that f = f1 + f2. Thus, x ∈ A
⋂

B ⊆ clβXZ(f1)
⋂

clβXZ(f2) ⊆
clβXZ(f), which gives a contradiction. �

Corollary 2.11. Suppose that X is a pseudocompact space and I is an
ideal in C(X). J is a z-ideal in C(X) containing Ī if and only if J/I is
a z-ideal in C(X)/I.

Proof. Let J be a z-ideal in C(X), Ī ⊆ J and f ∈ J . By Remark 2.9,
M θ(I)

⋂clβXZ(f) = M θ(I) + MclβXZ(f) = Ī + Mf . Since J is a z-ideal
and f ∈ J , Mf ⊆ J , and hence M θ(I)

⋂clβXZ(f) ⊆ J implies that J/I is
a z-ideal in C(X)/I. �

Since e-ideals in C∗(X) are precisely closed ideals in C∗(X) with
uniform norm topology (see [9], 2L and 2M for details of e-ideals in
C∗(X) and uniform norm topology on C∗(X)) and relative m-topology
on C∗(X) coincides with uniform norm topology, in case X is pseudo-
compact (see [9], 2N), the following corollary is evident.

Corollary 2.12. If X is a pseudocompact space, then the sum of two
e-ideals in C∗(X) is an e-ideal.



220 Aliabad, Azarpanah and Paimann

The rest of this section is devoted to some results supporting our
conjecture under some special conditions. First, let A ⊆ βX be a
closed set in βX. Whenever for any two zero-sets Z1 and Z2 with
A

⋂
clβXZ1 ⊆ clβXZ2, there exists a zero-set Z such that A ⊆ clβXZ

and clβXZ
⋂

clβXZ1 ⊆ clβXZ2, then we say that A is an ε-set. In
fact, A ⊆ βX is an ε-set if and only if MA∩clβXZ(f) = MA + Mf ,
∀f ∈ C(X). To see this, if A is an ε-set and g ∈ MA∩clβXZ(f), then
A

⋂
clβXZ(f) ⊆ clβXZ(g). Since A is an ε-set, ∃h ∈ C(X) such that A ⊆

clβXZ(h) and clβXZ(h)
⋂

clβXZ(f) ⊆ clβXZ(g). Hence, clβXZ(f2 +
h2) ⊆ clβXZ(g) and f2 + h2 ∈ MA + Mf imply that g ∈ MA + Mf , for
MA + Mf is a z-ideal and therefore MA∩clβXZ(f) = MA + Mf (note,
the inclusion MA∩clβXZ(f) ⊇ MA + Mf is always true). Conversely,
A

⋂
clβXZ(f) ⊆ clβXZ(g) implies that g ∈ MA∩clβXZ(f) = MA + Mf ,

and hence there exist h ∈ MA and k ∈ Mf such that g = h + k.
Now, clβXZ(h)

⋂
clβXZ(f) ⊆ clβXZ(h)

⋂
clβXZ(k) ⊆ clβXZ(g) and

A ⊆ clβXZ(h); i.e., A is an ε-set.
If θ(I) is an ε-set and J is a z-ideal in C(X) containing Ī, then

J/I is a z-ideal in C(X)/I. In fact, if g ∈ J and h ∈ C(X) such
that θ(I)

⋂
clβXZ(g) ⊆ clβXZ(h), then ∃f ∈ C(X) such that θ(I) ⊆

clβXZ(f) and clβXZ(f)
⋂

clβXZ(g) ⊆ clβXZ(h) or clβXZ(f2 + g2) ⊆
clβXZ(h). Now, θ(I) ⊆ clβXZ(f) implies that f ∈ Ī ⊆ J , and hence
f2 + g2 ∈ J . But, J is a z-ideal, and thus h ∈ J ; i.e., J/I is a z-ideal in
C(X)/I.

