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RING STRUCTURES OF MOD p EQUIVARIANT
COHOMOLOGY RINGS AND RING

HOMOMORPHISMS BETWEEN THEM

Y. CHEN AND Y. WANG∗

Communicated by Jean-Louis Cathelineau

Abstract. We consider a class of connected oriented (with respect
to Z/p) closed G-manifolds with a non-empty finite fixed point set,
each of which is G-equivariantly formal, where G = Z/p and p is
an odd prime. Using localization theorem and equivariant index,
we give an explicit description of the mod p equivariant cohomol-
ogy ring of such a G-manifold in terms of algebra. This makes it
possible to determine the number of equivariant cohomology rings
(up to isomorphism) of such 2-dimensional G-manifolds. Moreover,
we obtain a description of the ring homomorphism between equi-
variant cohomology rings of such two G-manifolds induced by a
G-equivariant map, and show a characterization of the ring homo-
morphism.

1. Introduction

Assume that G = Z/p and p is an odd prime unless stated oth-
erwise. Let X be a G-space and EG be the universal free G-space.
Then, the Borel construction XG := EG ×G X, the orbit space of
the diagonal action on the product EG × X, is the total space of the
bundle X → XG → BG associated to the universal principal bundle
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G → EG → BG (BG := EG/G, the classifying space of G). Ap-
plying cohomology with coefficients Z/p to XG gives the equivariant
cohomology ring H∗

G(X; Z/p) := H∗(XG; Z/p). It is well-known that
the equivariant cohomology ring H∗

G(X; Z/p) is an H∗(BG; Z/p)-module
and H∗

G(XG; Z/p) is a free H∗(BG; Z/p)-module, where XG denotes the
fixed point set of the G−action.

Suppose that M is a connected oriented (with respect to Z/p) closed
manifold and admits a G-action with a non-empty finite fixed set MG.
For the fibration M → MG → BG, if the restriction to a typical fiber
H∗

G(M ; Z/p) −→ H∗(M ; Z/p) is surjective, then M is called totally non-
homologous to zero in MG (cf. [3]). If M satisfies this condition, then
M is also called G-equivariantly formal (cf. [5]). In 1998, Goresky, Kot-
twitz and MacPherson showed that the equivariant cohomology rings
of a class of Tn-manifolds (i.e., GKM manifolds) can be explicitly ex-
pressed in terms of their associated graphs (cf. [5, 6]). Correspondingly,
there is a mod 2 GKM theory (cf. [2]). Note that any odd dimensional
oriented closed G-manifold must not have a non-empty finite fixed point
set (cf. [4]). Then, we shall give explicit descriptions of the mod p equi-
variant cohomology rings of G-equivariantly formal manifolds at any
even dimension in terms of algebra.

Let Λ2n denote the set of all 2n-dimensional connected oriented (with
respect to Z/p) closed G-manifolds with a non-empty finite fixed point
set, each of which is G-equivariantly formal. Given an M in Λ2n, we
know from [1, Theorem 3.10.4] and [3, pp. 371-374] that M has the
following properties:

(1) The order |MG| of MG equals
2n∑
i=0

bi, where bi is the ith mod p

Betti number of M ;
(2) H∗

G(M ; Z/p) is a free H∗(BG; Z/p)-module;
(3) The inclusion i : MG ↪→ M induces a monomorphism i∗ :

H∗
G(M ; Z/p) −→ H∗

G(MG; Z/p).
Note that bi = b2n−i, by the Poincaré duality, and b0 = b2n = 1, since
M is connected. For each M ∈ Λ2n, by the property (1), we have
that |MG| ≥ 2. Let r ≥ 2 be a positive integer, and write Λr

2n =
{M ∈ Λ2n||MG| = r}. Then, Λ2n =

⋃
r≥2

Λr
2n. From [1], we also have

that H∗(BG; Z/p) = Λ(s)
⊗

Z/p[t] = Z/p[s, t]/(s2), with deg(s)=1,
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deg(t)=2, and t = β(s), where β is the Bockstein homomorphism as-
sociated with the coefficient sequence 0 → Z/p → Z/p2 → Z/p → 0.
If |MG| = r, since H∗

G(MG; Z/p) =
⊕

a∈MG

H∗
G({a}; Z/p) and the equi-

variant cohomology ring of a point is isomorphic to H∗(BG; Z/p) =
Z/p[s, t]/(s2) where s and t are as above, we have that H∗

G(MG; Z/p) ∼=
(Z/p)r[s, t]/(s2) is a polynomial ring (or algebra). Thus, we obtain a
monomorphism from H∗

G(M ; Z/p) into (Z/p)r[s, t]/(s2), also denoted by
i∗, and so H∗

G(M ; Z/p) may be identified with a subring (or subalgebra)
of (Z/p)r[s, t]/(s2).

