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SOME HOMOLOGICAL PROPERTIES OF

AMALGAMATED DUPLICATION OF A RING ALONG

AN IDEAL

M. CHHITI AND N. MAHDOU∗

Communicated by Siamak Yassemi

Abstract. We investigate the transfer of some homological prop-
erties from a ring R to its amalgamated duplication along some
ideal I of R R ./ I, and then generate new and original families of
rings with these properties.

1. Introduction

Let R be a commutative ring with unit element 1 and let I be a proper
ideal of R. The amalgamated duplication of a ring R along an ideal I
is a ring that is defined as the following subring with unit element (1, 1)
of R×R:

R ./ I := {(r, r + i)/r ∈ R, i ∈ I}.
This construction has been studied, in the general case, and from dif-
ferent points of view of pullbacks, by D’Anna and Fontana [7]. Also,
D’Anna and Fontana, [5] have considered the case of the amalgamated
duplication of a ring, not necessarily in a Noetherian setting, along a
multiplicative-canonical ideal in the sense of Heinzer-Huckaba-Papick
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[10]. In [6], D’Anna has studied some properties of R ./ I, in order to
construct reduced Gorenstein rings assosiated to Cohen-Macaulay rings
and has applied this construction to curve singularities. On the other
hand, Maimani and Yassemi [15] have studied the diameter and girth
of the zero-divisor graph of the ring R ./ I. For instance, see [5, 6, 7, 15].

Let M be an R-module, the idealization R ∝ M (also called the
trivial extention), introduced by Nagata in 1956 (cf. [16]) is defined
as the R-module R ⊕M with multiplication defined by (r,m)(s, n) :=
(rs, rn+ sm). For instance, see [8, 9, 11, 12].

When I2 = 0, the new construction R ./ I coincides with the ideal-
ization R ∝ I. One main difference of amalgamated-duplication, with
respect to idealization, is that the ring R ./ I can be a reduced ring
(and in fact, it is always reduced if R is a domain).

For two rings A ⊂ B, we say that A is a module retract (or a subring
retract) of B if there exists an A-module homomorphism ϕ : B → A
such that ϕ |A= id |A. In this case, ϕ is called a module retraction
map. If such a map ϕ exists, then B contains A as an A- module direct
summand. We can easily show that R is a module retract of R ./ I,
where the module retraction map ϕ is defined by ϕ(r, r + i) := r.

Here, we study the transfer of some homological properties from a
ring R to the ring R ./ I. Specially, we prove that R ./ I is a von
Neumann regular ring (resp., a perfect ring) if and only if so is R. Also,
we prove that gldim(R ./ I) = ∞ if R is a domain and I is a principal
ideal of R.

Recall that if R is a ring and M is an R-module, as usual we use
pdR(M) and fdR(M) to denote the usual projective and flat dimensions
of M , respectively. The classical global and weak dimensions of R are
respectively denoted by gldim(R) and wdim(R). Also, the Krull dimen-
sion of R is denoted by dim(R).

2. Main results

Let R be a commutative ring with identity element 1 and let I be an
ideal of R. Recall that R ./ I := {(r, s)/r, s ∈ R, s − r ∈ I}. It is easy
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to check that R ./ I is a subring with unit element (1, 1) of R×R (with
the usual componentwise operations) and that R ./ I = {(r, r + i)/r ∈
R, i ∈ I}.

It is easy to see that if πi(i = 1, 2) are the projections of R × R
on R, then πi(R ./ I) = R, and hence if Oi := ker(πi\R ./ I), then
R ./ I/Oi

∼= R. Moreover, O1 = {(0, i), i ∈ I}, O2 = {(i, 0), i ∈ I} and
O1 ∩O2 = (0).

We begin by studying the transfer of von Neumann regular property.

Theorem 2.1. Let R be a commutative ring and let I be a proper ideal
of R. Then, R is a von Neumann regular ring if and only if R ./ I is a
von Neumann regular ring.

The proof will use the following Lemma.