Proposition 2.13. Let A ⊆ βX be a closed set in βX and either
(a) clβX(A

⋂
X) = A, or

(b) A = Z(fβ) ⊆ βX \X for some f ∈ C∗(X) and X is normal, or
(c) A ⊆ υX.

Then, A is an ε-set.

Proof. Let A
⋂

clβXZ0 ⊆ clβXZ1, where Z0 and Z1 are two zero-sets.
First, suppose that (a) holds. Since βX is compact, by Lemma 2.7
there exists f ∈ C∗(X) such that A ⊆ Z(fβ) and Z(fβ)

⋂
clβXZ0 ⊆

clβXZ1 ⊆ Z(gβ), where Z1 = Z(g), for some g ∈ C∗(X) . Now,
we have A

⋂
X ⊆ Z(f), and hence A = clβX(A

⋂
X) ⊆ clβXZ(f).

Thus, clβXZ(f)
⋂

clβXZ0 ⊆ Z(fβ)
⋂

clβXZ0 ⊆ clβXZ1; i.e., A is an ε-
set. Next, we suppose that (b) holds and A is not an ε-set. Letting
fβ = F , F−1([− 1

n , 1
n ])

⋂
clβXZ0 6⊆ clβXZ1, ∀n ∈ N. Therefore, for
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n ∈ N, there exists xn ∈ X such that F (xn) ≤ 1
n and xn ∈ Z0 \ Z1.

Take B = {xn : n ∈ N}. Clearly, B is closed in X, the set of limit
points B′ of B is nonempty, B′ ⊆ Z(F ), B

⋂
Z1 = ∅ and B ⊆ clβXZ0.

Now, X is normal. Then, Z ∈ Z(X) exists such that B ⊆ Z and
Z

⋂
Z1 = ∅, and hence clβXZ0

⋂
clβXZ1 = ∅ and B′ ⊆ clβXZ. But

B′ ⊆ Z(F )
⋂

clβXZ0 ⊆ clβXZ1, and hence B′ ⊆ clβXZ1. So, ∅ 6= B′ ⊆
clβXZ0

⋂
clβXZ1, which is a contradiction. Finally, suppose that the

condition (c) holds. Then, A
⋂

υX = A implies that clβX(A
⋂

υX) = A
and by part (a), there exists fυ ∈ C(υX) such that A ⊆ clβXZ(fυ) and
clβXZ(fυ)

⋂
clβXZ0 ⊆ clβXZ1. But, clβXZ(fυ) = clβXZ(f) implies

that A is an ε-set. �

Corollary 2.14. Let I ⊆ J be two ideals in C(X) and A = θ(I). If one
of the parts (a), (b) or (c) of the above proposition holds, then J/I is a
z-ideal in C(X)/I if and only if J is a z-ideal in C(X) containing Ī.

3. z◦-ideals in the factor rings

We note that if I is a z◦-ideal in a commutative ring R, then for
every a ∈ I, Pa 6= R. This means that every member of a z◦-ideal I
is zero divisor. Since every minimal prime ideal is a z◦-ideal and any
intersection of z◦-ideals is also a z◦-ideal, the nilradical rad(R) of R is
a z◦-ideal which is the smallest z◦-ideal in R; i.e., every z◦-ideal of R
contains rad(R). Therefore, the z◦-ideals structure of R is equivalent to
that of R/rad(R). Thus, we may assume that rad(R) = (0); i.e., R is a
reduced ring. Whenever I is an ideal of a ring R, in order for R/I to
be a reduced ring, we should consider I to be a semiprime ideal. In this
section, we study the z◦-ideals of factor rings R/I and C(X)/I, where
I is a semiprime ideal. First, we need the following two useful lemmas
which are proved in [4, 18].

Lemma 3.1. Let R be a reduced ring and a ∈ R. Then, we have,

Pa = {b ∈ R : Ann(a) ⊆ Ann(b)} = Ann(Ann(a)).

