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FINITE p-GROUPS WITH FEW NON-LINEAR

IRREDUCIBLE CHARACTER KERNELS

H. DOOSTIE AND A. SAEIDI∗

Communicated by Cheryl E. Praeger

Abstract. We classify all finite p-groups with at most three non-
linear irreducible character kernels.

1. Introduction

We classify finite p-groups with at most three non-linear irreducible
character kernels. This solves the first half of a question posed by
Berkovich [1, Research Problem 23]. The second part of this prob-
lem involves the quasikernels and is still open. Throughout the pa-
per, G is a finite non-abelian p-group for a fixed prime p. Denote by
Kern(G) the set of non-linear irreducible character kernels of G. If
|Kern(G)| = 1, then |G′| = p and Z(G) is cyclic and vice versa (see
Lemma 2.1 and Lemma 2.2 below). Also, the main theorem of [8] im-
plies that if |Kern(G)| > 1, then G is of maximal class if and only if
Kern(G) is a chain with respect to inclusion. Our main theorem is the
following.

Theorem 1.1. Let G be a finite non-abelian p-group. Let t ≤ 3 be the
number of non-linear irreducible character kernels of G. Then,

(1) t = 1 if and only if |G′| = p and Z(G) is cyclic.
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(2) t = 2 if and only if one of the following cases occurs:

(a) G is of order p4 and class 3.
(b) |G′| = 2, Z(G) ∼= Z2 × Z2r(r ≥ 1) and r > 1 implies that

G′ ⊆ Φ(Z(G)).

(3) t = 3 if and only if one of the following cases occurs:

(a) G is of order p5 and class 4.
(b) G is of order 32 and class 3 and Z(G) is cyclic.
(c) |G′| = 3, Z(G) ∼= Z3 × Z3r(r ≥ 1) and r > 1 implies that

G′ ⊆ Φ(Z(G)).
(d) G′ = Z(G) ∼= Z2 × Z2 and N ≤ Z(G), for each N CG not

containing G′.
(e) |G′| = 2, Z(G) ∼= Z2 × Z4 and G′ 6= Φ(Z(G)).
(f) G is of class 2, |G′| = 4, Z(G) is cyclic and |NZ(G) :

Z(G)| ≤ 2, for each N CG not containing G′.

Throughout this paper, all characters are complex. By c(G), we mean
the nilpotency class of the group and Zi(G) is the ith term of the upper
central series of G. We denote the set of non-linear irreducible characters
of G and the set of irreducible character degrees of G by Irr1(G) and
cd(G), respectively. The Frattini subgroup of G is denoted by Φ(G).

2. Preliminary results

In this section, we state some known facts, mainly about p-groups
and their characters. First we need the following easy result.

Lemma 2.1. Let H be a non-abelian finite group. Then,⋂
K∈Kern(H)K = 1.

Proof. Consider the group H/N , where N =
⋂
K∈Kern(H)K and note

that N is contained in all non-linear irreducible character kernels of H.
Since non-linear irreducible characters of H/N are the same as those of
H, the equality |H| = |H : H ′|+

∑
χ∈Irr1(H)

χ(1)2 yields:

|H| −
∣∣H : H ′

∣∣ = |H : N | −
∣∣H : H ′N

∣∣ ,
which implies:
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(2.1)
(∣∣H ′∣∣− 1

) ∣∣N : H ′ ∩N
∣∣ =

∣∣H ′ : H ′ ∩N ∣∣− 1.

Thus, |H ′| − 1 divides |H ′ : H ′ ∩ N | − 1. That is, H ′ ∩ N = 1. Now,
using (2.1) again, one deduces that N ≤ H ′, whence N = 1. �

Lemma 1 of [2] implies that |G′| = p and Z(G) is cyclic if and only
if all non-linear irreducible characters of G are faithful and cd(G) =

{1, |G : Z(G)|1/2}. By the next lemma we show that the condition

cd(G) = {1, |G : Z(G)|1/2} is indeed superfluous.

Lemma 2.2. All non-linear irreducible characters of G are faithful if
and only if |G′| = p and Z(G) is cyclic.