Lemma 2.2. [7, Theorem 3.5]

(1) Let R be a commutative ring and let I be an ideal of R. Let P
be a prime ideal of R and set

P0 = {(p, p+ i)/p ∈ P, i ∈ I ∩ P},
P1 = {(p, p+ i)/p ∈ P, i ∈ I},

and P2 = {(p+ i, p)/p ∈ P, i ∈ I}
• If I ⊆ P , then P0 = P1 = P2 is a prime ideal of R ./ I and

it is the unique prime ideal of R ./ I lying over P .
• If I * P , then P1 6= P2, P1 ∩ P2 = P0 and P1 and P2 are

the only prime ideals of R ./ I lying over P .
(2) Let Q be a prime ideal of R ./ I and let O1 = {(0, i)/i ∈ I}.

Two cases are possible: either Q + O1 or Q ⊇ O1.
a: If Q + O1 , then there exists a unique prime ideal P of R

(I * P ) such that

Q = P2 = {(p+ i, p)/p ∈ P, i ∈ I}.
b: If Q ⊇ O1, then there exists a unique prime ideal P of R

such that

Q = P1 = {(p, p+ i)/p ∈ P, i ∈ I}.

Proof of Theorem 2.1. Assume that R is a von Neumann regular ring.
Then, R is reduced and so R ./ I is reduced by [7, Theorem 3.5 (a)(vi)].
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It remains to show that dim(R ./ I) = 0 by [9, Remark, p. 5]. Let Q
be a prime ideal of R ./ I. If P = Q∩R, then Q ∈ {P1, P2} (by Lemma
2.2(2)). But, P is a maximal ideal of R, since R is a von Neumann regu-
lar ring. Then, P1 and P2 are maximal ideals of R ./ I (by [7, Theorem
3.5 (a)(vi)]). Hence, Q is a maximal ideal of R ./ I, as desired.

Conversely, assume that R ./ I is a von Neumann regular ring. By
[7, Theorem 3.5 (a)(vi)], R is reduced. Let P be a prime ideal of R.
By Lemma 2.2(1), P ./ I = {(p, p + i)/p ∈ P, i ∈ I} is a prime ideal of
R ./ I. From [9, p. 7], we get P ./ I to be a maximal ideal of R ./ I,
and hence P is a maximal ideal of R. Therefore, dim(R) = 0, and so R
is a von Neumann regular ring. �

A ring R is called semisimple if every R-module is projective, that is,
gldim(R) = 0 (see [8, P. 26]). Recall that a ring is semisimple if and
only if it is Noetherian von Neumann regular by [8, Theorems (1.4.2,
1.4.6, and 1.3.10(2)].

Corollary 2.3. Let R be a commutative ring and let I be a proper ideal
of R. Then, R is a semisimple ring if and only if R ./ I is a semisimple
ring.

Proof. Assume that R be a semisimple ring. Then, R is a Noetherian
von Neumann regular ring. By Theorem 2.1, R ./ I is a von Neumann
regular ring and by [7, Corollary 3.3], R ./ I is Noetherian. Therefore,
R ./ I is semisimple.

Conversely, assume that R ./ I is semisimple. Then, R ./ I is a
Noetherian von Neumann regular ring, and so R is a von Neumann
regular ring (by Theorem 2.1) and Noetherian (by [7, Corollary 3.3]).
Hence, R is semisimple. �

A ring R is called a stably coherent ring if for every positive integer
n, the polynomial ring in n variables over R is a coherent ring. Recall
that a ring R is is called a coherent ring if every finitely generated ideal
of R is finitely presented.

Corollary 2.4. Let R be a commutative ring and let I be a proper ideal
of R. If R is a von Neumann regular ring, then R ./ I is a stably
coherent ring.

Proof. Use Theorem 2.1 and [8, Theorem 7.3.1]. �

Now, we are able to construct a new class of non-Noetherian von
Neumann regular rings.
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Example 2.5. Let R be a non-Noetherian von Neumann regular ring
and I be a proper ideal of R. Then, R ./ I is a non-Noetherian von
Neumann regular ring by [7, Corollary 3.3] and Theorem 2.1.

We recall that a ring R is called a perfect ring if every flat R-module
is a projective R-module (see [1]). Secondly, we study the transfer of
perfect property.

Theorem 2.6. Let R be a commutative ring and let I be a proper ideal
of R. Then, R is a perfect ring if and only if R ./ I is a perfect ring.

To prove Theorem 2.6, we need the following lemmas.