Using the localization theorem and equivariant index, we give an ex-
plicit description of H∗

G(M ; Z/p) in (Z/p)r[s, t]/(s2) (see Theorem 3.3).
By using this result, we find that there is only one equivariant cohomol-
ogy ring (up to isomorphism) of G-manifolds in Λr

2 if Λr
2 is non-empty

(see Theorem 4.1). Furthermore, we give a description for the homo-
morphism between equivariant cohomology rings of two G-manifolds in
Λ2n induced by a G-equivariant map (see Theorem 5.1), obtaining a
characterization of the homomorphism.

The reminder of our work is organized as follows. In Section 2, we
review the localization theorem and reformulate the equivariant index
from [1]. In Section 3, we study the equivariant cohomology structure of
a G-manifold in Λ2n and obtain an explicit description in terms of alge-
bra. In Section 4, we determine the number of equivariant cohomology
rings (up to isomorphism) of G-manifolds in Λ2. In Section 5, we give a
description of the homomorphism between equivariant cohomology rings
of two G-manifolds in Λ2n induced by a G-equivariant map, obtaining a
characterization of the homomorphism.

2. Preliminaries

Let M be a 2n-dimensional G-manifold with a non-empty finite set
MG. Let R denote the polynomial part of H∗(BG; Z/p), i.e., R = Z/p[t]
and S = R − (0). Then, we have the following well-known localization
theorem (cf. [1, 7]).

Theorem 2.1. S−1i∗ : S−1H∗
G(M ; Z/p) −→ S−1H∗

G(MG; Z/p) is an
isomorphism of S−1H∗(BG; Z/p)-algebras, where i is the inclusion of
MG into M . �
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Take an isolated point a ∈ MG. Let ia be the inclusion of a into M .
Then, we have the equivariant Gysin homomorphism

ia! : H∗
G({a}; Z/p) −→ H∗+2n

G (M ; Z/p).
On the other hand, we also have a natural induced homomorphism

i∗a : H∗
G(M ; Z/p) −→ H∗

G({a}; Z/p)
and we see that i∗ =

⊕
a∈MG

i∗a. Moreover, we have that the equivariant

Euler class at a is
χG(a) = i∗aia!(1a) ∈ H2n

G ({a}; Z/p) = H2n(BG; Z/p) = (Z/p)tn,
where 1a ∈ H∗

G({a}; Z/p) is the identity and (Z/p)tn = {ktn|k ∈ Z/p}.
So, we may write

χG(a) = Nat
n,

where Na ∈ Z/p. Let θa = ia!(1a). Then, θa ∈ H2n
G (M ; Z/p) and i∗a(θa) =

χG(a).

Lemma 2.2. All elements θa, a ∈ MG are linearly independent over
H∗(BG; Z/p).

Proof. Let
∑

a∈MG

laθa = 0, where la ∈ H∗(BG; Z/p). By Lemma 5.3.14(2)

of [1], we have that i∗b(θa) = 0, for b 6= a in MG, and so

i∗b(
∑

a∈MG

laθa) =
∑

a∈MG

lai
∗
b(θa) = lbi

∗
b(θb) = lbχG(b) = 0.

Since χG(b) is a unit in S−1H∗
G({b}; Z/p) ∼= S−1H∗(BG; Z/p), we have

lb = 0.
�

Lemma 2.3. Let α ∈ S−1H∗
G(M ; Z/p). Then,

α =
∑

a∈MG

faθa

χG(a) ,

where fa = S−1i∗a(α) ∈ S−1H∗(BG; Z/p).

Proof. From Proposition 5.3.18(1) of [1], we know that

α =
∑

a∈MG

S−1ia!(S−1i∗a(α)/χG(a)).

