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SOLVING INTEGRAL EQUATIONS OF THE THIRD
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Abstract. A reproducing kernel Hilbert space restricts the space
of functions to smooth functions and has structure for function ap-
proximation and some aspects in learning theory. Here, the solution
of an integral equation of the third kind is constructed analyti-
cally using a new method. The analytical solution is represented
in the form of series in the reproducing kernel space. Some nu-
merical examples are studied to demonstrate the accuracy of the
given method. Results obtained by the method are compared with
the exact solution of each example and are found to be in good
agreement.

1. Introduction

Reproducing Kernel Hilbert Spaces (RKHS) are wonderful objects
and can be used in a wide variety of areas such as curve fitting, func-
tion estimation and model description, differential equation, probability,
statistics, and so on [1, 2]. Recently, using the RKHS method, we dis-
cussed singular linear two-point boundary value problems, singular non-
linear two-point periodic boundary value problems, nonlinear system of
boundary value problems and nonlinear Burgers equations [3, 4, 5, 6].
Nowadays, kernel methods are among the fastest growing and most ex-
citing methods in machine learning.
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Here, we consider the following integral equations of the third kind in
the RKHS,

Lu(x) = α(x)u(x) +

b∫
a

K(x, s)u(s)ds = f(x), a ≤ x ≤ b,(1.1)

where α(x) is continuous and vanishes at some but not all points in [a,
b], K is a continuous function, u(x) ∈ W 1

2 [a, b], and f(x) ∈ W 1
2 [a, b],

with W 1
2 [a, b] being defined in the following section.

Such integral equations contain a variable coefficient, multiplying the
identity operator, and vanishing at a number of points in the domain of
definition of the equation.

Integral equations of the third kind are widely investigated in theory
and used in applications. A number of important problems in elastic-
ity, neutron transport, particle scattering lead to such equations. The
third kind integral equations of the form (1.1) arises in the theories of
singular integral equations with degenerate symbol and boundary value
problems for mixed type partial differential equations. Therefore, the
investigations in this area are of great interest. Integral equations of
the third kind were the object of specin ial investigations by Bateman,
Picard, Fubini, and Platrier. Friedrichs [7] performed, in the Hilbert
space, spectral analysis of the operator corresponding to (1.1) under the
assumption that α(x) = x. Bart and Warnock [8]investigated the solv-
ability of the equation in the class of generalized functions. Shulaia [9]
discussed the solvability of the equation in the class of Holder functions
assuming that α(x) has a simple zero. However, as we know, there are
a few valid methods for solving integral equations of the third kind.
Gabbasor [10, 11, 12] studied the equations using a new direct method
and a special collocation method. Shulaia [13, 14, 15] investigated the
equations basing on the ideas of the theory of spectral expansions.

2. The reproducing kernel space W 1
2 [a, b]

Definition 2.1. (Reproducing kernel) Let E be a nonempty abstract set.
A function K : E × E → C is a reproducing kernel of the Hilbert space
H if and only if

(a)∀ t ∈ E, K(·, t) ∈ H,
(b)∀ t ∈ E,∀ ϕ ∈ H, (ϕ, K(·, t)) = ϕ(t).
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The last condition is called “the reproducing property”: the value of
the function ϕ at the point t is reproduced by the inner product of ϕ
with K(·, t).

A Hilbert space which possesses a reproducing kernel is called a re-
producing kernel Hilbert space (RKHS).

The inner product space W 1
2 [a, b] is defined by W 1

2 [a, b] = {u(x) | u is
absolutely continuous real valued function, u, u′ ∈ L2[a, b]}. The inner
product and norm in W 1

2 [a, b] are given respectively by

(u(x), v(x))W 1
2

=

∫ b

a
(uv + u′v′)dx, ‖ u ‖W 1

2
=

√
(u, u)W 1

2
,

where u(x), v(x) ∈ W 1
2 [a, b]. In [15]; Li and Cui proved that W 1

2 [a, b] is
an RKHS and its reproducing kernel is

K(x, y) =
1

2 sinh(b− a)
[cosh(x+ y − b− a) + cosh(|x− y| − b+ a)].

3. The solution of eq. (1.1)

In this section, the solution of Eq.(1.1) is given in the RKHS, W 1
2 [a, b].