Lemma 3.2. Let R be a reduced ring and I be an ideal in R. Then, the
following statements are equivalent.

(a) I is a z◦-ideal in R (i.e., a ∈ I implies that Pa ⊆ I).
(b) Pb ⊆ Pa and a ∈ I imply that b ∈ I.
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(c) Ann(a) ⊆ Ann(b) and a ∈ I imply that b ∈ I.
(d) a ∈ I implies that Ann(Ann(a)) ⊆ I.

The following is also known. The parts (a) and (c) of the following
lemma are proved in [16] and [4] respectively and the part (b) is evident.

Lemma 3.3. Let I and J be two ideals in a commutative ring R. Then,
the following statements hold.

(a) If I is a z-ideal, then so is [I : J ].
(b) If I is semiprime, then so is [I : J ].
(c) If R is a reduced ring and I is z◦-ideal, then so is [I : J ].

Next, we show that the converse of the above results are not true in
general.

Remark 3.4. If [I : J ] is a z-ideal, then I may not be even semiprime.
To see this, let P be a prime z-ideal in C(X) and f /∈ P be a non-
zerodivisor; i.e., intXZ(f) = ∅. Since (f) is essential (see [2]), I =
(f)

⋂
P 6= (0). I is not a z-ideal, for if g ∈ P \ (f

1
3 ), then f

1
3 g /∈

(f)
⋂

P = I, otherwise f
1
3 g = fk, for some k ∈ C(X). Hence, f

1
3 (g −

f
2
3 k) = 0 implies that g = f

1
3 k, for f is not a zerodivisor. This contra-

dicts g /∈ (f
2
3 ). So, f

2
3 g /∈ I, but fg3 ∈ I and hence I is not a semiprime

ideal. Now, we show that (I : f) is a z-ideal. Suppose that Z(h) = Z(k)
and h ∈ (I : f). Hence, hf ∈ I = (f)

⋂
P implies that h ∈ P , for

f /∈ P . Since P is a z-ideal, k ∈ P and therefore kf ∈ (f)
⋂

P = I; i.e.,
k ∈ (I : f), and hence (I : f) is a z-ideal. This shows that the converse
of parts (a) and (b) of preceding proposition is not true. To show that
the converse of part (c) of this proposition is not true either, take the
ideal I = M[0,1]

⋃
{2} in C(R) and f ∈ C(R) with Z(f) = {2}. Clearly,

(I : f) = M[0,1] is a z◦-ideal but I is not a z◦-ideal. �

Now, let I be a semiprime ideal in a ring R. For any a ∈ R, we
denote by Pa+I , as before, the intersection of all minimal prime ideals of
R/I containing a + I. If we take PI, a =

⋂
a∈P∈Min(I) P , where Min(I)

denotes the set of all prime ideals minimal over I, then we have Pa+I =
PI, a

I . On the other hand, by Lemma 3.1, we have,

Pa+I =
{

b + I : AnnR
I
(a + I) ⊆ AnnR

I
(b + I)

}
.
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But it easy to see that AnnR
I
(a + I) ⊆ AnnR

I
(b + I) if and only if

(I : a) ⊆ (I : b), and so PI, a = {b ∈ R : (I : a) ⊆ (I : b)}. By this
argument and Lemma 3.2, the following result is evident.

Proposition 3.5. Let I ⊆ J be two ideals in a ring R and I be a
semiprime ideal. Then, the following statements are equivalent.

(a) J/I is a z◦-ideal in R/I; i.e., ∀a ∈ J, Pa+I ⊆ J/I, (or PI,a ⊆ J).
(b) PI, b ⊆ PI, a and a ∈ J imply that b ∈ J .
(c) If (I : a) ⊆ (I : b) and a ∈ J , then b ∈ J .
(d) ∀a ∈ J, PI, a ⊆ J .
(e) ∀a ∈ J, (I : (I : a)) ⊆ J .
(f) J =

∑
a∈J(I : (I : a)).