Since fa = S−1i∗a(α) ∈ S−1H∗(BG; Z/p), we have that fa

χG(a) ∈ S−1H∗

(BG; Z/p). Since S−1ia! is a S−1H∗(BG; Z/p)-algebra homomorphism,
we have
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S−1ia!(S−1i∗a(α)/χG(a)) = S−1ia!(
fa

χG(a)) = fa

χG(a)S
−1ia!(1a)

= fa

χG(a) ia!(1a) = faθa

χG(a) .

Thus, α =
∑

a∈MG

faθa

χG(a) . �

Remark 2.4. From Lemma 2.2 and Lemma 2.3, we see that { θa
χG(a) |a ∈

MG} forms a basis of S−1H∗
G(M ; Z/p) as a S−1H∗(BG; Z/p)-algebra.

The equivariant Gysin homomorphism of collapsing M to a point
gives the G-index of M , i.e.,

IndG : H∗
G(M ; Z/p) −→ H∗−2n(BG; Z/p).

Theorem 2.5. For any α ∈ S−1H∗
G(M ; Z/p),

S−1 IndG(α) =
∑

a∈MG

fa

χG(a) ,

where fa = S−1i∗a(α) ∈ S−1H∗

(BG;Z/p). In particular, if α ∈ H∗
G(M ; Z/p), then fa = i∗a(α) ∈

H∗(BG; Z/p) and

IndG(α) =
∑

a∈MG

fa

χG(a) ∈ H∗(BG; Z/p) = Z/p[s, t]/(s2).

Proof. From Lemma 5.3.19 of [1], we have that IndG(θa) = 1a, and so
by Lemma 2.3,

S−1IndG(α) =
∑

a∈MG

faS−1IndG(θa)
χG(a) =

∑
a∈MG

fa·1a

χG(a) =
∑

a∈MG

fa

χG(a) .

Since H∗(BG; Z/p) −→ S−1H∗(BG; Z/p) is injective, the last part of
Theorem 2.5 follows immediately.

�

3. Equivariant cohomology structure

The purpose of this section is to study the structures of mod p equi-
variant cohomology rings of G-manifolds in Λ2n.

Lemma 3.1. Let M ∈ Λr
2n(r ≥ 2). Then,
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dimZ/pH
i
G(M ; Z/p) =


i∑

j=0
bj , if i ≤ 2n− 1,

r, if i ≥ 2n,

where bj is the jth mod p Betti number of M .

Proof. Let

Pz(MG) =
∞∑
i=0

dimZ/pH
i
G(M ; Z/p)zi

be the equivariant Poincaré polynomial of H∗
G(M ; Z/p). Since H∗

G
(M ; Z/p) is a free H∗(BG; Z/p)-module, we have that H∗

G(M ; Z/p) =
H∗(M ; Z/p)

⊗
Z/p H∗(BG; Z/p), and so

Pz(MG) =
∞∑
i=0

dimZ/pH
i
G(M ; Z/p)zi =

1
1− z

2n∑
i=0

dimZ/pH
i(M ; Z/p)zi

= b0 + (b0 + b1)z + · · ·+ (b0 + b1 + · · ·+ b2n−1)z2n−1

+(b0 + b1 + · · ·+ b2n)(z2n + · · · )
= b0 + (b0 + b1)z + · · ·+ (b0 + b1 + · · ·+ b2n−1)z2n−1

+r(z2n + · · · ).

So, the result follows. �

Let x = (x1, · · · , xr)T and y = (y1, · · · , yr)T be two vectors in (Z/p)r.
Define x ◦ y by

x ◦ y = (x1y1, · · · , xryr)T .

