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RING STRUCTURES OF MOD p EQUIVARIANT
COHOMOLOGY RINGS AND RING
HOMOMORPHISMS BETWEEN THEM
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Communicated by Jean-Louis Cathelineau

ABSTRACT. We consider a class of connected oriented (with respect
to Z/p) closed G-manifolds with a non-empty finite fixed point set,
each of which is G-equivariantly formal, where G = Z/p and p is
an odd prime. Using localization theorem and equivariant index,
we give an explicit description of the mod p equivariant cohomol-
ogy ring of such a G-manifold in terms of algebra. This makes it
possible to determine the number of equivariant cohomology rings
(up to isomorphism) of such 2-dimensional G-manifolds. Moreover,
we obtain a description of the ring homomorphism between equi-
variant cohomology rings of such two G-manifolds induced by a
G-equivariant map, and show a characterization of the ring homo-
morphism.

1. Introduction

Assume that G = Z/p and p is an odd prime unless stated oth-
erwise. Let X be a G-space and FEG be the universal free G-space.
Then, the Borel construction Xg := EG xg X, the orbit space of
the diagonal action on the product EG x X, is the total space of the
bundle X — Xg — BG associated to the universal principal bundle
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G — EG — BG (BG := EG/G, the classifying space of G). Ap-
plying cohomology with coefficients Z/p to X¢ gives the equivariant
cohomology ring HE(X;Z/p) := H*(Xq;Z/p). It is well-known that
the equivariant cohomology ring Hj(X;Z/p) is an H*(BG; Z/p)-module
and H} (XY Z/p) is a free H*(BG; Z/p)-module, where X denotes the
fixed point set of the G—action.

Suppose that M is a connected oriented (with respect to Z/p) closed
manifold and admits a G-action with a non-empty finite fixed set MC.
For the fibration M — Mg — BG, if the restriction to a typical fiber
HY(M;Z/p) — H*(M;Z/p) is surjective, then M is called totally non-
homologous to zero in Mg (cf. [3]). If M satisfies this condition, then
M is also called G-equivariantly formal (cf. [5]). In 1998, Goresky, Kot-
twitz and MacPherson showed that the equivariant cohomology rings
of a class of T™-manifolds (i.e., GKM manifolds) can be explicitly ex-
pressed in terms of their associated graphs (cf. [5,6]). Correspondingly,
there is a mod 2 GKM theory (cf. [2]). Note that any odd dimensional
oriented closed G-manifold must not have a non-empty finite fixed point
set (cf. [4]). Then, we shall give explicit descriptions of the mod p equi-
variant cohomology rings of G-equivariantly formal manifolds at any
even dimension in terms of algebra.

Let Ay, denote the set of all 2n-dimensional connected oriented (with
respect to Z/p) closed G-manifolds with a non-empty finite fixed point
set, each of which is G-equivariantly formal. Given an M in Ag,, we
know from [1, Theorem 3.10.4] and [3, pp. 371-374] that M has the
following properties:

2n
(1) The order |ME| of M equals 3 b;, where b; is the ith mod p
i=0

Betti number of M;
(2) H:(M;Z/p) is a free H*(BG;Z/p)-module;
(3) The inclusion i : M“ < M induces a monomorphism i* :
HE(MSZ[p) — HE (M Zp).
Note that b; = ba,,—;, by the Poincaré duality, and by = by, = 1, since
M is connected. For each M € Ag,, by the property (1), we have
that |[M%| > 2. Let » > 2 be a positive integer, and write A}, =

{M € Ag,||M%| = r}. Then, Ay, = |J A%,. From [1], we also have
r>2

that H*(BG;Z/p) = A(s) R Z/p[t] = Z/pls,t]/(s?), with deg(s)=1,
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deg(t)=2, and t = ((s), where [ is the Bockstein homomorphism as-

sociated with the coefficient sequence 0 — Z/p — Z/p?> — Z/p — 0.

If MY = r, since H,(MY;Z/p) = @ H{({a};Z/p) and the equi-
aeMG

variant cohomology ring of a point is isomorphic to H*(BG;Z/p)

Z/ps,t]/(s?) where s and t are as above, we have that H}(M%;Z/p)
(Z/p)"[s,t]/(s?) is a polynomial ring (or algebra). Thus, we obtain a
monomorphism from HJ(M;Z/p) into (Z/p)"[s,t]/(s*), also denoted by
i*, and so H,(M;7Z/p) may be identified with a subring (or subalgebra)
of (Z/p)[s, 1]/(s2).

Using the localization theorem and equivariant index, we give an ex-
plicit description of Hf(M;Z/p) in (Z/p)"[s,t]/(s*) (see Theorem 3.3).
By using this result, we find that there is only one equivariant cohomol-
ogy ring (up to isomorphism) of G-manifolds in A% if A} is non-empty
(see Theorem 4.1). Furthermore, we give a description for the homo-
morphism between equivariant cohomology rings of two G-manifolds in
Ag, induced by a G-equivariant map (see Theorem 5.1), obtaining a
characterization of the homomorphism.