Proof. Assume that all of the non-linear irreducible characters of G are
faithful. Since G has some faithful irreducible characters, then by [7,
Lemma 2.32], Z(G) is cyclic. Now, assume that N is a normal subgroup
of G, not containing G′. Then N is contained in some non-linear irre-
ducible characters of G. But, all non-linear irreducible characters of G
are faithful. Hence, we get N = 1. That is, G′ is the unique minimal
normal subgroup of G. Equivalently, |G′| = p. The result now follows
by [2, Lemma 1] �

To prove Theorem 1.1, we need the notion of the strong and weak
conditions on normal subgroups, introduced by Fernández-Alcober and
Moretó [3]. Assume that N (G) is the set of all normal subgroups of G,
not containing G′. Then, we say that G satisfies the strong condition if
each element of N (G) is central. Also, G satisfies the weak condition if
for each N ∈ N (G), |NZ(G) : Z(G| ≤ p. Throughout this paper, we
use these notions frequently. It is clear that we may relax to consider
only the maximal elements of N (G) which are among the members of
Kern(G). So, we have the following equivalent definition.

Definition 2.3. We say that G satisfies the strong condition if for each
K ∈ Kern(G), K ≤ Z(G). Similarly, G satisfies the weak condition if
for each K ∈ Kern(G), the |KZ(G) : Z(G)| ≤ p.

Proposition 2.4. Assume that |G′| = p. Then, G satisfies the strong
condition. Moreover, Z(G/N) = Z(G)/N , for each normal subgroup N
of G, not containing G′.
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Proof. Let N be a normal subgroup of G, not containing G′. Then,
N ∩G′ = 1 and consequently, N ≤ Z(G). Hence, G satisfies the strong
condition. Now, assume that xN ∈ Z(G/N). Then, for each y ∈ G,
[x, y] ∈ N ∩G′ = 1. That is, x ∈ Z(G) and the result follows.

�

Proposition 2.5. Assume that G satisfies the weak condition. Then,
c(G) ≤ 4 and the following statements hold:

(1) if c(G) = 4, then |G : Z(G)| = p4,
(2) if c(G) = 3 and |Z2(G) : Z(G)| = p, then |G : Z(G)| = p3.

Proof. See [3, Propositions 4.1, 6.1 and 6.5]. �

Lemma 2.6. Assume that
∣∣(G/Z(G))′

∣∣ = p. Then, |G : Z2(G)| = p2.

Proof. It suffices to apply [3, Lemma 2.5] to G/Z(G). �

Proposition 2.7. [8] Kern(G) is a chain with respect to inclusion if
and only if G satisfies one of the following conditions:

(1) G′ is the unique minimal normal subgroup of G.
(2) G is of maximal class.

Now, we can prove the following useful corollary. For the preliminary
facts about the p-groups of maximal class, see, for example, [5, Chapter
III, Section 14].

Corollary 2.8. If Kern(G) is a chain with respect to inclusion, then
|Kern(G)| = c(G)− 1.

Proof. By Proposition 2.7, G′ is the unique minimal normal subgroup
of G or G is of maximal class. In the former case, G is of class 2. Fur-
thermore, [7, Lemma 12.3] implies that |Kern(G)| = 1. So, we may
assume that G is of maximal class. In particular, |Z(G)| = p. Use
induction on c(G). If c(G) = 2, then G is a non-abelian group of or-
der p3. Thus, we have |Kern(G)| = 1. So, assume that c(G) > 2.
Obviously, G/Z(G) satisfies the hypothesis of the induction. Hence,
|Kern(G/Z(G))| = c(G/Z(G)) − 1. To complete the proof, it suffices
to show that |Kern(G/Z(G))| = |Kern(G)| − 1. As Z(G) is contained
all the non-trivial non-linear irreducible character kernels of G, we con-
clude that there exists a one to one correspondence between the non-
linear irreducible character kernels of G, which are non-trivial, and
the non-linear irreducible character kernels of G/Z(G). In particular,
|Kern(G/Z(G))| = |Kern(G)| − 1, and the result follows.

�
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3. Main results

In this section, we prove Theorem 1.1. First we deal with the case
that G has just two non-linear irreducible characters.