Then, (Z/p)r forms a commutative ring with respect to two operations
+ and ◦. Let a1, · · · , ar be all fixed points in MG and

V(M)
r = {x = (x1, · · · , xr)T ∈ (Z/p)r| |x| =

r∑
i=1

xi
Nai

= 0},

where Nai is as above. Then, it is easy to see that V(M)
r is an (r − 1)-

dimensional subspace of (Z/p)r. Generally speaking, the operation ◦ in
V(M)

r is not closed.
If M ∈ Λr

2n, then we have that the inclusion i : MG ↪→ M induces a
monomorphism

i∗ : H∗
G(M ; Z/p) −→ (Z/p)r[s, t]/(s2).
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By Lemma 3.1, there are subspaces V M
i with dimV M

i =
i∑

j=0
bj (i =

0, · · · , 2n− 1) of (Z/p)r such that

Hi
G(M ; Z/p) ∼= i∗(Hi

G(M ; Z/p)) =



V M
i t

i
2 , if i ≤ 2n− 2 and i is even,

V M
i st

i−1
2 , if i ≤ 2n− 1 and i is odd,

(Z/p)rt
i
2 , if i ≥ 2n and i is even,

(Z/p)rst
i−1
2 , if i ≥ 2n + 1 and i is odd,

where V M
i t

i
2 = {vt

i
2 |v ∈ V M

i } and V M
i st

i−1
2 = {vst

i−1
2 |v ∈ V M

i }.

Lemma 3.2. There are the following properties:

(1) V M
i ⊂ V M

2n−1 = V(M)
r , for i < 2n − 1, V M

0
∼= Z/p is generated

by (1, · · · , 1)> ∈ (Z/p)r, V M
i ⊂ V M

i+1, for i < 2n − 1 and i even, and
V M

i ⊂ V M
i+2, for i + 1 < 2n− 1.

(2) For d =
∑

i≤2n−2 and i even i · di < 2n, with each di ≥ 0, vωd0
◦

vωd2
◦· · ·◦vωd2n−2

∈ V M
d , where vωdi

= v
(i)
1 ◦· · ·◦v(i)

di
, with each v

(i)
j ∈ V M

i .

(3) For d =
∑

i≤2n−2 and i even i · di + k < 2n, with k odd,

1 ≤ k ≤ 2n− 1 and each di ≥ 0, vωd0
◦ vωd2

◦ · · · ◦ vωd2n−2
◦ v

(k)
1 ∈ V M

d ,

where vωdi
= v

(i)
1 ◦ · · · ◦ v

(i)
di

, with each v
(i)
j ∈ V M

i and v
(k)
1 ∈ V M

k .

Proof. (1) For an element α ∈ H∗
G(M ; Z/p) of even degree d, we

have that i∗(α) = vt
d
2 , where v ∈ (Z/p)r. Since i∗ =

⊕
a∈MG

i∗a, by

Theorem 2.5 we have that

IndG(α) =
∑

a∈MG

i∗a(α)
χG(a) =

∑
a∈MG

i∗a(α)
Natn = 1

tn
∑

a∈MG

i∗a(α)
Na

= |v|t
d
2
−n ∈ Z/p[s, t]/(s2).

Thus, if d < 2n and d is even, then |v| must be zero. For an
element α′ ∈ H∗

G(M ; Z/p) of odd degree d, we have that i∗(α′) =
v′st

d−1
2 , where v′ ∈ (Z/p)r. Similarly, we have that if d < 2n

and d is odd, |v′| also must be zero. Thus, if i < 2n, V M
i is a

subspace of V(M)
r , and V M

2n−1 = V(M)
r , by reason of dimension.

In particular, when α = 1 (the identity of H∗
G(M ; Z/p)),

i∗(α) =
⊕

a∈MG

i∗a(1) = (1, · · · , 1)> ∈ (Z/p)r. So, V M
0

∼= Z/p
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is generated by (1, · · · , 1)> ∈ (Z/p)r, since dimV M
0 = b0 = 1.

Since H∗
G(M ; Z/p) = H∗(M ; Z/p)

⊗
Z/p H∗(BG; Z/p), we have

that (1, · · · , 1)>s ∈ i∗(H1
G(M ;

Z/p)) and (1, · · · , 1)>t ∈ i∗(H2
G(M ; Z/p)). Thus, for any v ∈

V M
i with i < 2n− 1 and i even, [(1, · · · , 1)>s] ◦ (vt

i
2 ) = vst

i
2 ∈

V M
i+1st

i
2 , and so we have v ∈ V M

i+1. For any v ∈ V M
i with

i + 1 < 2n − 1 and i odd, [(1, · · · , 1)>t] ◦ (vst
i−1
2 ) = vst

i+1
2 ∈

V M
i+2st

i+1
2 , and so v ∈ V M

i+2. Similarly, we have that V M
i ⊂ V M

i+2

for i + 1 < 2n− 1 and i even. This completes the proof of (1).
(2) If i is even and v

(i)
j ∈ V M

i , since i∗ : H∗
G(M ; Z/p) −→ (Z/p)r[s, t]/

(s2) is injective, there is a class α
(i)
j of degree i in H∗

G(M ; Z/p)

such that i∗(α(i)
j ) = v

(i)
j t

i
2 . If k is odd and v

(k)
1 ∈ V M

k , there is

also a class β
(k)
1 of degree k in H∗

G(M ; Z/p) such that i∗(β(k)
1 ) =

v
(k)
1 st

k−1
2 .

