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INVARIANCE OF THE BARYCENTRIC SUBDIVISION
OF A SIMPLICIAL COMPLEX

R. ZAARE-NAHANDI

Communicated by Bernard Teissier

Abstract. We prove that a simplicial complex is determined uniquely
up to isomorphism by its barycentric subdivision as well as its com-
parability graph. We also put together several algebraic, combina-
torial and topological invariants of simplicial complexes.

1. Introduction and preliminaries

Stanley-Reisner rings of simplicial complexes, which have had im-
pressive applications in combinatorics [7], possess a rigidity property
in the sense that they determine their underlying simplicial complexes
uniquely up to isomorphism ([4] and [8]). Barycentric subdivision of a
simplicial complex is another very important and applicable construc-
tion ([1, 2, 6, 7]), of which we aim to prove that it possesses the same
rigidity property.

We first recall some basic definitions and facts about simplicial com-
plexes and related topics which we will need later; see [3, 5] and [7], for
details.

Let [n] = {1, 2, . . . , n}. A (finite) simplicial complex ∆ on n vertices
is a collection of subsets of [n] such that the following conditions hold:
(a) {i} ∈ ∆, for all i ∈ [n],
(b) if E ∈ ∆ and F ⊆ E, then F ∈ ∆.
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An element of ∆ is called a face and a maximal face with respect to
inclusion is called a facet. The set of facets of ∆ is denoted by F(∆)
and the set of minimal members of the collection of non-faces of ∆
(subsets of [n] not in ∆) is denoted by N (∆). The dimension of a face
F ∈ ∆ is defined to be |F | − 1 and the dimension of ∆ is maximum of
dimensions of its faces. A simplicial complex is called pure if all of its
facets have the same dimension.

Let ∆ be a simplicial complex of dimension d − 1 on [n]. For each
0 ≤ i ≤ d − 1, the ith skeleton of ∆ is the simplicial complex ∆(i) on
[n], whose faces are those faces F of ∆ with |F | ≤ i + 1. In particular
the 1-skeleton ∆(1) of ∆ is the finite graph on [n], whose edges are the
1-dimensional faces {i, j} of ∆. We say that a simplicial complex ∆ is
connected if ∆(1) is connected. A simplex is a simplicial complex with
just one facet.

Let S = K[x1, . . . , xn] be the polynomial ring in n indeterminates
with coefficients in a field K. Let I∆ be the ideal of S generated by all
monomials xi1 · · ·xis , provided that {i1, . . . , is} 6∈ ∆. It is clear that the
minimal generating set of I∆ is all square-free monomials xi1 · · ·xis such
that {i1, . . . , is} ∈ N (∆). The quotient ring K[∆] = S/I∆ is called the
Stanley-Reisner ring of the simplicial complex ∆.

The facet ideal of ∆ is the ideal I(∆) of S, which is generated by
square-free monomials xi1 · · ·xis , provided that {i1, . . . , is} is a facet of
∆. The quotient ring KF [∆] = S/I(∆) is called the facet ring of ∆.

For a given simplicial complex ∆ on [n], define ∆∨ by

∆∨ = {[n] \ F : F 6∈ ∆}.
It is clear that ∆∨ is a simplicial complex and (∆∨)∨ = ∆. The simplicial
complex ∆∨ is called the Alexander dual of ∆. Note that

(1.1) F(∆∨) = {[n] \ F : F ∈ N (∆)}.
The complement simplicial complex ∆c of ∆ is defined to be the simpli-
cial complex whose facets are complements of facets of ∆. One has

(1.2) I∆∨ = I(∆c).

A partially ordered set (poset) is a nonempty set P with an order ≤
such that for each x, y and z in P ,
(a) x ≤ x,
(b) if x ≤ y and y ≤ x, then x = y,
(c) if x ≤ y and y ≤ z, then x ≤ z.
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A simplicial complex can be considered as a poset ordered by inclu-
sion.

