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A NOTE ON THE SOCLE OF CERTAIN TYPES OF

f-RINGS

T. DUBE

Communicated by Fariborz Azarpanah

Abstract. For any reduced commutative f -ring with identity and
bounded inversion, we show that a condition which is obviously
necessary for the socle of the ring to coincide with the socle of its
bounded part, is actually also sufficient. The condition is that every
minimal ideal of the ring consists entirely of bounded elements.
This is not too stringent, and is satisfied, for instance, by rings of
continuous functions.

1. Introduction

Throughout, L denotes a completely regular frame, X denotes a Ty-
chonoff space, RL denotes the ring of real-valued continuous functions
on L, and C(X) has its usual meaning, as in [11]. By a “function ring”,
we mean any ring which is isomorphic to some RL. All rings C(X) are
function rings in this sense, but not every function ring is (isomorphic
to) a C(X), as observed by Banaschewski [5]. Recall that the socle of
a ring A (throughout, understood to be commutative with identity) is
the ideal generated by minimal ideals of A. In [13], the socle of C(X)
is characterized by the ideal consisting of functions which vanish every-
where except on a finite number of points. This is extended in [9] to
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arbitrary RL, where it is shown that a function is in Soc(RL) if and
only if its cozero is a join of finitely many atoms.

The approaches in [13] and [9] are completely different. In the former
case, the authors start by characterizing minimal ideals of C(X). In
[9], minimal ideals of RL are not considered, and the description of the
socle is arrived at via the fact that, for a ring A and a ∈ A, we have
that a ∈ SocA if and only if Ann(a) is an intersection of finitely many
maximal ideals.

One byproduct of this note is a description of minimal ideals of
RL. Interestingly, unlike the case of maximal ideals where the descrip-
tion (even for C(X)) requires the Stone-Čech compactification, minimal
ideals are describable “internally” in terms of elements of the frame.
Just as maximal ideals are in one-one correspondence with points of
the Stone-Čech compactification, minimal ideals of RL are in one-one
correspondence with atoms of L.

Let A be an f -ring with bounded inversion, meaning that every el-
ement above the identity is invertible. Its bounded elements form a
subring A∗ is called its bounded part. It is obvious from the defini-
tion of the socle that if SocA = SocA∗, then every minimal ideal of
A consists entirely of bounded elements. Conversely, we will show that
if every minimal ideal of A consists entirely of bounded elements, then
SocA = SocA∗. Having characterized minimal ideals of RL, we will see
that function rings are f -rings of the kind mentioned here. It will then
follow that the socle of a function ring coincides with the socle of its
bounded part.
We are trying to treat the socle of function rings, more or less, in the
same way as the socle of C(X) is treated in [13]; see also [2] and [10].

2. A bit of background

Because this is intended to be a short note, we will keep the exposition
brief and refer to [12] or [15] for details concerning frames, and to [3] or
[4] for a background on the ring RL and its bounded part R∗L. Our
notation is standard. The pseudocomplement of an element a is denoted
by a∗. An element a of a frame L is said to be

(1) dense if a∗ = 0,
(2) an atom if a > 0 and, for any s ∈ L, 0 ≤ s ≤ a implies s = 0 or

s = a,
(3) complemented if a ∨ a∗ = 1,
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(4) a point if a < 1 and, for any x, y ∈ L, x∧ y ≤ a implies x ≤ a or
y ≤ a.

Points are also called prime elements. Points of a regular frame are
precisely the elements which are maximal strictly below the top. Atoms
in a regular frame are complemented. A point, in any regular frame, is
either dense or complemented.

A frame homomorphism h : L→M is dense if, for any a ∈ L, h(a) = 0
implies a = 0. If h : L→M is a dense onto frame homomorphism, then
h(a∗) = h(a)∗, for every a ∈ L, so that h(a) is dense if and only if a is
dense.