Lemma 3.1. Suppose G has no faithful irreducible characters. Then,
|Kern(G)| = 2 if and only if |G′| = 2, Z(G) ∼= Z2 × Z2r(r ≥ 1) and
either G′ ⊆ Φ(Z(G)) or r = 1.

Proof. Assume that Kern(G) = {K1,K2}. Let N ≤ K1 ∩ Z(G) and N
be of order p. By Lemma 2.1, K1 ∩K2 = 1. Thus, G/N has only one
non-linear irreducible character kernel. As a result of Lemma 2.1, all
non-linear irreducible characters of G/N are faithful. Hence, K1 = N
and we get |K1| = p. A similar argument shows that |G′| = |K2| = p.
Noting that, under our assumption, every subgroup of Z(G) having
order p, except G′, is in Kern(G), we have that Z(G) contains exactly
three subgroups of order p. So, we get p = 2 and Z(G) ∼= Z2r × Z2s

for some positive integers r, s. On the other hand, by Proposition 2.4,
Z(G/Ki) = Z(G)/Ki, (1 ≤ i ≤ 2). However, the former is cyclic, by
Lemma 2.2. So, we conclude that either r = 1 or s = 1. IfG′ 6⊆ Φ(Z(G)),
then we may find a maximal subgroup M of Z(G) such that G′ 6⊆ M .
Now, G/M is a non-abelian group and consequently contained in some
character kernels of G, while the character kernels of G are of order 2.
Therefore, |M | = 2 and we conclude that r = s = 1. Conversely, assume
that Z(G) ∼= Z2 × Z2r and |G′| = 2. Then, all non-linear irreducible
character kernels of G are central. If r = 1, then Z(G) has exactly
two proper normal subgroups, apart from G′. Both of these subgroups
are easily seen to be character kernels of G. Therefore, in this case we
have |Kern(G)| = 2. Now, assume that r > 1. Then by our assumption,
G′ ⊆ Φ(Z(G)) and consequently, G′ is contained in all normal subgroups
of G of order greater than 2. So, the non-linear irreducible character
kernels of G, not containing G′ are just the normal subgroups of order
2, except G′. This completes the proof.

�

Proposition 3.2. Let G be a p-group and assume that G satisfies one
of the followings:

(a) G is of order p5 and class 4,
(b) G is of order 32 and class 3 and Z(G) is cyclic,
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(c) |G′| = 3, Z(G) ∼= Z3 × Z3r(r ≥ 1) and r > 1 implies that
G′ ⊆ Φ(Z(G)),

(d) G′ = Z(G) ∼= Z2 × Z2 and G satisfies the strong condition.
(e) |G′| = 2, Z(G) ∼= Z2 × Z4 and G′ 6= Φ(Z(G),
(f) G is of class 2, |G′| = 4, Z(G) is cyclic and G satisfies the weak

condition.

Then, |Kern(G)| = 3.

Proof. If G is of type (a), then the result follows by Proposition 2.7
and Corollary 2.8. Also, we may use GAP [4] to verify that the groups
of type (b) have precisely three non-linear irreducible character kernels.
Now, let G be of type (c). Then, G satisfies the strong condition and
consequently the non-linear character kernels ofG are just the non-trivial
proper subgroups of Z(G), apart from G′, while we know that Z(G)
has exactly four subgroups of order 3, one of which is G′. A similar
argument shows that the result holds for groups of type (d). Next,
assume that G is of type (e). Then, Z(G) has three subgroups of order
2, and three subgroups of order 4. Since G satisfies the strong condition,
the normal subgroups of G not containing G′, are just the subgroups of
Z(G). Let F = Φ(Z(G)) and note that |F | = 2. Also by definition, F is
contained in all subgroups of Z(G) of order 4. On the other hand, among
6 subgroups of Z(G) of order 2 or 4, four subgroups do not contain G′.
Also F can not be a non-linear character kernel of G. So, G has precisely
one character kernel of order 2 and two character kernels of order 4.
Now, let G be of type (f). Let K be a non-linear irreducible character
kernel of G. Since Z(G) is cyclic, then G′ is contained in all central
subgroups of G of order greater than 2. Therefore, |K ∩ Z(G)| ≤ 2. As
G satisfies the weak condition, we conclude that |K| = 4. Let N be the
unique minimal normal subgroup of G. Then, all non-linear irreducible
character kernels of G/N are of order 2. Also, |(G/N)′| = 2. We claim
that G/N has exactly three normal subgroups of order 2. Otherwise,
G′/N is not contained in the product of at least two subgroups of order
2. This forces G/N to contain some non-linear irreducible character
kernels of order greater than 2, which is a contrdiction. The proof is
now completed.