Let G be a simple graph on the vertex set V = {vl, ..., vn}. Let
S = K[x1, . . . , xn]. The edge ideal I(G) is defined to be the ideal of S,
generated by all square-free monomials xixj , provided that vi is adjacent
to vj in G. The quotient ring R(G) = S/I(G) is called the edge ring
of G. We say that a set F ⊆ V is an independent set in G if no two
of its vertices are adjacent. Define the independence complex of G, the
simplicial complex ∆G, by

∆G = {F ⊆ V : F is an independent set in G}.

For a vertex v in a graph G, define the degree of v to be the number
of vertices in G adjacent to v. A path in the graph G is a sequence of
vertices v1, . . . , vr such that vi is adjacent to vi+1, for each i, 1 ≤ i < r.
A cycle is a path with v1 = vr.

Let ∆ be a simplicial complex on the vertex set [n]. The barycentric
subdivision of ∆, denoted by ∆[, is a simplicial complex with vertex
set consisting of all nonempty faces of ∆. A face in ∆[ consists of
comparable vertices, that is, two vertices lie in a face in ∆[ if one is a
subset of the other. In other words, the facets of ∆[ are the maximal
chains of faces of ∆ considered as a poset.

It is easy to see that the minimal non-faces of ∆[ are subsets of ∆ with
exactly two non-comparable elements. Therefore, ∆[ is a clique complex
and the ideal I∆[ is generated by square-free quadrics. It is known that
the dimensions (and depths, respectively) of a simplicial complex and
its barycentric subdivision are equal ([2] and [6]).

The 1-skeleton of ∆[ is called the comparability graph of ∆ and is
denoted by G(∆). The complement G(∆) of G(∆) is called the non-
comparability graph of ∆. The ideal I∆[ is the edge ideal of the graph
G(∆) and the simplicial complex ∆[ is the independence complex of this
graph.

It is not true that any graph is the comparability graph of some sim-
plicial complex. For example, there is no simplicial complex with compa-
rability graph equal to a cycle of length 3, 4 or 5. A necessary condition
for a graph to be comparability graph of some simplicial complex is to
be transitively orientable. That is, there is an orientation on the graph
such that if (x, y) and (y, z) are oriented edges, then it contains the
oriented edge (x, z).
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A (convex) polytope is the convex hull of a finite set of points in the
n-dimensional Euclidean space for some n. A proper face of a polytope
is the intersection of the polytope with a supporting hyperplane. The
empty set and the polytope itself are called improper faces. A polyhedral
complex is the union of a finite set of polytopes such that intersection
of any two is a face of each.

It is known that the geometric realizations of ∆ and ∆[ are home-
omorphic as topological spaces and therefore, they share topological
properties such as Cohen-Macauleyness’s (see [7], p. 101]).

2. The main result

It is natural to ask whether a given graph is the comparability graph
of some simplicial complex and, how many non-isomorphic simplicial
complexes are there with the same comparability graphs. Here, we prove
that there is only one simplicial complex with a given comparability
graph (up to isomorphism). An isomorphism of simplicial complexes ∆1

and ∆2 is a bijection between their vertex sets which preserves faces and
facets. It is enough to check that the image and the inverse image of
any facet is again a facet. The face lattice of a polyhedral complex is a
generalization of the notion of simplicial complex (see [1] for definitions).
In the case of polyhedral complexes with at least two maximal faces,
Bayer has proved the following result.

Theorem 2.1. (Bayer [1]) Let P be the face lattice of a connected poly-
hedral complex with at least two maximal faces, and let P ∗ be its dual
poset. If Q is a poset with Q[ = P [, then either Q = P or Q = P ∗.

A simplicial complex is the face lattice of the polyhedral complex of
its geometric realization and hence, by the above theorem, for a given
connected simplicial complex with at least two facets, there are at most
one more simplicial complex with the same barycentric subdivision. Let
∆ be a simplicial complex. The barycentric subdivision ∆[ is the clique
complex of the comparability graph G(∆) and G(∆) is the 1-skeleton of
∆[. Therefore, knowing one of them is enough to construct the other.
Accordingly, two barycentric subdivisions are isomorphic as simplicial
complexes if and only if their 1-skeletons are isomorphic as graphs. If
∆1 and ∆2 are two simplicial complexes, then they are isomorphic if and
only if there is a rearrangement of their connected components such that
the corresponding components are isomorphic separately. Therefore,
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in connection with the isomorphism problem of simplicial complexes,
it is enough to consider connected complexes, which is equivalent to
considering connected barycentric subdivision.