We briefly outline the construction of the compact completely regular
coreflection, βL, of a frame L, the frame analogue of the Stone-Čech
compactification, βX, of a Tychonoff space X. Recall that an element
a of L is said to be rather below an element b, written as a ≺ b, if there
is an element s such that a∧ s = 0 and s∨ b = 1. On the other hand, a
is said to be completely below b, written as a ≺≺ b, if there is a sequence
{xq | q ∈ Q ∩ [0, 1]} such that a = x0, b = x1 and xr ≺ xs, whenever
r < s. An ideal J of L is completely regular if for every x ∈ J, there
exists y ∈ J such that x ≺≺ y. The set of all completely regular ideals of
L is a compact regular frame, denoted by βL, and the join map βL→ L
is the coreflection map from compact completely regular frames to L.
We denote its right adjoint by rL, and recall that

rL(a) = {x ∈ L | x ≺≺ a}.

One checks easily that for any I ∈ βL, I∗ = rL
(
(
∨
I)∗
)
. If I ≺ J in

βL, then
∨
I ∈ J . To see this, take H ∈ βL such that I ∧ H = 0 and

H ∨ J = 1. Next, take x ∈ H and y ∈ J such that x ∨ y = 1. Since∨
I ∧

∨
H = 0, it follows that

∨
I ∧ x = 0, and therefore

∨
I ≤ y ∈ J .

The cozero map (see [4] for details) is the map coz: RL→ L, defined
by

cozϕ =
∨
{ϕ(p, 0) ∨ ϕ(0, q) | p, q ∈ Q} = ϕ

(
(−, 0) ∨ (0,−)

)
,

where

(−, 0) =
∨
{(p, 0) | p ∈ Q, p < 0}

and

(0,−) =
∨
{(0, q) | q ∈ Q, q > 0}.



520 Dube

Concerning f -rings, recall that a lattice-ordered ring is a ring A which
is also a lattice such that, for all a, b, c ∈ A,

a+ (b ∨ c) = (a+ b) ∨ (a+ c),

and

ab ≥ 0, whenever a ≥ 0 and b ≥ 0.

An f -ring is a lattice-ordered ring A in which the identity

(a ∧ b)c = (ac) ∧ (bc)

holds for all a, b ∈ A and c ≥ 0 in A. A good reference is [6]. An
element a of an f -ring is said to be positive if a ≥ 0. An f -ring has
bounded inversion if every element a ≥ 1 is invertible. Squares are
positive in any f -ring. In any f -ring, idempotents are bounded. Indeed,
for any idempotent e, 0 ≤ e2 = e, and since 1− e is also an idempotent,
0 ≤ 1− e, so that e ≤ 1. Thus, 0 ≤ e ≤ 1.

Let u be a positive invertible element in an f -ring. Then, the inequal-
ities

u ≥ 0 and (u−1)2 ≥ 0

yield

0 ≤ u(u−1)2 = u−1,

showing that the inverse of u is positive.
Considering the previous comment, we immediately have the following

fact.

Lemma 2.1. Let A be an f -ring with bounded inversion. Then, for any

a ∈ A, a2

1+a2
is bounded.

3. Minimal ideals of RL

We recall that a minimal ideal of a reduced ring is generated by an
idempotent. Furthermore, if A is a reduced ring and e is an idempotent
of A, then the principal ideal generated by e is a minimal ideal if and
only if it is a field with multiplicative identity e, (see [14], p. 62).

We start with the f -ring result mentioned in the abstract. The condi-
tion mentioned there is that minimal ideals consist entirely of bounded
elements. We shall see that function rings satisfy this condition. Alas,
we do not have an example of a reduced f -ring which has a minimal
ideal containing an unbounded element.
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Lemma 3.1. Let A be a reduced f -ring with bounded inversion. Suppose
every minimal ideal of A consists entirely of bounded elements. Then,
the set of minimal ideals of A coincides with the set of minimal ideals
of A∗.

