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NORMAL LOSS FUNCTION
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Abstract: This paper considers simultaneous estimation of mul-
tivariate normal mean vector using the extended reflected nor-
mal loss function (Spiring [9]). It is shown that the sample mean
X = (X1,...,X,) is admissible when p < 2, but for p > 3,
we obtain a class of estimators similar to James-Stein estimators

which dominate the sample mean in terms of risks.

1. Introduction

Let X = (X;,...,X,) be a normal vector with mean vector § =
(01,...,0,) and covariance matrix oI, where o? is known. We use
the notation

X ~ N,(8,0°I), in this article. We consider the simultaneous estima-
tion of § = (6,,...,6,) by using a random sample Xy,..., Xy from

N,(8,0%I) under the extended reflected normal loss function, given by
L(6,0) = K [1 —exp{—(6 —6)T7'(6 - 0)}] (1.1)
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where K > 0, ' is a constant positive definite matrix. In practice
the maximum loss can be a function of many things (e.g., Production
resources, cost of identification, rework and liabilities) but generally it is
finite. As a result the quadratic loss function, with its infinite maximum
loss, is often inadequate in describing the loss function associated with
a product and has been criticized by some researchers (e.g., Tribus and
Szonyi [13], Leon and Wu [8]). The bounded loss function (1.1) was
introduced by Spiring [9] for the first time. This loss is a bounded and
increasing function of the quadratic loss.

To estimate § with N = 1 and ¢ = 1, Stein [10] showed that X is
inadmissible when p > 3 under squared error loss. James and Stein [7]

showed that the following estimator, known as J-S estimator,

p—2

has uniformly smaller risk than X, for all §. Strawderman [12], Efron
and Morris [6], and Casella and Hwang [4] studied the problem of esti-
mating multivariate normal mean vector under quadratic loss function.
Brandwein and Strawderman [3] provided minimax estimators for the
mean of a spherically symmetric distribution with concave loss. Chung
and Kim [5] investigated the admissibility of the sample mean X under
balanced loss function. (see Zellner [14])

In section 2 of this paper, using the limiting Bayes method, we show
that X is admissible when p < 2 under the loss (1.1). In section 3, we
obtain an estimator similar to J-S estimator under the loss (1.1) when

p > 3, in the following form

_ c* _
M X)=(1l-=——=1]X
(X) ( X’F—lX)
and we show that 6* dominates the usual estimator X = ~ SNX; =
(X1,...,X,), where X; = (X;y,...,X;,) and X; = %Zi\;l XiiJ =
1,...,p.
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2. Admissibility of X when p <2

In this section, we consider the admissibility of X when p = 1 and 2.
We show that X is admissibile, using the standard Blyth’s technique [2].

Let Xq,..., Xy be a random sample from N,(6,1) with the prior
normal distribution 7,(6), where 6 has the mean vector zero and covari-
ance matrix %I. It is easy to show that the Bayes estimator of 6 w.r.t.

74(#) under the extended reflected normal loss function is

- NX
X)=

with the risk function,

R(6,6,) = K [1 ) [exp {_(]év_fa _ g)T—l(NNfa _ 0)}”

= K- (3% [eop{-(5m - 0T (e = 6)

— S0 0))de)

Now using the fact that for any matrices C; and C5 of appropriate

dimensions,
(Ci+Cy)t=Cr =Cri(eri + o) e (2.1)

it follows that the risk function of the estimator é, is equal to

K- Bt Ly [ttt —wrer + B2 Dy, )
HF PG+ sl 0
K|1- (N]V%/z“)pm—l + Wﬂ—%ew{—%wi a)zo’(%r R
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where 7 is a function of 6.

Theorem 2.1: X = (X,,...,X,) is admissible under the loss (1.1)
when p = 1,2, where X; = ﬁZﬁVﬂij: 1,...,p.

)of 6. Using
the continuity of the risk function in  for an estimator §(X), it follows
that there exists some #y,¢ > 0 and £ > 0 such that
all R(6,6) < R(6,X) — ¢ for 6, — &1 < 0 < 0y +£1
where 1 = (1,1,...,1).

Let 74,75, 7% be defined as follows:

r, = Bayes risk of the Bayes solution ¢, w.r.t. 7,.

Proof: Suppose X is dominated by some estimator é(

r* = Bayes risk of X w.r.t. 7,.

*%
. =

Then the difference of Bayes risks of X and ¢ is

r Bayes risk of 6 w.r.t. 7,.

