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Abstract: The aim of this note is to prove some common fixed
point theorems in complete metric spaces using generalized con-

tractive conditions.

1. Introduction

In the paper [4], the authors gave some fixed point theorems generalizing
and unifying many fixed point theorems obtained by Delbosco in [1],
Skof in [8], Rakotch in [5], Reich in [7], and Fisher in [3], (see also
the references for other related results). Precisely in [4] the following
theorem was established:

1.1 Theorem. Let T be a self-map of a complete metric space (X, d)
and let ¢ be a function verifying
(i) ¢ : [0, 00[— [0, 00[ is continuous and increasing in [0, o[, and

(ii) ¢(t) = 0 <=t = 0.
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We suppose that T satisfies the following condition:

P(d(Te, Ty)) < ald(z,y))p(d(x,y)) +
b(d(z, y))[p(d(x, Tx))+ o(d(y, Ty))] (K)
+e(d(x, y)) min {$(d(2,Ty)), o(d(y, Tx))}
Ve,ye X with x #y,

where a,b, ¢ are three decreasing functions from 10, 00[ into [0, 1] such
that a(t) 4 2b(t) + ¢(t) < 1, for every t > 0. Then T has a unique fized

point.

In the second section of this paper we shall prove some common
fixed point theorems for sets of self-mappings verifying contractive con-
ditions close to the relation (K). These results complete and unify the
main results obtained in the papers [4] and [6]. In section 3, we es-
tablish a common fixed point theorem in compact metric spaces using
another type of contractive conditions. We may consider this theorem
as a generalization of a theorem established by B. Fisher in [3]. Our

generalization is different from that one given in the paper [4] by M.S.
Khan, M. Swaleh and S. Sessa.

2. Main theorems

We shall denote by @ the set of functions ¢ verifying conditions (i) and
(ii). Many authors (see the references) were interested by fixed point
theorems by altering the distances between the points with the use of
functions belonging to the class ®. The purpose of this section is to
contribute in this field of investigations. One of the main results of this

paper is the following theorem.

2.1 Theorem. Let ¢ € ® be a convex function and let S, T be two
self-maps of a complete metric space (X, d) such that

+/f(d(z,y))p(8d(Sz, y)), (4)
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for all distinct xz,y in X, where 7,6 are two fixed numbers such that
0 < 7,6 < %, and a,b,c,e, f are five decreasing functions from 0, oo[
into [0, 1] verifying a(t)+b(t)+c(t)+e(t)+ f(t) < 1, for everyt > 0. We
suppose also that max{B,C} < 1, where, B := sup{b(t)+ 6 f(¢t) :t > 0}
and C := sup{c(t)+ye(t) : t > 0}. Then S and T have a unique common

fized point z € X. Moreover Fiz(S) = Fiz(T) = {z}.

Proof. (I) We shall prove that the pair {5,7} has a common fixed
point. Let z, be some point in X, and define the sequence {z,} by

Lap = SwZn—lv n= 1727
Tont1 = szm n = 07 1,2,

We put ¢, := d(x,,2,41) for all integer n. (I) is proved if ¢,, = 0 for
some integer ng. Therefore, we may assume that ¢, > 0 for all integer
n. We see that for an even integer n, we have

¢(tn) = ¢(d(5$n—1aT$n)) <Y, + U, + U4+ U, 4+ Vs,

where
Uy = a(d(zpr,20))(d(Xn-1,25)),
v, = b(d($n—17$n))¢(d($n—17Sa@n—l))a
Uy =c(d(zn_1,2,))0(d(z,, Tx,)),
v, = €(d($n—17JUn))(b(’Vd(ﬂUn—hTﬂUn))a
Us = f(d(z,-1,2,))(0d(2p, Stp_1))
So

¢(tn) S a(tn—l)¢(tn—1)+b(tn—1)¢(tn—1)+C(tn—1)¢(tn)+e(tn—l)¢(7[tn—1+tn])
Hence by using the convexity of ¢, we get

a(t,—1) +b(t-1) + ve(tn-1)
1—e(th_1) —ve(tn_y)

In a similar manner, one can prove (for the same even integer) that

a(ty_s) + c(th_2)+ 6 f(t,_2)
T=b(th_o)— 6f(tn_1)

¢(1n) <

Atn1) < Ptn_1). (1)

Ptno1) < Htnoz) < P(tn_z). (1)
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Since ¢ is increasing, (1) and (1’) show that sequence ¢, is decreasing.