Proof. For any a ∈ A∗, we write 〈a〉 for the ideal of A generated by a,
and 〈a〉∗ for the ideal of A∗ generated by a. Let M be a minimal ideal
of A∗. Then, there is an idempotent e ∈ A such that M = 〈e〉∗ is a field.
We show that 〈e〉 is a field. Consider any a ∈ A such that ae 6= 0. By

Lemma 2.1, a2

1+a2
∈ A∗, and hence a2e

1+a2
∈ 〈e〉∗ . The latter element is

nonzero, lest we have a2e = 0, implying (ae)2 = 0, and hence ae = 0,
since A is reduced. Therefore, there exists b ∈ A∗ such that

a2e

1 + a2
· be = e,

that is,

ae · abe

1 + a2
= e,

showing that 〈e〉 is a field. Hence, 〈e〉 is a minimal ideal of A. We aim
to show that M = 〈e〉. Clearly, M ⊆ 〈e〉. Let c ∈ 〈e〉. Since 〈e〉 is a
minimal ideal of A, c is bounded, by the hypothesis on minimal ideals
of A. Now, c = de, for some d ∈ A, and hence ce = de2 = de = c. This
shows that c is a product of e with an element of A∗. Therefore, c ∈ 〈e〉∗ ,
and hence M = 〈e〉. We have thus shown that every minimal ideal of
A∗ is a minimal ideal of A.

Now, we show that every minimal ideal of A is a minimal ideal of
A∗. Let 〈e〉 be a minimal ideal of A. Then, by the hypothesis on A,
〈e〉 ⊆ A∗. Arguing as above, we have that 〈e〉 = 〈e〉∗ . Since 〈e〉 is a
minimal ideal of A, it is a field. But, now 〈e〉∗ is a principal ideal of A∗,
generated by an idempotent, and is a field. So, 〈e〉∗ is a minimal ideal
of A∗. Therefore, 〈e〉 is a minimal ideal of A∗. �

In light of the fact that the socle of any ring is the sum of its minimal
ideals, the following proposition follows from the foregoing lemma.

Proposition 3.2. Let A be a reduced f -ring with bounded inversion.
Then, SocA = SocA∗ if and only if every minimal ideal of A consists
entirely of bounded elements.

We now apply this to the function ring RL. We first show that every
minimal ideal of RL consists entirely of bounded functions. We do this
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by actually describing minimal ideals of this ring. For any a ∈ L with
a < 1, the set

R(a) = {ϕ ∈ RL | cozϕ ≤ a}
is clearly an ideal of RL. We recite from [7, Lemma 4.4] the following
lemma.

Lemma 3.3. If α and β are elements of RL such that cozα ≺≺ cozβ,
then α is a multiple of β.

Note that if η is an idempotent in RL, then coz η is complemented,
because 1 = η + (1− η) and η(1− η) = 0 imply coz η ∨ coz(1− η) = 1,
and coz η ∧ coz(1− η) = 0.

Lemma 3.4. An ideal of RL is minimal if and only if it is of the form
R(a), for some atom a of L.

Proof. Let a be an atom of L, and let Q be a nonzero ideal of RL
such that Q ⊆ R(a). Take any 0 6= α ∈ Q. Then, 0 6= cozα ≤ a,
and hence cozα = a, since a is an atom. Now, for any γ ∈ R(a),
coz γ ≤ cozα ≺≺ cozα. Therefore, γ is a multiple of α, and hence
γ ∈ Q, showing that R(a) ⊆ Q. Thus, R(a) is a minimal ideal.

Now, let M be a minimal ideal of RL. Take an idempotent η in RL
such that M = 〈η〉. We show that coz η is an atom. Suppose s is an
element of L such that 0 < s ≤ coz η. By complete regularity, there is
an element γ of RL such that 0 < coz γ ≺≺ s. Then, coz γ ≺≺ coz η,
and so γ is a multiple of η and is therefore in M . Since any minimal
ideal in any ring is generated by each of its nonzero elements, given any
two nonzero elements in a minimal ideal, each is a multiple of the other.
Thus, by the rules of the coz map, we deduce that coz γ = coz η, which
shows that s = coz η, and hence coz η is an atom. Now, by what we have
shown in the first paragraph of the proof, R(coz η) is a minimal ideal
with M ⊆ R(coz η). Therefore, M = R(coz η), and we are done. �

As an immediate corollary of Lemma 3.4 we have the following result
which generalizes [13, Proposition 3.1].

Corollary 3.5. An ideal Q of RL is minimal if and only if coz[Q]
consists of only two elements.

Proof. The left-to-right implication is immediate. For the converse, sup-
pose coz[Q] = {0, a}, for some 0 6= a ∈ CozL. Then, reasoning as in
the proof of the preceding lemma, we see that a is an atom such that
Q = R(a). �
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Next, we show that the condition we imposed on minimal ideals of an
f -ring in Lemma 3.1 automatically holds in function rings.