In the proof of the above theorem, Bayer has shown that for a given
poset P with the mentioned conditions, there are exactly two transitive
orientations on the 1-skeleton graph of P [, which are reverses of each
other. We will show that in the case of simplicial complexes, there is no
need for these conditions and, either only one of the orientations on the
graph corresponds to a simplicial complex or, the simplicial complexes
corresponding to these two orientations are isomorphic.

Let ∆ be a simplicial complex of dimension d and G = G(∆) be its
comparability graph. Let

−→
G be the orientation of G corresponding to the

inclusion order on ∆1, that is, (x, y) is a directed edge in
−→
G if and only if

x ⊂ y in ∆. We give a grade to each vertex x of
−→
G equal to cardinality of

the set x in ∆. Note that there is no edge between two vertices with the
same grade. The graph

−→
G is (d + 1)-partite, each part consisting of all

vertices of the same grade. There is a part in
−→
G consisting of all vertices

with all arrows directed out, which we call initial points. This is the set
of vertices (faces of dimension 0) of the underlying simplicial complex.
The vertices of

−→
G for which all the connecting arrows are directed in,

which we call terminal points, are indeed facets of ∆. The number of
vertices of the longest directed path with end point x in

−→
G is equal to

grade of x. Hence, the underlying simplicial complex ∆ can be uniquely
determined by

−→
G . We will denote a vertex of

−→
G and the corresponding

face in ∆ with the same letters.

Lemma 2.2. Let ∆ be a connected simplicial complex and
−→
G be its

directed comparability graph. Let E, F and H be vertices in
−→
G .

(i) If (E,F ) and (F,H) are directed edges, then the directed edge
(E,H) belongs to the graph.

(ii) Let E and F be vertices with grades r and s, respectively, such
that r < s. If E and F are adjacent, then there is a path E =
H0,H1, . . . ,Hl = F such that l = s−r, and for each i = 0, . . . , l,
grade of Ei is r + i.

(iii) Let E and F be vertices with the same grade r. Then, there is
a path connecting E and F such that for each vertex H in the
path, grade(H) ≤ 2r.
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Figure 1. A path with lower grade

Proof. Parts (i) and (ii) are clear. To prove (iii), note that
−→
G is con-

nected and there is a path connecting E and F . By (i) and (ii), it is
enough to prove the statement for the case that grade(H) ≥ r, for each
H in the path. Let E = H0,H1, . . . ,Hl = F be a path. We may as-
sume that grade(E) < grade(H1) > grade(H2) < · · · < grade(Hl−1) >
grade(F ). Let H ′

2 be a subset of H2 and |H ′
2| = r. Then, H ′

2 ∈ ∆ and
the edges (H ′

2,H1), and (H ′
2,H3) are in the graph. On the other hand,

H1 contains H0 ∪H ′
2 = H ′

1, and we may put H ′
1 instead of H1 and H ′

2

instead of H2 in the path and get another path from F to E. In the new
path, we have grade(H ′

2) = r and grade(H ′
1) = grade(H0 ∪ H ′

2) ≤ 2r
(Figure 1). Continuing this process, we will get a path with the required
property.

�

Theorem 2.3. Let ∆1 and ∆2 be two simplicial complexes. Then, ∆1

and ∆2 are isomorphic if and only if the graphs G(∆1) and G(∆2) are
isomorphic.

Proof. If ∆1 and ∆2 are isomorphic, then it is clear that G(∆1) and
G(∆2) are isomorphic. For the converse, as mentioned above, it is
enough to consider connected simplicial complexes. Therefore, let ∆1

and ∆2 be connected. Without loss of generality, we may assume that
G(∆1) = G(∆2) = G. If ∆1 is of dimension 0, then it is a single point
and the theorem holds. Suppose that dimension of ∆1 = d ≥ 1. If ∆1

has only one facet, then it is a simplex and in the graph G there is a
unique vertex corresponding to the facet, which is adjacent to all other
vertices. The only possibility for ∆2 with a non-empty face comparable
with all others is to be a simplex. Therefore, ∆2 is a simplex of dimen-
sion d and any two simplexes of the same dimension are isomorphic.