Let t be the limit of ¢,,. We shall prove that ¢ = 0. Indeed, suppose that

t > 0. Then ¢t <t,, and by (1), we have

aft) 4 b(t) +ye(t)
1 —e(t) = ye(?)

Now we let n — oo and use the continuity of ¢ to obtain

aft) 4 b(t) + ye(?)
= () — el

which is a contradiction, hence ¢ = 0.

P(t2n) <

P(t2-1)-

P(t) <

o(t) < (1),

(IT) Now, we shall prove that {z,} is a Cauchy sequence. Since ¢t = 0
one needs only to see that {z,,} is a Cauchy sequence. To get a contra-

diction, let us suppose that there is a number ¢ > 0 and two sequences

{2n(k)}, {2m(k)} with 2k < 2m(k) < 2n(k), (k € N) verifying
A(Z2n k), Tom(r)) > € (2)

For each integer k, we shall denote 2n(k) the least even integer exceeding

2m(k) for which (2) holds. Then

d($2m(k)7$2n(k)—2) S € and d($2m(k)7$2n(k)) > €.

For each integer k, we shall put p;, := d(Zomk)> Zan(r))s @ = A Zamp)41> Tan(k)+1)

and 7y, := d(Zom(k)41> Tan(k)42), then we have

€ <pr= d($2m(k)7 xZn(k))
< d(Tamr)s Tan(k)—2) + A Tanir)=2> Tane)=1) + A Tank)=1, Ton(r))
<€+ tonry—2 + Lon@)-1- (3)

Since the sequence {t,} converges to 0, we deduce from (3) that {p;}
converges to €. Furthermore, the sequence {¢;} has also ¢ as limit. In-
deed, this fact results from the following estimates obtained by triangular

inequality

~tome) = tanik) + Pk < A(Tomik)1s Tank)41)
< tomk) T tonr) + Pr

(4)
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We claim that the sequence {r;} converges to €. Indeed, we get by using

triangular inequality the following

Tk < lomk) + Pe + tone) + Lonirysr- (5)

On the other hand, by definition of the integer 2n(k) and by using
triangular inequality we have the following

€ S d($2m(k)7 $2n(k)—2)
< lomey + 76 + tano4r + Lone) + Lan)—1 + Lonre)—2

(6)

(5) and (6) imply our claim. One can deduce that there exists an integer
ko such that d($2n(k)+1,9€2m(k)) > 0, and fy,) < § for each integer
k > k. Thus, by using (2) and the relation py —ta; < d(Zon(k)+15 Tam(k))s
we deduce (for all k > kq) that

¢(Tk) = ¢(d($2n(k)+27$2m(k)+1)) = ¢(d(5$2n(k)+lvTx2m(k)))
<SIy 4T+ Ts4+Ta+ 15
<G+ G+ G+ Gy + G,

where

Iy = a(d(@anikyers Tami))O(d(@an(h)e1s Tamir)))s
r, = b( ($2n(k)+17me(k)))¢(d(x2n(k)+17xZn(k)+2))7
s = c(d(Ton(k)41, Tamr)) )2 Tomk)s Tam(r)+1))s
Iy = e(d( NA(vd(@an(r) 415 Tami)41)),
Us = e(d(@anp)1s Tam(i)))O(0d( T 2m(p)s Tan(r)+2)) )
G1 = a(pr — tan) S(Ton(r) + Pr),

Gy = ¢(t2n(k)+1)7

Gy = ¢(

Gy = e(pp — tone) (Vi ), and

Gs = f(Pr — tan))O([tomry + 75])-

Lan(k)+1s Lam(k)

Let & — o0o. Then by using the continuity of ¢ and the fact that
a,b,c,e, f are decreasing on |0, +o00[, we obtain

6(6) < a(5)o(e)Fel5)6(vO+/(5)9(6¢) < [al5)+e(5)+F()(e) < 6(c).
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This gives a contradiction. Hence {x,} is a Cauchy sequence in a com-
plete metric space (X, d), then one may find a point z = 2(5,7) € X
such that x, — z as n — oo. Next, we shall prove that z is a common
fixed point for S and T.