Lemma 3.6. Every minimal ideal of RL consists entirely of bounded
functions.

Proof. Let a be an atom of L, and consider the ideal R(a). Let 0 6=
ϕ ∈ R(a). Then, cozϕ = a; that is, ϕ

(
(−, 0) ∨ (0,−)

)
= a. Since(

(−, 0) ∨ (0,−)
)
∨ (−1, 1) = 1L(R), it follows that

a ∨ ϕ(−1, 1) = 1L.(†)
Now, the equality

(−, 0) ∨ (0,−) =
∨
n∈N

(
(−n, 0) ∨ (0, n)

)
implies

a =
∨
n∈N

ϕ
(
(−n, 0) ∨ (0, n)

)
.

Since a 6= 0L, there is an n ∈ N such that

0L 6= ϕ
(
(−n, 0) ∨ (0, n)

)
≤ a.

Since a is an atom, this implies ϕ
(
(−n, 0)∨(0, n)

)
= a, whence ϕ(−n, n) =

1L, from (†). This shows that ϕ is bounded, and therefore R(a) ⊆
R∗L. �

We observe that minimal ideals (the socle) of C(X) coincide with
minimal ideals (the socle) of its bounded functions; see [13]. We conclude
this section with the following result which gives the counterpart of the
latter facts for function rings.

Proposition 3.7. The set of minimal ideals of RL coincides with the
set of minimal ideals of R∗L. Hence, Soc(RL) = Soc(R∗L).

4. Some properties of the socle of function rings

In this section, we are to address two questions pertaining Soc(RL).
Namely, one is its primeness and the other is its essentiality. Whereas
in [9] the Stone-Čech compactification was invoked (albeit indirectly),
in the proof of the description of the socle of RL given below, Lemma
3.4 allows us to give a proof free of the Stone-Čech compactification.

Proposition 4.1. The socle of RL consists of those ϕ for which cozϕ
is a join of finitely many atoms.



524 Dube

Proof. If Soc(RL) = 0, then there is nothing to prove. So, suppose
it is nonzero. If 0 6= ϕ ∈ SocRL, then ϕ = ϕ1 + · · · + ϕm, where
each ϕi is a nonzero element of some minimal ideal. So, from Lemma
3.4, there are atoms a1, . . . , am of L such that cozϕi = ai, for each i.
Thus, by the rules of the coz map, cozϕ ≤ a1 ∨ · · · ∨ am. Consequently,
cozϕ = (cozϕ∧a1)∨ · · · ∨ (cozϕ∧am). Since each ai is an atom so that
cozϕ∧ai = 0 or ai, it follows that cozϕ is a join of finitely many atoms.

On the other hand, suppose coz γ = c1 ∨ · · · ∨ cm, where each ci is
an atom. For each i, take a positive γi ∈ RL such that coz γi = ci.
Then, γi is an element of the minimal ideal R(ci). Since c1 ∨ · · · ∨ cm is
complemented, and since the γi are positive, we have

coz γ = coz(γ1 + · · ·+ γm) ≺≺ coz(γ1 + · · ·+ γm).

Therefore, γ is a multiple of γ1 + · · ·+ γm, and hence a sum of multiples
of the γi. This shows that γ ∈

∑
iR(ci) ⊆ Soc(RL). �

This description makes it clear that Soc(RL) is a radical ideal (i.e., it
does not contain powers of non-members), and hence, by [11, Corollary
0.18], is an intersection of prime ideals. However, as observed in [10,
Proposition 1.2], if X is an infinite Tychonoff space, then Soc(C(X))
is never a prime ideal. If X is finite and has cardinality at least 2,
then Soc(C(X)) = C(X), and is therefore not a prime ideal. If X is a
singleton, then C(X) ∼= R, where R denotes the field of real numbers.
Thus, Soc(C(X)) = 0, and of course the zero ideal is a prime ideal in R.
So, if, as in [5], we call function rings of the form C(X) “classical”, we
can state:

The socle of a classical function ring is a prime ideal
if and only if the ring is isomorphic to the field of real
numbers.