Invariance of the barycentric subdivision 429

Now, we consider the case that ∆1 has at least two facets. In this
case, by Theorem 2.1, there are at most two simplicial complexes with
comparability graph G. One of them is ∆1 with directed comparability
graph

−→
G . Let

←−
G be the graph G with directions being the reversal

of those in
−→
G . Assume that

←−
G is the directed comparability graph of

some simplicial complex ∆2. We want to prove that ∆1 and ∆2 are
isomorphic. We denote a face in ∆1 or the corresponding vertex in

−→
G

by a capital letter as F and the same vertex in
←−
G or in

←−
G by F ∗.

First, we prove that ∆1 and ∆2 are pure, or equivalently, in
−→
G and←−

G, all maximal chains have the same length. To the contrary, assume
that this is not the case and there are two facets F1 and F2 in ∆1

with dim(F1) < dim(F2). The vertices F1 and F2 are terminal points
in
−→
G , and therefore, F ∗

1 and F ∗
2 are initial points in

←−
G and they are

not adjacent. The vertices F ∗
1 and F ∗

2 have grade 1 and by Lemma 2.2
(iii), there is a path P ∗ in

←−
G from F ∗

1 to F ∗
2 with vertices alternatively

of grades 1 and 2. Therefore, the path P in
−→
G consists of terminal

and subterminal vertices alternatively. But, by Lemma 2.2 (ii), this is
impossible if grade(F1) 6= grade(F2), because F1 is not adjacent to any
vertex with a higher grade. Therefore, ∆1 and ∆2 are pure.

Let ∆1 and ∆2 be pure complexes of dimension d − 1. Let F =
{F1, F2, . . . , Fr} be the set of vertices of grade d and E = {E1, E2, . . . , Et}
be the set of vertices of grade d − 1 in

−→
G . Then, {F ∗

1 , F ∗
2 , . . . , F ∗

r } and
{E∗

1 , E∗
2 , . . . , E∗

t } are the sets of vertices of grade 1 and 2, respectively.
Let
←−
G0,1 be the induced subgraph of

←−
G on these vertices. Define simi-

larly the induced subgraph
−→
Gd−1,d of

−→
G on the set of vertices F∪E. In

the graph
←−
G0,1, all vertices in E have degree 2 (they are corresponding

to faces of ∆2 with two elements), and vertices in F have degree d (they
are corresponding to facets of ∆1). By Lemma 2.2 (iii), the graph

←−
G0,1

is connected. If d = 2, then the graph
←−
G0,1 is in fact

←−
G and it is a con-

nected bipartite graph such that all vertices have degree 2. Therefore,
it is a cycle with even number of vertices and both parts have the same
cardinality (Figure 2). Therefore, the simplicial complexes ∆1 and ∆2

are isomorphic.
Now, let d > 2. Then,

←−
G0,1, and equivalently,

−→
Gd−1,d are connected.

Let P be a path in
−→
Gd−1,d of the form F1, E1, F2, E2, F3 such that

{F1, F2, F3} ⊆ F and {E1, E2} ⊆ E. Then, |F1∩F2| = |E1| = d−1, and
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Figure 2. Simplicial complexes ∆1 and ∆2 with dimen-
sion 1

|F2∩F3| = |E2| = d−1. Thus, F1∩F3 = B 6= ∅ and B ∈ ∆1. Therefore,
B∗ = F ∗

1 ∪ F ∗
3 ∈ ∆2. But, |B∗| = 2 and therefore, grade(B) = d − 1.

This means that B ∈ E and it is adjacent to both F1 and F3. By con-
nectedness of

−→
Gd−1,d, we conclude that for any two vertices in F there

is a vertex in E adjacent to both of them. Let Fi and Fj be two vertices
in F and Ek be a vertex in E adjacent to both of them. In this case,
F ∗

i ∪ F ∗
j = E∗

k and therefore, Fi and Fj determine Ek uniquely. This is
equivalent to saying that for each two vertices in F, there is exactly one
vertex in E adjacent to both of them.