The reminder of our work is organized as follows. In Section 2, we
review the localization theorem and reformulate the equivariant index
from [1]. In Section 3, we study the equivariant cohomology structure of
a G-manifold in Ag, and obtain an explicit description in terms of alge-
bra. In Section 4, we determine the number of equivariant cohomology
rings (up to isomorphism) of G-manifolds in As. In Section 5, we give a
description of the homomorphism between equivariant cohomology rings
of two G-manifolds in As,, induced by a G-equivariant map, obtaining a
characterization of the homomorphism.

11

2. Preliminaries

Let M be a 2n-dimensional G-manifold with a non-empty finite set
ME. Let R denote the polynomial part of H*(BG;Z/p), i.e., R = Z/plt]
and S = R — (0). Then, we have the following well-known localization
theorem (cf. [1,7]).

Theorem 2.1. S~1%* : ST HA(M;Z/p) — S~ HL(MC;Z/p) is an
isomorphism of S~'H*(BG;7Z/p)-algebras, where i is the inclusion of
M into M. O
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Take an isolated point @ € M. Let i, be the inclusion of a into M.
Then, we have the equivariant Gysin homomorphism
i : He({a); Z/p) — HE™"(M;Z/p).
On the other hand, we also have a natural induced homomorphism
ig « HG(M; Z/p) — HE({a}; Z/p)
and we see that i* = € ). Moreover, we have that the equivariant

aEMG
Euler class at a is

xa(a) = igia(la) € HE ({a}; Z/p) = H*(BG; Z/p) = (Z/p)t",
where 1, € H}({a};Z/p) is the identity and (Z/p)t" = {kt"|k € Z/p}.
So, we may write

xa(a) = Ngt",
where N, € Z/p. Let 0, = iq(1,). Then, 6, € HZ'(M;Z/p) and i%(6,) =
xc(a).
Lemma 2.2. All elements 0,,a € M are linearly independent over
H*(BG;Z/p).

Proof. Let > 1,0, =0, where l, € H*(BG;Z/p). By Lemma 5.3.14(2)
acMC
of [1], we have that 4;(6,) = 0, for b # a in MY, and so
Z;( Z laea) = Z lai?;(ga) = leZ(eb) = leG(b) = 0.
aeMC aeM®
Since x¢(b) is a unit in STYHE({b};Z/p) = ST'H*(BG;Z/p), we have
Iy =0.

U
Lemma 2.3. Let o € ST'H}(M;Z/p). Then,
— faba
o = ’
aez]\:ﬂ? xa(a)
where f, = S7li*(a) € STYH*(BG;Z/p).
Proof. From Proposition 5.3.18(1) of [1], we know that
a= 3 S7ha(S7hg(a)/xc(a)).
aceMC

Since f, = S~li%(a) € ST'H*(BG;Z/p), we have that XCJ:(ZG) €S tH*

(BG;Z/p). Since S~liy is a STLH*(BG;Z/p)-algebra homomorphism,

we have
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S in(S i3 (0)/xG(0)) = S Vi (o) = L5 (1)

XGG
= iia(le) = Lop.
J— fa a
Thus, o = EZA:/[G IOk O

Remark 2.4. From Lemma 2.2 and Lemma 2.3, we see that {X 0 la €
MEY forms a basis of STLHE(M;Z/p) as a S~ H*(BG;Z/p)-algebra.

The equivariant Gysin homomorphism of collapsing M to a point
gives the G-index of M, i.e.,

Indg : H;(M;Z/p) — H*2"(BG; Z/p).

Theorem 2.5. For any o € S~ H(M;Z/p),

-1 — fa
S IndG(O[) = ae%c XT@’

where f, = S~li(a) € ST1H*
(BG; Z/p). In particular, if « € HAH(M;Z/[p), then fo = i;(a) €
H*(BG;Z/p) and

Indg () = %G e € HY(BG;Z/p) = Z/p[s,1]/(s).

Proof. From Lemma 5.3.19 of [1], we have that Indg(6,) = 14, and so
by Lemma 2.3,
S—llndG(a) — Z faS™ IndG(g ) — Z fala _ Z fa

cla Gcla gla)’
aEMGC xa(a) aEMGX (@) aGMGX (@)

Since H*(BG;Z/p) — S~YH*(BG;Z/p) is injective, the last part of
Theorem 2.5 follows immediately.
O

3. Equivariant cohomology structure

The purpose of this section is to study the structures of mod p equi-
variant cohomology rings of G-manifolds in Ag,.