Now, what about the socle of the function rings RL, in general? We
argue that unless L is the two-element frame 2, so that RL = R2 ∼= R,
the socle of RL is never a prime ideal.

Let L be a completely regular frame such that S = Soc(RL) is a prime
ideal of RL. Since, by Proposition 3.7, S is an ideal of the subring R∗L
of RL, it is clear that S is a prime ideal in the ring R∗L. This ring
is known to be isomorphic to R(βL). Since compact regular frames
are (up to isomorphism) topologies of compact regular spaces, there is a
compact regular space X such that R(βL) ∼= C(X). Thus, for this space
X, Soc(C(X)) is prime, and hence X is a singleton, whence βL = 2,
thence L = 2. Consequently, we have the following result.
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Proposition 4.2. The socle of a function ring RL is a prime ideal if
and only if L = 2.

Recall that an ideal of a ring is said to be essential if it intersects every
nonzero ideal of the ring nontrivially. We give necessary and sufficient
conditions for the socle of a function ring to be essential. We start
by recalling some frame-theoretic resources needed for the discussion.
These will include a description of maximal ideals of RL, which, in
turn, requires the Stone-Čech compactification.

For each I ∈ βL with I < 1βL, the sets OI and MI defined by

OI = {ϕ ∈ RL | cozϕ ∈ I} and MI = {ϕ ∈ RL | rL(cozϕ) ⊆ I}
are ideals of RL. It is shown in [7]:

(1) Maximal ideals of RL are precisely the ideals MI , for I a point
of βL.

(2) For every prime ideal P of RL, there is a unique point I of βL
such that OI ⊆ P ⊆MI .

A frame is atomic if below every nonzero element there is an atom.
In [9], it was shown that Soc(RL) is essential if and only if L is atomic.
Here, we include other conditions which are equivalent to essentiality.
These should be compared with similar conditions for the classical case
established in [13, Proposition 2.1]. We shall need a result about non-
essential maximal ideals of RL. First, we recall the following lemmas
from [7] and [8]. For an ideal Q of RL, by coz[Q], we mean the set

coz[Q] = {cozϕ | ϕ ∈ Q}.
Lemma 4.3. An ideal Q of RL is essential if and only if

∨
coz[Q] is

dense.

Lemma 4.4. For any I ∈ βL,
∨

coz[OI ] =
∨

coz[MI ] =
∨
I.

We recall that each maximal ideal in a commutative ring (even a
maximal right ideal in a non-commutative ring) is either essential or a
direct summand (i.e., generated by an idempotent). In [1, Corollary
3.3]), Azarpanah shows that each pseudoprime ideal of C(X) is either
essential or simultaneously maximal and generated by an idempotent.
In the latter case, it is also a minimal prime ideal. The preliminary
result we want is a variant of this.

Lemma 4.5. The non-essential prime ideals of RL are precisely the
ideals MI , for I, a complemented point of βL. Each is therefore princi-
pal, generated by an idempotent. Furthermore, each is minimal prime.
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Proof. Since, for any point I of βL,
∨

coz[MI ] =
∨
I, the ideal MI is

non-essential precisely when
∨
I is not a dense element of L. Since the

join map βL → L is a dense onto homomorphism, the latter is true
precisely when I is complemented in βL. Now, let P be a non-essential
prime ideal of RL. Take a point I of βL such that OI ⊆ P ⊆ MI .
Then, in light of Lemma 4.4,

∨
coz[P ] =

∨
I. Since P is not essential,∨

I is not dense, and so MI is not essential, because
∨

coz[MI ] =
∨
I.