Lemma 2.7. ([13, Lemma 2.5.(2)]) Let (Ri)i=1,2 be a family of rings
and Ei be an Ri-module, for i = 1, 2.
Then, pd R1×R2(E1 × E2)=sup{pd R1(E1), pd R2(E2)}.

Lemma 2.8. Let (Ri)i=1,2 be a family of rings and Ei be an Ri-module
for i = 1, 2. Then, fd R1×R2(E1 × E2)=sup{fd R1(E1), fd R2(E2)}.

Proof. The proof is analogous to the proof of Lemma 2.7. �

Lemma 2.9. Let (Ri)i=1,...,m be a family of rings. Then,
∏m

i=1Ri is a
perfect ring, if and only if Ri is a perfect ring, for each i = 1, ...,m.

Proof. The proof is done by induction on m and it suffices to check it
for m = 2. Let R1 and R2 be two rings such that R1 × R2 is per-
fect. Let E1 be a flat R1-module and let E2 be a flat R2-module. By
Lemma 2.8, E1 × E2 is a flat (R1 × R2)-module, and so it is a projec-
tive (R1 × R2)-module, since R1 × R2 is a perfect ring. Hence, E1 is a
projective R1-module, and E2 is a projective R2-module by Lemma 2.7;
this means that R1 and R2 are perfect rings.

Conversely, assume that R1 and R2 are two perfect rings. Let E1×E2

be a flat (R1 × R2)-module, where Ei is an Ri-module, for i = 1, 2. By
Lemma 2.8, E1 is a flat R1-module and let E2 be a flat R2-module; so, E1

is a projective R1-module and E2 is a projective R2-module. Therefore,
E1 × E2 be a projective (R1 × R2)-module by Lemma 2.7; this means
that R1 ×R2 is a perfect rings. �

Lemma 2.10. Let R be a commutative ring and let I be a proper ideal
of R. Then,
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(1) an (R ./ I)-module M is projective if and only if M⊗R./I (R×R)
is a projective (R × R)-module and M/O1M is a projective R-
module,

(2) an (R ./ I)-module M is flat if and only if M ⊗R./I (R × R) is
a flat (R×R)-module and M/O1M is a flat R-module.

Proof. Note that R ./ I is a subring of R×R and O1 is a common ideal
of R ./ I and R×R by [7, Proposition 3.1]. The result follows from [8,
Theorem 5.1.1]. �

Proof of Theorem 2.6. Assume that R is a perfect ring and let M be
a flat (R ./ I)-module. By Lemma 2.10(2), M ⊗R./I (R × R) is a flat
(R×R)-module and M/O1M is a flat R-module. Then, M⊗R./I (R×R)
is a projective (R×R)-module (since R×R is perfect, by Lemma 2.9),
and M/O1M is a projective R-module, since R is perfect. By Lemma
2.10(1), M is a projective (R ./ I)-module, and so R ./ I is a perfect
ring.

Conversely, assume that R ./ I is a perfect ring and let E be a flat
R- module. Then, E ⊗R (R ./ I) is a flat (R ./ I)-module, and so it is
a projective (R ./ I)-module, since R ./ I is a perfect ring. In addition,
for any R- module M and any n ≥ 1, we have

ExtnR(E,M ⊗R (R ./ I)) ∼= ExtnR(E ⊗R (R ./ I),M ⊗R (R ./ I))

(see [3, P. 118]), and then ExtnR(E,M ⊗R (R ./ I)) = 0. Since M is
a direct summand of M ⊗R (R ./ I) because R is a module retract of
R ./ I, ExtnR(E,M) = 0, for all n ≥ 1 and all R-modules M . This
means that E is a projective R-module, and so R is a perfect ring. �

We say that a ring R is Steinitz if any linearly independent subset of a
free R-module F can be extended to a basis of F by adjoining elements
of a given basis. In [4, Proposition 5.4], Cox and Pendleton showed that
Steinitz rings are precisely the perfect local rings.

By Theorem 2.6 and since R ./ I is local if and only if R is local, we
obtain the following result.

Corollary 2.11. Let R be a commutative ring and I be a proper ideal
of R. Then, R is a Steinitz ring if and only if R ./ I is a Steinitz ring.