�

Lemma 3.3. Let G be a 2-group of class exceeding 2 with |Kern(G)| = 3.
Then, |G| = 32 or 64.
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Proof. If G is of maximal class, then Proposition 2.7 and Corollary 2.8
imply that |G| = 32. Assume that G is not of maximal class. Set
Kern(G) = {K1,K2,K3}. First, suppose 1 6∈ Kern(G). If all elements
of Kern(G) are mutually disjoint, then it is easy to see that all members
of Kern(G) are of order 2. Thus, by Proposition 2.5(1), |G| = 16,
which is a contradiction. So, we may assume that K1 ∩ K2 = N 6= 1.
Lemma 3.1 yields that |K1| = |K2| = |G′| = 4. We show that |K3| ≤ 4.
Indeed, if |K3| ≥ 4, then it contains a normal subgroup N of G with
|N | = 2. By Lemma 2.1, N contains exactly two members of Kern(G).
Hence, by Lemma 3.1, |K3| = 4, as wanted. If |Z(G)| = 4, then the
result follows by Proposition 2.5(2). So, assume that |Z(G)| > 4. Then,
Z(G) has at least 3 subgroups of order 4. Since G′ is not contained in
Z(G), we conclude that Z(G) has exactly three subgroups of order 4.
Consequently, K3 is also central and G satisfies the strong condition.
The result now follows by Proposition 2.5(1). Next, we assume that
1 ∈ Kern(G). Then Z(G) is cyclic and consequently, G has only one
minimal normal subgroup. Let K3 = 1 and note that by Proposition 2.7,
|K1| > 2 and |K2| > 2. Thus, K1∩K2 = N 6= 1 and G/N is a group with
two non-linear irreducible character kernels. Note that by Lemma 2.1,
N is the unique minimal normal subgroup of G. Now, apply Lemma 3.1
to G/N and obtain |G′| = |K1| = |K2| = 4. In particular, G satisfies
the weak condition. Since Z(G) is cyclic, it contains only one subgroup
of order 4. Thus, Z(G) does not contain both K1 and K2. On the
other hand, by our hypothesis, G is of class greater that 2. So, Z(G)
contains either K1 or K2. Also Lemma 2.1 implies that Z(G) coincides
to one of these subgroups. Hence, |Z(G)| = 4 and the result follows by
Proposition 2.5(2).

�

Remark 3.4. Using GAP, one may check that groups of order 32 of
class exceeding 2 with a cyclic center have precisely three non-linear ir-
reducible character kernels. Furthermore, among the groups of order 32
or 64, these are the only groups of class greater than 2 that satisfy this
property.

Example 3.5. Let G be a group of order 32 such that |G : G′| = 8 and
cd(G) = {1, 2, 4} (see [6, Example 6.11]). Then |Kern(G)| = 3.

Proof of Theorem 1.1. Part (1) follows from Lemma 2.1 and Lemma 2.2.
Now, assume that t = 2. If G has no faithful irreducible characters, then
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by Lemma 3.1, it is of type (b). So, let 1 ∈ Kern(G). Since |Kern(G)| =
2, the non-linear irreducible character kernels of G constitute a chain
with respect to inclusion. Thus by Proposition 2.7, G is of maximal
class. Also, by Corollary 2.8, c(G) = 3. Hence, |G| = p4 and G is of
type (a).

To complete the proof, it remains to prove the third part of the
theorem. If G satisfies one of the conditions (a)−(f) of (3), then by
Lemma 3.2, |Kern(G)| = 3. So, assume that |Kern(G)| = 3. If G is of
maximal class, then by Proposition 2.7 and Corollary 2.8 G is of type
(a). So, assume that G is not of maximal class. Our goal is to prove that
G is of type (b), (c), (d), (e) or (f). The proof is divided into several
steps.