For d =
∑

i≤2n−2 and i even i · di < 2n with each di ≥ 0, since
i∗ =

⊕
a∈MG

i∗a is a ring homomorphism, we have

i∗(
∏

i≤2n−2 and i even

di∏
j=1

α
(i)
j )=

⊕
a∈MG

i∗a(
∏

i≤2n−2 and i even

di∏
j=1

α
(i)
j )

=
⊕

a∈MG

∏
i≤2n−2 and i even

di∏
j=1

i∗a(α
(i)
j )

= vωd0
◦ vωd2

◦ · · · ◦ vωd2n−2
t

d
2 ,

and so vωd0
◦ vωd2

◦ · · · ◦ vωd2n−2
∈ V M

d . The proof of (2) is now
complete.

(3) Similarly, for d =
∑

i≤2n−2 and i even i · di + k < 2n with k odd,
1 ≤ k ≤ 2n− 1 and each di ≥ 0, we have that

i∗( [
∏

i≤2n−2 and i even

di∏
j=1

α
(i)
j ] · β(k)

1 )

=
⊕

a∈MG

i∗a( [
∏

i≤2n−2 and i even

di∏
j=1

α
(i)
j ] · β(k)

1 )

=
⊕

a∈MG

([
∏

i≤2n−2 and i even

di∏
j=1

i∗a(α
(i)
j )] · i∗a(β

(k)
1 ))
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= vωd0
◦ vωd2

◦ · · · ◦ vωd2n−2
◦ v

(k)
1 st

d−1
2 ,

and so vωd0
◦vωd2

◦ · · · ◦vωd2n−2
◦v

(k)
1 ∈ V M

d , which completes the
proof.

�

Remark 3.3. An observation shows that Lemma 3.2 gives a subring
structure of

RM = V M
0 +V M

1 s+· · ·+V M
2n−2t

n−1+V M
2n−1st

n−1+(Z/p)r(tn+stn+· · · )

in (Z/p)r[s, t]/(s2).

Combining lemmas 3.1, 3.2, and Remark 3.3, we have the following.

Theorem 3.4. Let M ∈ Λr
2n(r ≥ 2). Then, there are subspaces V M

i

with dimV M
i =

i∑
j=0

bj(i = 0, · · · , 2n− 1) of V(M)
r such that H∗

G(M ; Z/p)

is isomorphic to the graded ring

RM = V M
0 +V M

1 s+ · · ·+V M
2n−2t

n−1 +V M
2n−1st

n−1 +(Z/p)r(tn + stn +
· · · ), where the ring structure of RM is determined by

(1) V M
i ⊂ V M

2n−1 = V(M)
r , for i < 2n − 1, V M

0
∼= Z/p is generated

by (1, · · · , 1)> ∈ (Z/p)r, V M
i ⊂ V M

i+1, for i < 2n− 1 and i even,
and V M

i ⊂ V M
i+2, for i + 1 < 2n− 1.

(2) For d =
∑

i≤2n−2 and i even i · di < 2n with each di ≥ 0, vωd0
◦

vωd2
◦ · · · ◦ vωd2n−2

∈ V M
d , where vωdi

= v
(i)
1 ◦ · · · ◦ v

(i)
di

with each

v
(i)
j ∈ V M

i .
(3) For d =

∑
i≤2n−2 and i even i · di + k < 2n with k odd, 1 ≤ k ≤

2n − 1 and each di ≥ 0, vωd0
◦ vωd2

◦ · · · ◦ vωd2n−2
◦ v

(k)
1 ∈ V M

d ,

where vωdi
= v

(i)
1 ◦ · · · ◦ v

(i)
di

with each v
(i)
j ∈ V M

i and v
(k)
1 ∈ V M

k .