Example 3.6. (1) It is easy to show that every minimal prime ideal and
the annihilator of any subset of a reduced ring is a z◦-ideal; see [4]. It
is also clear that the intersection of z◦-ideals is also a z◦-ideal. Now, we
let I be a semiprime ideal in a ring R. Then, R/I is a reduced ring, and
hence (I : a)/I = AnnR/I(I + a) is a z◦-ideal in R/I,∀a ∈ R. Similarly,
(I : ab)/(I : a) is also is a z◦-ideal in R/(I : a). PI,a/I is also a z◦-ideal
in R/I, ∀a ∈ R, for it is an intersection of minimal prime ideals in the
reduced ring R/I.

(2) If R is a reduced ring, then for every a ∈ R, Ann(a) is a semiprime
ideal. In this case, for any a, b ∈ R, if Ann(a) ⊆ Ann(b), then
Ann(b)/Ann(a) is a z◦-ideal in R

Ann(a)
. To see this, let c ∈ Ann(b),

d ∈ R and (Ann(a) : c) ⊆ (Ann(a) : d). Since bc = 0, b ∈ (Ann(a) : c) ⊆
(Ann(a) : d), and hence bd ∈ Ann(a) ⊆ Ann(b) implies that db = 0, or
d ∈ Ann(b) and we are through. More generally, if I is a semiprime ideal
in a ring R and b ∈ R such that I ⊆ Ann(b), then Ann(b)

I is a z◦-ideal
in R/I.

(3) Let f ∈ C(R), Z(f) = [0,∞] and J be a z◦-ideal containing
Ann(f). We show that J

Ann(f)
is a z◦-ideal. Since J is an intersection

of prime z◦-ideals (see [5]), it is enough to show that for every prime z◦-
ideal P containing Ann(f), P

Ann(f)
is a z◦-ideal. Clearly, f /∈ P , for oth-

erwise take g ∈ C(R) with Z(g) = [−∞, 0]. Then, g ∈ Ann(f) ⊆ P im-
plies that f2 + g2 ∈ P . But, intZ(f2 + g2) = ∅, which is a contradiction.
Now, suppose that h ∈ P , k ∈ C(R) and (Ann(f) : h) ⊆ (Ann(f) : k)
. Hence, Ann(fh) ⊆ Ann(fk) implies that fk ∈ P , by Proposition 1.2,
for P is a z◦-ideal and fh ∈ P . Now, f /∈ P implies that k ∈ P ; i.e.,
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P
Ann(f)

is a z◦-ideal. In Counter-example 3.9 below, we will observe that
if P is a prime z◦-ideal in C(X) containing Ann(f), for some f ∈ C(X),
then P

Ann(f)
is not always a z◦-ideal in C(X)

Ann(f)
.

(4) Finally, if P is a prime ideal of a reduced ring R, then R/P
has no nonzero z◦-ideal. In fact, every member of a z◦-ideal should be
zerodivisor, whereas R/P has no nonzero zerodivisor.

In [18], it is shown that Jac(R) = 0 if and only if every z◦-ideal of a
reduced ring R is a z-ideal. This fact proves part (a) of the following
proposition.

Proposition 3.7. (a) If I is a semiprime ideal in C(X), then every
z◦-ideal of C(X)/I is a z-ideal if and only if I is closed.

(b) If I ⊆ J are ideals in a ring R, I is a z-ideal (z◦-ideal) and J/I
is a z◦-ideal in R/I, then J is a z-ideal (z◦-ideal).

Proof. (b) Let Mb ⊆ Ma (Pa ⊆ Pb), where a ∈ J and b ∈ R. We show
that (I : a) ⊆ (I : b). Let c ∈ (I : a). Since Mbc ⊆ Mac(Pbc ⊆ Pac),
ac ∈ I and I is a z-ideal (z◦-ideal), bc ∈ I; i.e., c ∈ (I : b). Now, J/I is
a z◦-ideal. Then, b ∈ J . This shows that J is a z-ideal (z◦-ideal). �

In case I = Pf , for some f ∈ C(X), the set of z◦-ideals of C(X)
I is

exactly the set of all ideals of the form J/I, where J is a z◦-ideal in
C(X) containing I.