(III) Since ¢, > 0 for all integer n, we see that both subsequences (2,),
and (2a,41), are not stationary. Therefore, we may find a subsequence
(acn(k))k such that z,,(;)41 # 2 for every integer k. Let us suppose that
Tz # z. In this case we are allowed to apply the inequality (A) and
obtain for all k € N,

P(d(@2n(ry2.T2)) = (d(ST2n(1)41,T2))
< a(d(Zanpyg1, 2))(d(Zonp)415 2)) + 0(d( 2o k)15 2)) (A Zon k)41 Ton(r)+2))
({10 2O, T2)) + e(daniirer DO A2 gi140, T2)
‘I’f(d($2n(k)+17 )) (6d($2n(k)+272))'
(7)
By using the convexity of ¢, we deduce from (7) the following inequality:
A d(Taniryr2, T2)) £ Od(@an(ry41, 7)) + O(tani)1) + A(0d(Tan(r)42, 7))
+ e d(@angiyen 2)) + Ye(d(@anar01, 2)| Sd(2,T2)
+¢(d($2n(k)+17 Z)v (8)

which gives, after letting k — oo :

Ad(z,Tz)) < max{c(t)+ve(t):t >0} p(d(z,Tz)) )
= C(b(d(ZvTZ)) < (b(d(Z,TZ)),

which is a contradiction. Hence z = Tz, and in a similar way, it can be
shown that z = 5z.

(IV) Suppose that there exists another point £ # z fixed, for instance,
by S. Then, by inequality (A), we have

P(d(&,2)) = o(d(5¢,Tz))

< fa(d(€, ) + e(d(&, 2)) + f(d(E, 2))] ¢(d(E, 2))

< od(&,2))
a contradiction. Therefore, we deduce that there exists a unique point
z € X such that Fiz(S) = {2z} = Fiz(T) = Fiz({5,T}). This completes

the proof of our theorem.O
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Using the basic ideas in the proof of the previous theorem, one can

establish the following theorem which generalizes the main result of the
paper [6].

2.2 Theorem. Let (X,d) be a complete metric space, A a (finite
or infinite) set of self-maps of X and ¢ an element of ®. We suppose
that for all S, T € A the following generalized contractive condition holds
true:

d(Sz,Ty)) < a(d(z,y))e(d(z,y)) + B(d(z, y))o(d(z, Sz))
+y(d(z, y))o(d(y, Ty)) + 0(d(z, y))min { $(d(z, Ty)),
o(d(y, Sz))} Ve,ye X with z #y,

where a, 3,7, 8 are four decreasing functions from 10, 400l into [0, 1] such
that a(t)+5(t)+v(t)+6(t) < 1, for every t > 0, and sup{max(5(t), (1)) :
t >0} < 1. Then there exists a unique point z € X such that Fiz(S) =
{z} for all S € A.

2.3 Remarks.

(a) If we take A = {5,7'} and § = ~, then we obtain the result by
R. A. Rashwan and A. M. Sadeek in [6].

(b) If we take § = v and A = {T'}, then we obtain one of the main
results established by M. S. Khan et al. in the paper [4].

(¢)If 8 =0, A= {T} and the functions a, 3 and v are constants,
then we get the results obtained by D. Delbosco in [1] and by F. Skof in
the paper [8].