Step 1. If |K| > p, for some K ∈ Kern(G), then p = 2.

First, we suppose that 1 ∈ Kern(G) and let N be the (unique) cen-
tral subgroup of G of order p. Since G is not of maximal class, we get
N 6∈ Kern(G). So, by Lemma 3.1, G/N is a 2-group. Next, assume
that 1 6∈ Kern(G). Then, Z(G) is not cyclic and in particular, contains
at least p + 1 subgroups of order p. If p > 2, then we may choose
a subgroup N of Z(G) of order p with N 6= G′ and N 6∈ Kern(G).
Now, if |Kern(G/N)| = 1, then Lemma 2.1 implies that N ∈ Kern(G)
which is a contradiction. Also, if |Kern(G/N)| = 3, then N ≤ K, for
each K ∈ Kern(G/N). Hence, N = 1 by Lemma 2.1 which is again a
contradiction. Thus, we conclude that G/N has exactly two non-linear
irreducible character kernels. Since N 6∈ Kern(G), we conclude that
G/N has no faithful irreducible characters. Thus by Lemma 3.1, G is a
2-group. This is the final contradiction.

Step 2. We have p ≤ 3.

By Step 1, we may assume that all of the elements of Kern(G) are
of order p. Then, Z(G) contains at least p + 1 subgroups of order p.
On the other hand, each central subgroup N of order 2, except G′, is in
Kern(G). Thus, the number of the subgroups of Z(G) of order 2 does
not exceed 4. This gives us p ≤ 3.
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Step 3. If p = 3, then G′ and all elements of Kern(G) are of order 3,
Z(G) ∼= Z3 × Z3r (r ≥ 1) and r > 1 implies that G′ ⊆ Φ(Z(G)).

By Step 1, all elements of Kern(G) are of order 3. Since Z(G) has at
least four subgroups of order 3, then |G′| = 3 and Z(G) ∼= Z3r × Z3s ,
for some positive integers r and s. On the other hand, for each central
subgroup L(6= G′) of order 3, Z(G/L) is cyclic. Hence r = 1 or s = 1.
The reminder of the proof is almost the same as that of Lemma 3.1.

Step 4. If p = 2 and all elements of Kern(G) are of order 2, then
G′ = Z(G) ∼= Z2 × Z2.

Certainly, |G′| > 2. On the other hand, if N is a central subgroup
of G of order 4, then G/N does not admit any non-linear irreducible
character. Hence, G′ is the unique subgroup of Z(G) of order 4. Since
Z(G) is not cyclic, we have G′ = Z(G).

Step 5. If |K| > p, for some K ∈ Kern(G) and c(G) = 2, then then
G is in type (e) or (f).

Assume that |K1| > 2. Let N ≤ Z(G) ∩ K1 and |N | = 2. Then
by Lemma 3.1, N contains two non-linear irreducible character kernels
of G. So, we may assume that N ≤ K2 and |K1| = |K2| = 4. First,
assume that Z(G) is not cyclic. Then, we may choose three distinct
normal subgroups of order 2. So, we must have |G′| = |K3| = 2 and
Z(G) has exactly three subgroups of order 2. Also G′ is not contained
in Φ(Z(G)). If |Z(G)| > 8 then it contains a subgroup of order 8, not
containing G′. This is clearly a contradiction. So, |Z(G)| ≤ 8. As G
satisfies the strong condition, the equality holds. So, G is of type (e).
Next, assume that Z(G) is cyclic. Then, G satisfies the weak condition.
Also by Lemma 3.1, |G′/N | = 2. Hence, |G′| = 4 and we obtain G is of
type (f).

To complete the proof, we use the assertions of the above steps. If
p > 2, then by Steps 2 and 3, G is of type (c). So, assume that p = 2. If
c(G) > 2, then as a result of Lemma 3.3 and Remark 3.4, we conclude
that the group G is of type (b). Also, if c(G) = 2, then by Step 1 and
Step 5, G is of type (d), (e) or (f).

�
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