Proposition 3.8. If f ∈ C(X) is a zerodivisor, then J is a z◦-ideal in
C(X) containing Pf if and only J/Pf is a z◦-ideal in C(X)/Pf .

Proof. If J/Pf is a z◦-ideal in C(X)/Pf , then by Proposition 3.7 (b),
J is a z◦-ideal in C(X). Conversely, let J be a z◦-ideal in C(X) con-
taining Pf . Suppose that g ∈ J , h ∈ C(X) and (Pf : g) ⊆ (Pf :
h). We must show that h ∈ J . Let h /∈ J . Since f ∈ Pf ⊆ J ,
f2 + g2 ∈ J and by Proposition 1.2, intZ(f)

⋂
intZ(g) 6⊆ Z(h). Take

x ∈ intZ(f)
⋂

intZ(g) \ Z(h) and define t ∈ C(X) such that t(x) = 1
and t(X \ intZ(g)) = {0}. Clearly, tg = 0 implies that t ∈ (Pf : g), but
intZ(f) 6⊆ Z(th) implies that t /∈ (Pf : h), which is a contradiction. �

Counter-example 3.9. (a) An example of two ideals I and J such
that I is semiprime (a z-ideal), J/I is a z◦-ideal but J is not a z-ideal (a
z◦-ideal): Consider a semiprime ideal (a z-ideal) I which is not a z-ideal
(a z◦-ideal). By Proposition 1.1, there exists a minimal prime ideal P
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over I which is not a z-ideal (a z◦-ideal). Now, P/I is a z◦-ideal, but P
is not a z-ideal (z◦-ideal).
(b) An example of two ideals I and J such that I is semiprime and J
and J/I are z◦-ideals, but I is not a z-ideal: Let P1 and P2 be two
prime ideals such that P1 is a z◦-ideal and P2 is not a z-ideal. Hence,
I = P1

⋂
P2 is a semiprime ideal which is not a z-ideal. Since P1 is

minimal over I, P1
I is a z◦-ideal, and so P1 and P1

I are z◦-ideal, but I is
not a z-ideal.
(c) An example of two z◦-ideal I and J such that J/I is not a z◦-
ideal: Take a prime z◦-ideal P in C(X) which is not minimal (see [4],
Proposition 1.26). Then, there exists f ∈ P such that Ann(f) ⊆ P
(note that the prime ideal P is minimal if and only if ∀f ∈ P, ∃g /∈ P

such that fg = 0). Now, P
Ann(f)

is not a z◦-ideal in C(X)

Ann(f)
. In fact,

(Ann(f) : f) ⊆ (Ann(f) : k), ∀k ∈ C(X), and f ∈ P imply that P

Ann(f)
is not a z◦-ideal

Now, by Counter-example 3.9(c), we have the following result.

Proposition 3.10. For every two z◦-ideals I ⊆ J in C(X), J/I is a z◦-
ideal in C(X)/I if and only if every prime z◦-ideal in C(X) is minimal.

Proof. First, suppose that every prime z◦-ideal of C(X) is minimal.
Then, J is an intersection of minimal prime ideals. Since for every
minimal prime ideal P containing I, P/I is a z◦-ideal, it follows that
J/I is a z◦-ideal. Next, suppose that for every two z◦-ideals I ⊆ J ,
J/I is a z◦-ideal and let P be a prime z◦-ideal. If P is not minimal,
then ∃f ∈ P such that Ann(f) ⊆ P . Now, P

Ann(f)
is not a z◦-ideal, by

Counter-example 3.9(c), but P and Ann(f) are both z◦-ideals in C(X),
which is a contradiction. �
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