Example 2.12. Let R = K[X]/(X2), where K is a field and X is
indeterminate. Then, (K[X]/(X2)) ./ I is a Steinitz ring, where I :=
X(K[X]/(X2)).
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For a nonnegative integer n, an R-module E is n-presented if there is
an exact sequence Fn → Fn−1 → ...→ F0 → E → 0, in which each Fi is
a finitely generated free R-module. In particular, “0-presented” means
finitely generated and “1-presented” means finitely presented.
Given nonnegative integers n and d, a ring R is called an (n, d)-ring
if every n-presented R-module has projective dimension ≤ d; and R is
called a weak (n, d)-ring if every n-presented cyclic R-module has pro-
jective dimension ≤ d (equivalently, if every (n − 1)-presented ideal of
R has projective dimension ≤ d − 1). For instance, the (0, 1)-domains
are the Dedekind domains, the (1, 1)-domains are the Prüfer domains,
and the (1, 0)-rings are the von Neumann regular rings; see, for instance,
[2, 11, 12, 13, 14].

Now, we give a wide class of rings which are not weak (n, d)-rings
(and so not (n, d)-rings) for positive integers n and d.

Theorem 2.13. Let R be an integral domain and let I( 6= 0) be a prin-
cipal ideal of R. Then, R ./ I is not a weak (n, d)-rings (and so
is not (n, d)-rings) for each positive integers n and d. In particular,
wdim(R ./ I) = gldim(R ./ I) =∞.

To prove theorem 2.13, we need the following lemma.

Lemma 2.14. Let R be a commutative ring and let I( 6= 0) be a principal
ideal of R. Then, O1 = {(0, i), i ∈ I} and O2 = {(i, 0), i ∈ I} are
principal ideals of R ./ I.

Proof. Let (0, i) be an element of O1. Since I is a principal ideal of
R, there exists a ∈ I such that I = Ra, and so (0, i) = (0, ra) = (r +
j, r)(0, a), for some r ∈ R and for all j ∈ I. Hence, O1 is a principal ideal
of R ./ I, generated by (0, a). Also, O2 is a principal ideal, generated
by (a, 0), by the same argument, as desired. �

Proof of Theorem 2.13. Let a ∈ I such that I = Ra. By Lemma 2.14,
O1 and O2 are principal ideals of R ./ I. Consider the short exact
sequence of R ./ I-modules:

(1) 0→ ker(u)→ R ./ I
u→ O1 → 0,

where u(r, r + i) = (r, r + i)(0, a) = (0, (r + i)a). Then, ker(u) =
{(r, 0) ∈ R ./ I/r ∈ I} = O2. Consider the short exact sequence of
R ./ I-modules:

(2) 0→ ker(v)→ R ./ I
v→ O2 → 0,
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where v(r, r + i) = (r, r + i)(a, 0) = (ra, 0). Then, ker(v) = {(0, i) ∈
R ./ I/i ∈ I} = O1. Therefore, O1 (resp., O2) is m-presented for each
positive integer m by the above two exact sequences. It remains to show
that pdR./I(O1) =∞ (or pdR./I(O2) =∞).

We claim that O1 and O2 are not projective. Deny. Then, O1 is
projective and so the short exact sequence (1) splits. Then, O2 is gen-
erated by an idempotent element (x, 0) such that x( 6= 0) ∈ I. Hence,
(x, 0)2 = (x, 0)(x, 0) = (x2, 0) = (x, 0). Then, x2 = x, and so x = 1
or x = 0, a contradiction (since x ∈ I and x 6= 0). Therefore, O1

is not projective. Similar arguments show that O2 is not projective.
A combination of (1) and (2) yields pdR./I(O1) = pdR./I(O2) + 1 and
pdR./I(O2) = pdR./I(O1) + 1. Then, pdR./I(O1) = pdR./I(O2) + 1 + 1 =
pdR./I(O1)+2. Consequently, the projective dimension of O1 (resp., O1)
has to be infinite, as desired. �

If R is a principal domain, then we obtain the following result.

Corollary 2.15. Let R be a principal domain and let I be a proper ideal
of R. Then, R ./ I is not a weak (n, d)-ring (and so is not an (n, d)-
ring) for each positive integers n and d. In particular, wdim(R ./ I) =
gldim(R ./ I) =∞.
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