In Eq. (1.1), it is clear that L : W 1
2 [a, b] → W 1

2 [a, b] is a bounded
linear operator. Put ϕi(x) = K(xi, x) and ψi(x) = L∗ϕi(x), where
L∗ is the adjoint operator of L . The orthonormal system {ψi(x)}∞i=1

of W 1
2 [a, b] can be derived from the Gram-Schmidt orthogonalization

process of {ψi(x)}∞i=1,

ψi(x) =
i∑

k=1

βikψk(x), (βii > 0, i = 1, 2, ...).

Theorem 3.1. For Eq. (1.1), if {xi}∞i=1 is dense on [a, b], then {ψi(x)}∞i=1

is the complete system of W 1
2 [a, b] and ψi(x) = LyK(x, y)|y=xi. The sub-

script y by the operator L indicates that the operator L applies to the
function of y.

Proof. We have

ψi(x) = (L∗ϕi)(x) = ((L∗ϕi)(y),K(x, y))
= (ϕi(y), LyK(x, y)) = LyK(x, y)|y=xi .

Clearly, ψi(x) ∈W 1
2 [a, b].

For each fixed u(x) ∈W 1
2 [a, b], let (u(x), ψi(x)) = 0, (i = 1, 2, ...), which
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means

(u(x), (L∗ϕi)(x)) = (Lu(·), ϕi(·)) = (Lu)(xi) = 0.

Note that {xi}∞i=1 is dense on [a, b], and hence (Lu)(x) = 0. It follows
that u ≡ 0, from the existence of L−1. So, the proof is complete. �

Theorem 3.2. If {xi}∞i=1 is dense on [a, b] and the solution of Eq. (1.1)
is unique, then the solution of Eq.(1.1) is

u(x) =
∞∑
i=1

i∑
k=1

βikf(xk)ψi(x).(3.1)

Proof. Applying Theorem 3.1, it is easy to see that {ψi(x)}∞i=1 is the
complete orthonormal basis of W 1

2 [a, b].
For each v(x) ∈ W 1

2 [a, b], (v(x), ϕi(x)) = (v(x),K(xi, x)). By the re-
producing property of K(x, y), it follows that (v(x), ϕi(x)) = v(xi), and
hence we have

u(x) =
∞∑
i=1

(u(x), ψi(x))ψi(x)

=
∞∑
i=1

i∑
k=1

βik(u(x), L∗ϕk(x))ψi(x)

=
∞∑
i=1

i∑
k=1

βik(Lu(x), ϕk(x))ψi(x)

=
∞∑
i=1

i∑
k=1

βik(f(x), ϕk(x))ψi(x)

=
∞∑
i=1

i∑
k=1

βikf(xk)ψi(x),

and the proof is complete. �

Now, the approximate solution un(x) can be obtained by taking finitely
many terms in the series representation of the analytical solution u(x)
as follows:

un(x) =
n∑

i=1

i∑
k=1

βikf(xk)ψi(x).(3.2)

Remark: Since W 1
2 [a, b] is a Hilbert space, it is clear that

∞∑
i=1

(

i∑
k=1

βikf(xk))2 <∞.
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Therefore, the sequence un is convergent.
In the following theorem, we will give the error estimate.

Theorem 3.3. Assume that u(x) is the solution of Eq. (1.1) and rn(x)
is the error between the approximate solution un(x) and the exact solu-
tion u(x). Then, the error rn(x) is monotonically decreasing in ‖ · ‖W 1

2

and ‖ rn ‖= O(h), where h = max | xj+1 − xj |.

Proof. Note that

‖ rn ‖2W 1
2

=‖
∞∑

i=n+1
Biψi(x) ‖W 1

2
=

∞∑
i=n+1

(Bi)
2,(3.3)

where Bi =
i∑

k=1

βikf(xk). Eq. (3.3) shows that the error rn is monoton-

ically decreasing in the sense of ‖ · ‖W 1
2
.

Note here that

Lu(x) =
∞∑
i=1

BiLψi(x)

and

(Lu)(xn) =
∞∑
i=1

Bi(Lψi, ϕn) =
∞∑
i=1

Bi(ψi, L
∗ϕn) =

∞∑
i=1

Bi(ψi, ψn).

Therefore,
n∑

j=1

βnj(Lu)(xj) =
∞∑
i=1

Bi(ψi,
n∑

j=1

βnjψj) =
∞∑
i=1

Bi(ψi, ψn) = Bn.