Remark 3.5. Since H∗
G(M ; Z/p) is a free H∗(BG; Z/p)-module, we

have that RM is also a free Z/p[s, t]/(s2)-module.

4. 2-dimensional case

Let M ∈ Λr
2(r ≥ 2). From Theorem 3.4, we have that
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H∗
G(M ; Z/p) ∼= V M

0 + V(M)
r s + (Z/p)r(t + st + · · · ).

Theorem 4.1. Let M1,M2 ∈ Λ2. Then, H∗
G(M1; Z/p) and H∗

G(M2; Z/p)
are isomorphic as graded rings if and only if |MG

1 | = |MG
2 |.

Proof. If |MG
1 | = |MG

2 | = r, then let a1, · · · , ar be all fixed points in
MG

1 and b1, · · · , br be all fixed points in MG
2 . Thus,

V(M1)
r = {x = (x1, · · · , xr)> ∈ (Z/p)r| |x| =

r∑
i=1

xi
Nai

= 0}

and

V(M2)
r = {y = (y1, · · · , yr)T ∈ (Z/p)r| |y| =

r∑
i=1

yi

Nbi
= 0}.

By Theorem 3.4, we have that

H∗
G(M1; Z/p) ∼= RM1 = V M1

0 + V(M1)
r s + (Z/p)r(t + st + · · · )

and

H∗
G(M2; Z/p) ∼= RM2 = V M2

0 + V(M2)
r s + (Z/p)r(t + st + · · · ).

Let f0 : V M1
0 −→ V M2

0 be the identity map,

f1 : V(M1)
r s −→V(M2)

r s be f1((x1, · · · , xr)>s) = ( x1
Na1

Nb1 , · · · , xr
Nar

Nbr)
Ts,

fi : (Z/p)rt
i
2 −→ (Z/p)rt

i
2 be the identity map for i ≥ 2 and i even,

fi : (Z/p)rst
i−1
2 −→ (Z/p)rst

i−1
2 be fi((x1, · · · , xr)>st

i−1
2 ) = ( x1

Na1
Nb1 ,

· · · , xr
Nar

Nbr)
>st

i−1
2 for i ≥ 3 and i odd.

Then, it is easy to check that f =
∞∑
i=0

fi is an isomorphism between

RM1 and RM2 . Thus, H∗
G(M1; Z/p) and H∗

G(M2; Z/p) are isomorphic
as graded rings.

If |MG
1 | 6= |MG

2 |, then obviously H∗
G(M1; Z/p) and H∗

G(M2; Z/p) are
not isomorphic by their ring structures. �

An observation shows that S2 admits a G-action such that |(S2)G| =
2. Thus, Λ2 is non-empty.

As a consequence of Theorem 4.1, we have the following.
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Corollary 4.2. Let r ≥ 2 be a positive integer. All G-manifolds in Λr
2

determine a unique equivariant cohomology up to isomorphism if Λr
2 is

non-empty.

Remark 4.3. For each M ∈ Λr
2(r ≥ 2), its equivariant cohomology ring

H∗
G(M ; Z/p) can be expressed in a simpler way. We have that

H∗
G(M ; Z/p) ∼=

{α = (α1, · · · , αr) ∈ (Z/p)r[s, t]/(s2)|


α1 = · · · = αr, if degα = 0

r∑
i=1

αi
Nai

= 0, if degα = 1
},

where a1, · · · , ar are all fixed points in MG and χG(ai) = Nait.

5. Ring homomorphisms induced by G-equivariant maps

In this section, the task is to give a description for the homomor-
phism between equivariant cohomology rings of two G-manifolds in Λ2n

induced by a G-equivariant map and to show a characterization of the
homomorphism.

Theorem 5.1. Let f : M1 → M2 be a G-equivariant map for M1 ∈ Λr1
2n,

M2 ∈ Λr2
2n(r1, r2 ≥ 2) and f∗ be the induced homomorphism between

graded rings

RM2 = V M2
0 + V M2

1 s + · · ·+ V M2
2n−2t

n−1 + V M2
2n−1st

n−1 +
(Z/p)r2(tn + stn + · · · )

and

RM1 = V M1
0 + V M1

1 s + · · ·+ V M1
2n−2t

n−1 + V M1
2n−1st

n−1 +
(Z/p)r1(tn + stn + · · · ).