Since MI is a maximal ideal, there exists an idempotent η ∈ RL such
that MI = 〈η〉. We claim that P = 〈η〉. Since η is an idempotent,
η(1− η) = 0 ∈ P . By primeness, we have that η ∈ P or 1− η ∈ P . The
latter is not possible, lest MI be improper. So η ∈ P , which implies
that P = MI . Lastly, if Q ⊆ P is a prime ideal, then η ∈ Q, and so
Q = P , showing the claimed minimality. �

Note that if a is an atom in a frame L, then a∗ is a point of L. For,
if s ∈ L is such that a∗ < s ≤ 1, then s∗ ≤ a∗∗ = a. But, s∗ 6= a, and so
s∗ = 0, implying that s = 1. Conversely, if p is a complemented point,
then p∗ is an atom. Indeed, suppose 0 ≤ t ≤ p∗. Then, p = p∗∗ ≤ t∗ ≤ 1.
Now, we cannot have p = t∗, for that would mean t∨t∗ ≤ p, which would
make p dense, which is not true. Thus, t∗ = 1, implying t = 0, and hence
showing that p∗ is an atom. Consequently, if a is an atom, then rL(a∗)
is a point of βL, because the right adjoint of any frame homomorphism
preserves points. Note also the following. If h : L→M is a dense frame
homomorphism and a is a complemented element with h(a) = 1, then
0 = h(a∗) ∧ h(a) = h(a∗), so that a∗ = 0, by density of h, and hence
a = 1. Thus, if I is a complemented point of βL, then

∨
I < 1. Lastly,

note that if I is a complemented element of βL, then OI = MI , because∨
J ∈ K whenever J ≺ K in βL.
Noting that an ideal in reduced rings is essential if and only if its

annihilator is zero, and also the annihilator of the socle in these rings is
the intersection of the non-essential maximal ideals, we next present a
result which gives the counterpart of [13, Proposition 2.1] for function
rings.

Proposition 4.6. If Soc(RL) is nonzero, then the followings are equiv-
alent:

(1) Soc(RL) is essential.
(2) For every nonzero b ∈ L, there exists a non-essential maximal

ideal M of RL such that b ∨
∨

coz[M ] = 1.
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(3) The intersection of all non-essential maximal ideals of RL is the
zero ideal.

Proof. (1)⇒ (2): Since Soc(RL) is essential, L is atomic, and therefore,
there is an atom a such that a ≤ b. As observed above, rL(a∗) is a

complemented point of βL. Therefore, M = MrL(a
∗) is a maximal ideal

of RL such that

b ∨
∨

coz[M ] = b ∨
∨
rL(a∗) = b ∨ a∗ = 1.

Furthermore, by Lemma 4.3, M is non-essential, because
∨

coz[M ] = a∗,
which is not dense.

(2)⇒ (3): Suppose, by way of contradiction, that there is a nonzero
ϕ in the intersection in question. By Lemma 4.5, the current hypothesis
implies that there is a complemented point I of βL such that cozϕ ∨∨

coz[MI ] = cozϕ ∨
∨
I = 1. Now,

∨
I 6= 1, as observed above. Since

ϕ is in every non-essential maximal ideal, we have that ϕ ∈MI = OI .
But, this implies cozϕ ∈ I, and hence

∨
I = 1, yielding a contradiction.

(3) ⇒ (1): We aim to demonstrate that
∨
{coz γ | γ ∈ Soc(RL)} is

dense. Let α ∈ RL be such that

0 = cozα ∧
∨

coz[Soc(RL)] =
∨
{cozα ∧ coz γ | γ ∈ SocRL}.

We must show that α = 0, which, by complete regularity, will complete
the proof. For any atom a ∈ L, a = coz τ, for some τ ∈ RL. Thus,
τ ∈ Soc(RL), and so cozα ∧ a = 0, whence cozα ≤ a∗. Let I be
a complemented point of βL. Then, I∗ is an atom of βL. We show
that this implies (

∨
I)∗ to be an atom of L. Suppose s is an element

of L such that 0 6= s ≤ (
∨
I)∗. Then, 0 6= rL(s) ⊆ rL

(
(
∨
I)∗
)

= I∗.
Therefore, rL(s) = I∗. Acting the join map and recalling that, as a
dense onto homomorphism, it preserves pseudocomplements, we have
that s =

∨
I∗ = (

∨
I)∗. So, in view of the fact that I ≺ I as it is

complemented, we have

cozα ≤
(∨

I
)∗∗

=
∨
I ∈ I,

implying that α ∈ OI = MI . This shows that α is in the intersection
of all non-essential maximal ideals of RL, and hence α = 0, by the
hypothesis. �
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Série B, No. 12, Departamento de Matemática da Universidade de Coimbra,
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