(d) Example: We give here an example where we discuss the validity
of the assumptions of Theorem 2.2. We take X = {1,2,3,4} and define
a metric d on X by setting d(1,2) =1, and d(1,3)=d(1,4) = d(2,3) =
d(2,4) = d(3,4) = 2. We put A = {5,T,V}, where 51 = §2 = 53 =
S4=1;T1=T2=T3=1,Td=2and Vl=V2=Vd4=1,V3=2.
For all ¢ > 0, we put a(t) = 2/5, (t) = 1/20, v(t) = 7/20, 6(t) = 1/6,
and ¢(¢) = t*. Then all the conditions of Theorem 2.2 are satisfied for
the set A = {5,7T,V}, which has 1 as unique common fixed point.
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The following result is an easy consequence of our Theorem 2.2.

2.4 Corollary. Let (X,d) a complete metric space, A a (finite or
infinite) set of self-maps of X and ¢ an element of . We suppose that
for all S,T € A the following generalized contractive condition holds
true

P(d(Sw, Ty)) < ald(z,y))¢(d(z,y)) + B(d(x, y))min {$(d(z, Sx)),
P(d(y, Ty))} +~(d(x,y))min{$(d(x, Ty)), (d(y, Sx))}
Ve, y € X with ¢ # vy, ()

where a, 3,7 are three decreasing functions from |0, 00| into [0, 1] such
that a(t)+pp(t)+7(t) < 1, for every t > 0, where p is a fired constant in
11, +o00[. Then there exists a unique point z € X such that Fiz(S) = {z}
for all 5 € A.

3. A fixed point theorem in compact metric spaces
In a paper of Fisher [3], the following theorem has been established:

3.1 Theorem. Let T be a continuous self-map of a compact metric
space (X,d) such that

d(z,Tx)+ d(y,Ty)
2 b

(£)

d(Tz,Ty) <

for all distinct z,y in X. Then T has a unique fized point .

Following the essential idea of our result presented in section 2 we
shall generalize Theorem 3.1 as follows:

3.2 Theorem. Let 5,T be two self-maps of a compact metric space
(X,d) and let ¢ € ¢ be a convexr function. We suppose that T, S oT are
continuous and that S, T verify for all distinct x,y in X the inequality

o(d(z,52) +6(dly, Ty) (d(x, Ty) + d(Se, y)) }

[ [
(@)
where ¢ > 2 is a fized constant. Then § and T have a unique common
fized point z € X. Moreover Fiz(S) = Fiz(T) = {z}.

8(d(S2,Ty)) < max{ o(d(z,v),
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Proof. Let xz;, be an element in X, an associate to it the sequence
(zy,), given by
Tap =8%9,_1, n=12,..
Toprr =TTy, n=0,1,2,..
Without loss of generality, we may assume that ¢, # 0 for every integer
n. In this case, it is easy to see that the sequence (¢(t,,)) is decreasing and
therefore it converges. Since X is compact, we may find a subsequence
(ﬂﬁzn(k))k converging to some element z € X. Then by using the continuity

of the maps T and ¢, we get

Pd(z,T2)) = 1My yoo Otan(r)) = iMoo G(tan(ryi1)
= limp_ 4o O(d(Tonik)+15 Tan(i)42)) (10)
= limj— yoo S(d(T 2200, (S 0 T)Tonr)))
= @(d(Tz,(50T)z)).

Suppose that z # Tz, then we can apply the inequality (G) to z = T’z
and y = z. By using (10) and the fact that ¢ is convex and increasing,
we obtain
Bd(2,T2)) = H(d(S(T2),T2))
< max{¢(d(Tz,z)), ¢(d(Tz,STz))+¢(d(z,Tz))7¢<d(STz,Tz)+d(Tz,z)>}

c c

< max {(d(T2, 2)), 204120

<max {1,2} ¢(d(Tz,2)) < $(d(Tz,2)).

This is a contradiction. Therefore we must have Tz = z. The relation
(10) will imply that Sz = z. To end the proof, let us suppose that there
exists a point £ # z fixed, for instance, by 5. Then by applying the
inequality (G), we get

Hd€,2)) = o(dS€12)) < max { od(€ 2). 20(d(€ )} < o(d(€.2))
which is a contradiction.O
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