Consider |F| = r. Then, |E| = rd/2 and according to the above
argument, |E| =

(
r
2

)
= r(r − 1)/2. It means that r = d + 1. Let

A = F1 ∪ · · · ∪ Fr. Take an arbitrary element x ∈ A. Then, there is
1 ≤ i ≤ r such that Fi contains x. For convenience, suppose i = 1 and
E1, . . . , Ed are all subsets of F1 with d − 1 elements. Then, x belongs
to all these subsets except one of them, for example Ed. For each i,
1 ≤ i ≤ d−1, the vertex Ei is adjacent to F1 and Fj for a j, 2 ≤ j ≤ d+1.
In other hand, for j, k, 1 ≤ j < k ≤ d− 1, the vertices other than F1 to
which Ej and Ek are adjacent, are different. Then, there are d vertices in
F adjacent to some vertices in {E1, . . . , Ed−1}. Therefore, x belongs to
all sets in F, except one of them. If A \ F1 has more than one element,
for example x, y, then {x, y} ⊆ Fi, for each 2 ≤ i ≤ d + 1. Then,
{x, y} ⊆ F2 \F1, which is impossible, since |F1 ∩F2| = d− 1. Therefore,
A is a set with cardinality d+1 and F1, . . . , Fd+1 are all maximal proper
subsets of A. Then, ∆1 is d − 1-skeleton of a simplex of dimension d.
This is true for ∆2 and therefore, ∆1 and ∆2 are isomorphic. �

By Theorem 2.3, the barycentric subdivision and the comparability
graph are invariants of a simplicial complex, and conversely, the un-
derlying simpicial complex is an invariant of its barycentric subdivision
and comparability graph. In the following theorem, we summarize more
invariants of simplicial complexes.
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Theorem 2.4. Let ∆1 and ∆2 be two simplicial complexes. The follow-
ing conditions are equivalent.

(i) ∆1 and ∆2 are isomorphic as simplicial complexes.
(ii) ∆∨

1 and ∆∨
2 are isomorphic as simplicial complexes.

(iii) ∆c
1 and ∆c

2 are isomorphic as simplicial complexes.
(iv) ∆[

1 and ∆[
2 are isomorphic as simplicial complexes.

(v) ∆[n

1 and ∆[n

2 are isomorphic as simplicial complexes,
for some positive integer n.

(vi) K[∆1] and K[∆2] are isomorphic as K-algebras.
(vii) KF [∆1] and KF [∆2] are isomorphic as K-algebras.
(viii) G(∆1) and G(∆2) are isomorphic as graphs.

Proof. The equivalences of (i), (ii) and (iii) are clear from equations (1.1)
and (1.2). The equivalence of (i) and (iv) has been proved in Theorem
2.3. Items (iv) and (v) are equivalent by the equivalence of (i) and (iv).
The equivalences of (i), (vi) and (vii) are proved in [4] and [8]. By the
argument just after Theorem 2.1, the equivalence of (iv) and (viii) is
also clear. �

Remark 2.5. Let A be a square-free monomial algebra, i.e., an alge-
bra of the form K[x1, . . . , xn]/I, where I is an ideal generated by some
square-free monomials. Then, there is a simplicial complex ∆ and a
graph G such that

Aut(A) ∼= Aut(∆) ∼= Aut(G),

where Aut(A) is the group of K-algebra automorphisms of A, Aut(∆) is
the group of simplicial complex automorphisms of ∆ and Aut(G) is the
group of graph automorphisms of G. Also, for a given graph G there are
square-free monomial algebra A and a simplicial complex ∆ satisfying
the above isomorphisms. For a given simplicial complex ∆, the similar
statement is also true.
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in Mathematics, 41. Birkhäuser Boston, Inc., Boston, MA, 1996.
[8] R. Zaare-Nahandi, On isomorphism of simplicial complexes and their related al-

gebras, Bull. Iranian Math. Soc. 35 (2009), no. 1, 41–48.

Rashid Zaare-Nahandi
Department of Mathematics, Institute for Advanced Studies in Basic Sciences (IASBS),
P.O. Box 45195-1159, Zanjan 45195, Iran
Email: rashidzn@iasbs.ac.ir


	1. Introduction and preliminaries
	2. The main result
	References