If n = 1, then (Lu)(x1) = f(x1).
If n = 2, then β21(Lu)(x1) + β22(Lu)(x2) = β21f(x1) + β22f(x2).
It is clear that (Lu)(x2) = f(x2).
Moreover, it is easy to see, by induction, that

(Lu)(xj) = f(xj), j = 1, 2, · · · .(3.4)

Likewise, one can show that

(Lun)(xj) = f(xj), j = 1, 2, · · · , n.(3.5)

By (3.4), (3.5), we have Lu(xj) = Lun(xj), j = 1, 2, · · · , n.
Therefore, Lun(x) is the interpolating function of Lu(x), where xj(j =
1, 2, · · · , n) are the interpolation nodes in [a, b]. Noting that

Lu(x)− Lun(x) = Lu(x)− Lu(xj) +

n∑
i=1

BiLψi(xj)−
n∑

i=1

BiLψi(x),
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by mean value theorem for differentials, there exist ξ, η ∈ (x, xj) such
that

Lu(x)− Lun(x) = (Lu)′(ξ)(x− xj) +
n∑

i=1
Bi(Lψi)

′(η)(x− xj)

= (xj+1 − xj)((Lu)′(ξ)
x−xj

xj+1−xj
+ ω(η)

x−xj

xj+1−xj
)

= (xj+1 − xj)α0(x)
= hα0(x),

(3.6)

where ω(η) =
n∑

i=1
Bi(Lψi)

′(η) and α0(x) = f ′(ξ)
x−xj

xj+1−xj
+ω(η)

x−xj

xj+1−xj
∈

W 1
2 [a, b]. If L−1 exists, then

u(x) = L−1f(x) =

∞∑
i=1

i∑
k=1

βikf(xk)ψi(x).(3.7)

Thus, L−1 is determined by (3.7). In view of L−1α0(x) ∈ W 3
2 [0, 1], one

obtains that ‖ L−1α0(x) ‖ is bounded. Form (3.6) and (3.7), it follows
that

‖ rn ‖=‖ u(x)− un(x) ‖=‖ L−1(hα(x)) ‖= h ‖ L−1α(x) ‖= O(h).

The proof is complete. �

4. Numerical examples

In this section, some numerical examples are given to demonstrate the
accuracy of the given method. The examples are computed using Math-
ematica 5.0. Results obtained by the method are compared with the
exact solution of each example and are found to be in good agreement.

In the following examples, RE, relative error between u(x) and un(x),

is |u(x)−un(x)|
|u(x)| .

Example 4.1. Consider the integral equation of the third kind,

a(x)u(x) +

1∫
0

sin(x+ s)u(s)ds = f(x), 0 ≤ x ≤ 1,

where a(x) = 20(x− 0.001)(x− 0.01)(x− 0.61)(x− 0.99)2.
The exact solution u(x) is sinh(x) + 5. Using our method, we choose

three sets of 26 points, 51 points and 100 points on [0, 1] (xi = (i −
1)/(n − 1), i = 1, 2, · · · , n, with n being the number of points). The
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Figure 1. Absolute errors |u(x)− u10(x)| for Example 4.2

numerical results are given in Table 1. From the table, we can see that
the relative error decreases as the number of points n increases.

Table 1. Numerical results for Example 4.1.

x True solution RE (u26) RE (u51) RE (u100)
0.001 5.00100 3.7E-03 2.5E-03 5.1E-05
0.01 5.01000 2.1E-03 1.1E-03 2.7E-04
0.16 5.16068 4.9E-05 3.1E-06 3.5E-12
0.32 5.32549 8.8E-06 2.1E-06 4.3E-12
0.48 5.49865 1.9E-05 4.2E-06 9.0E-12
0.61 5.64854 5.1E-04 8.6E-05 2.1E-04
0.80 5.88811 4.7E-05 8.6E-06 2.7E-11
0.96 6.11440 7.7E-04 1.3E-04 5.0E-10
0.99 6.15983 3.8E-03 7.6E-04 1.1E-03

Example 4.2. Consider the integral equation of the third kind,

(x− 0.4)2(x− 0.8)3u(x) +

1∫
0

ex+su(s)ds = f(x), 0 ≤ x ≤ 1.

The exact solution u(x) is ex. Using our method, we choose 10 points
(xi = (i − 1)/(10 − 1), i = 1, 2, · · ·, 10. The numerical results are given
in Figure 1.
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