Then, there is a linear map σ from (Z/p)r2 to (Z/p)r1 such that f∗ =∑
i even

σt
i
2 +

∑
j odd

σst
j−1
2 , where f∗(β) =

∑
i even

σ(vi)t
i
2 +

∑
j odd

σ(vj)st
j−1
2 ,

for β =
∑

i even
vit

i
2 +

∑
j odd

vjst
j−1
2 ∈ RM2. In particular, if r1 = r2 = r

and f∗ is an isomorphism, then σ ∈ GL(r, Z/p).
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Proof. Since f∗ is a ring homomorphism, f∗((1 , · · · ,︸ ︷︷ ︸
r2

1)T ) = (1 , · · · ,︸ ︷︷ ︸
r1

1)T

and f∗((k , · · · ,︸ ︷︷ ︸
r2

k)T ) = (k , · · · ,︸ ︷︷ ︸
r1

k)T , for k ∈ Z/p. It is easy to check that

f∗ is linear. Since the restriction f∗|(Z/p)r2 tn : (Z/p)r2tn −→ (Z/p)r1tn

is linear, there exists a linear map σ from (Z/p)r2 to (Z/p)r1 such that
f∗|(Z/p)r2 tn = σtn.

By Remark 3.5 we know that RMi , i = 1, 2, are free Z/p[s, t]/(s2)-
modules, and that f∗ is a module homomorphism between RM2 and
RM1 . If i > 2n and i is even, since f∗|(Z/p)r2 tn = σtn, we have that for
x ∈ (Z/p)r2 ,

f∗(xt
i
2 ) = f∗(xtn)t

i
2
−n = σ(x)t

i
2 .

Thus, f∗|
(Z/p)r2 t

i
2

= σt
i
2 , for i > 2n and i even. Similarly, we have that

f∗|
(Z/p)r2st

i−1
2

= σst
i−1
2 , for i > 2n and i odd.

Finally we consider the case of the dimension being less than 2n. For
0 ≤ i < 2n and i even, let v ∈ V M2

i ⊂ (Z/p)r2 . Since f∗|(Z/p)r2 tn = σtn,
we have that

f∗(vt
i
2 )tn−

i
2 = f∗(vtn) = σ(v)tn,

and so f∗(vt
i
2 ) = σ(v)t

i
2 . Thus, f∗|

V
M2
i t

i
2

= σt
i
2 , for 0 ≤ i < 2n and i

even.
In a similar way, using f∗|(Z/p)r2stn = σstn, we have that f∗|

V
M2
i st

i−1
2

=

σst
i−1
2 , for 0 ≤ i < 2n and i odd.

If r1 = r2 = r and f∗ is an isomorphism, it is easy to see that
σ ∈ GL(r, Z/p). This completes the proof. �

Remark 5.2. σ in Theorem 5.1 has the following property:
σ(x ◦ y) = σ(x) ◦ σ(y), for any x, y ∈ (Z/p)r2.
In fact, since f∗|(Z/p)r2 tn = σtn and f∗|(Z/p)r2 t2n = σt2n, for any x, y ∈
(Z/p)r2, we have

σ(x ◦ y)t2n = f∗(x ◦ yt2n) = f∗(xtn)f∗(ytn) = σ(x) ◦ σ(y)t2n,

and so σ(x ◦ y) = σ(x) ◦ σ(y).

Combining Theorem 5.1 and Remark 5.2, we have the following.
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Proposition 5.3. With the notation of Theorem 5.1, let f : M1 → M2

be a G-equivariant map for M1 ∈ Λr1
2n and M2 ∈ Λr2

2n. Then, there
is a linear map σ from (Z/p)r2 to (Z/p)r1 satisfying the property that
σ(x ◦ y) = σ(x) ◦ σ(y), for any x, y ∈ (Z/p)r2 and that σ linearly maps
V M2

i to V M1
i , for i < 2n.

Remark 5.4. Let M1,M2 ∈ Λ2n. We see that if |MG
1 | 6= |MG

2 |, then
H∗

G(M1; Z/p) and H∗
G(M2; Z/p) must not be isomorphic as graded rings.
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