Bo+€1 -
r—r > /9 [R(6, X) — R(6,8)] 7.(6)d8

0o—¢1

Y

Potel 3 1 1 a
/ (27) 5|~ 1| eap(—26'0)d0
) a 2

0o—¢1

P
> caz

The last inequality holds for all @ < 1, where ¢ is a positive constant not
depending on a.
Also, using (2.2), the difference of Bayes risks of X and ¢, is

(N +a)y . (N+a)? a 1 N . .
e, = K{—F2]|2T I I+ - —1T I~z
— NENT+2r7Y "%}
_(N+a)Y  a . (N+a)? a(N+a) 1

— NENI+207Y7 %)
= K{(N+ay20" + (N +a)l|75 = NP2 N +207 4]

The second equality is carried out by using the relation (2.1). It can

easily be verified that for p = 1, the ratio TE*_TZ*

a " Ta

tends to infinity as
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a — 0 and for p = 2, this ratio tends to a positive constant as a — 0.
Hence, there exists an @ > 0 such that r}* < r, which contradicts the
fact that 8, is a Bayes solution with respect to m,. Therefore X is for

p=12.1

3. Inadmissibility of X for p > 3

In this section, we consider estimation of § = (6;,...,6,) from the
model of section 1 under the loss (1.1) and find a class of estimators

which have uniformly smaller risk than X for p > 3.

Lemma 3.1:Let X = (X4,...,X,) be distributed as N,(0,1). If
h: R — R is an almost differentiable function with E||Vh(X)| < oo,
then

E[VA(X)] = E[(X — 6)h(X)]

, where Vh(z) = (M,... M)/.

dxy 7 dz,

Proof: See Stein [11]. m

Theorem 3.1:Let the positive values Ay < Ay < ... < A, be the

etgenvalues of the matriz I'. If the estimator 6° is defined as

5°(X) = (1 - ﬁ) X

wher60<c<c*,c*:2[f:2 L X

- I, ﬁ] ,then 6°(X) dominates
X in terms of risks under the extended reflected normal loss function
(1.1) for p > 3, when ¢* > 0.

bf Proof: For any estimator 6(X ), we define a function g as

9(0,8) = E [exp {=(8(X) = O)TH(5(X) — 0)}]
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and show that for all 9, ¢(0,6°) > g(8, X). We observe that

9(0, 60) — E |:€_(X—9)’F—1(X 9)6 m+2C(X G)IXI;;ifX]
e =1, % 2 _ F_lX
> F e_(X—G)F (X-9) 1 — %‘FQC(X—O)/?
XT=iX XT-'X

This inequality follows using the fact that

e >1—2 Ve e

Now by defining Y71 = 2T~} + NI, A = [a;;],x, = SV T7INV2Y =
(Yy,...,Y,) = Y2 X and 3 = %76, the inequality (3.1) reduces to

62

00,69 2 900, 5) - N {8 | o | - 2em |0 - 0|
3

where Y is distributed as N, (43, 1).
Note that by using lemma 3.1, it follows that

, AY _ R >hoyaiY;
E[(Y_ﬂ) Y’AY] = ; Y Y, Y a”YY]
- B 2 i) (2 2 a;Y;Y;) — Z(Z ] J)Z]
I (3 205 i YiYy)?
_ g 2vary
- U lyiay (Y’AY)z]

and

_E [Y,AY] +2cE [(Y - B) 7]

_ Y'[(—¢* 4 2ctr(A))A — 4cA%]Y
Dl B T —

(3.3)

We know that A is a positive definite matrix and is diagonable as
U'AU =T =diag{ty,...,t,}, where the positive values ¢;,...,t, are
the eigenvalues of A. Now, we have U'A*U = T? =diag{ti,... 2} and
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therefore (3.3) reduces to
—k [Y'CW] +2c (Y - B) 5]

_ Y'U[(=¢* 4 2¢tr(A))T — 4¢T?*|U'Y
- vy |

According to (3.2), we complete the proof by showing that the matrix

(= +2ctr(A))T—4cT? = diag{ct,(—c+2tr(A)—4t,),. .. ct,(—c+2tr(A)—4t,)}

(3.4)
is positive definite when 0 < ¢ < ¢*.
It can be verified that ¢; = ﬁ’l =1,...,p, where the values A\; <
Ay < ... < A, are the eigenvalues of I'. Hence, the diagonal elements of

the diagonal matrix (3.4) is positive when

4

1=1,....p
This condition is equivalent to 0 < ¢ < ¢* with ¢* = 2 [ P, m - ﬁ .

Corollary 3.1: Let the estimator §*(X) be given as

_ _9 _
- (1= 22 Vx
(N 1 2)X'X
Now, ¢*(X) dominates X under the loss function (1.1) with T = I, for

p > 2. This estimator is similar to J-S estimator.

Conclusions 3.1: Let the estimator 6*(X) be given as

* Y p— 2 v
O X)=|l-——F——==1 X
(X) ( (N+me)
Now, 6*(X) dominates X under the loss function (1.1) with T' = I, for

p > 2. This estimator is similar to J-S5 estimator.
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