Lemma 3.1. Let M € A}, (r > 2). Then,
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4 >obj, ifi<2n—1,
dimZ/pH’G(M;Z/p) ={ 7=0
T, if i > 2n,
where b; is the jth mod p Betti number of M.
Proof. Let
S . .
P.(Mg) = >_ dimg,, He,(M; Z/p)=*
i=0

be the equivariant Poincaré polynomial of H}(M;Z/p). Since H}
(M;Z/p) is a free H*(BG;Z/p)-module, we have that H}(M;Z/p) =
H*(M;Z/p) @z, H* (BG; Z/p), and so

P,(Mg) Zdlmz/pHG(M Z/p)zt = —— Zdlmz/p (M;Z/p)7
=0
:b0+(bo+b1)z+"' (bo+b1+"-—|—b2n_1)z2n 1

+(bo 4 b1+ 4 boy) (27 + )
=by+ (bo+b1)z+--+ (bo+ by + -+ bgyq)2*" !
(22 4.
So, the result follows. ]

Let 2 = (z1,--- ,2)T and y = (y1,--- ,yr)" be two vectors in (Z/p)".
Define x o y by
rToy= (‘lel) e 7xTyT)T‘

Then, (Z/p)" forms a commutative ring with respect to two operations
+ and o. Let ay,--- ,a, be all fixed points in M and

(M)

Vr :{‘T:(xla'” 7$T)T€(Z/p)r‘ ‘x|:;]\ﬁ; :0}7

where NN, is as above. Then, it is easy to see that VM ig an (r—1)-

dimensional subspace of (Z/p)". Generally speaking, the operation o in
ﬁM) is not closed.

If M € AL, then we have that the inclusion i : MY < M induces a

monomorphism

i Hi (M3 Z/p) — (Z/p)[s,1]/(5%).
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i
By Lemma 3.1, there are subspaces VM with dimVM = Y b; (i =

0,---,2n—1) of (Z/p)" such that

X/th%7 if i <2n—2andiis even,

‘/iMstFTl, ifi1<2n—1and1iis odd,
H (M Z[p) = i (Hg (M3 Z/p)) = o -

(Z/p)'t=, if i > 2nandiis even,

(Z/p)" st el zfz>2n+1andzzsodd
where VMt2 = {’Ut2”U € VM} and VMst T = = {vst'z \U e VM}.

Lemma 3.2. There are the following properties:

(1) vM CVMl —Vr ,forz<2n—1 VM = Z/p is generated
by (1,---,1)" € (Z/p)", VM c VI, fori < 2n—1 and i even, and
V;MC H_2,1“07"z+1<2n71

(2) For d = 3 icon_9 and i even® " di < 2n, with each d; > 0, vy, ©
Vg, OOy, , € VM where Uiy, = ng)o ove(;i), with each vj(-z) e VM,

(8) For d =730, 9 and i even® " di +k <2n, with k odd,

1<k<2n-—1 and each d; > 0, Vusgy © Vugy © " O Vg, ovﬁk) EVdM,

where vy, = ng‘) 0---0 vc(l?, with each v]( e VM and v(k) evM,
Proof. (1) For an element o € H}(M;Z/p) of even degree d, we

have that i*(«) = vt where v € (Z/p)". Since i* = @ i, by
aeMC
Theorem 2.5 we have that

Imdg(a) = 3 iZ((Oé)) = ¥ ;Zif(?g _ ti” > i;]\(]a)
aeMGC xaie aeM@ aeM@
d
= [vlt="" € Z/pls, t]/(s?).
Thus, if d < 2n and d is even, then |v| must be zero. For an
element o/ € Hf(M;7Z/p) of odd degree d, we have that i*(a’) =

V'st“T, where v/ € (Z/p)". Similarly, we have that if d < 2n

and d is odd, |v'| also must be zero. Thus, if i < 2n, VM is a

subspace of V,gM), and VM | = V,gM), by reason of dimension.
In particular, when o = 1 (the identity of H(M;Z/p)),

i*(a) = %Gi;(l) = (1,--. 0T e (Z/p). So, VM = Z/p



536

Chen and Wang

is generated by (1,---,1)T € (Z/p)", since dimVM = by = 1.
Since Hg,(M;Z/p) = H*(M;Z/p) Q4,, H*(BG;Z/p), we have
that (1,---,1)"s € i*(HL(M;
Z/p)) and (1,---,1)"t € i*(HZ(M;Z/p)). Thus, for any v €
VM with 7 < 2n — 1 and i even, [(1,- - 1) Ts]o (vt2) = vst2 €
Vi%st%, and so we have v € VAL. For any;zi e vM 'Xith
i+1<2n—1andiodd, [(1,---,1) t]o(vst 2 ) =wvst 2 €
Viﬂ‘ést%, and so v € Vlﬂ\é Similarly, we have that VM V;ﬂ\r/‘fz
for i+ 1 < 2n — 1 and ¢ even. This completes the proof of (1).
If 7 is even and v](-z) € VM sincei* : HiY(M;Z/p) — (Z/p)"[s,t]/
(s?) is injective, there is a class a§-i) of degree i in HA:(M;Z/p)
such that i*(a§-i)) = v](-i)t%. If k is odd and ng) € VM there is
also a class ﬁ%k) of degree k in H5(M;Z/p) such that i* (ﬁ%k)) =
vgk)stk%l.

For d = Zz‘gzn—Q and i even t * di < 2n with each d; > 0, since

i*= @ i} is a ring homomorphism, we have
aeMG

d ) a0
i*( [1 [Ia;7)= D il I1 [1 ;)

i<2n—2 and i even j=1 aeMG i<2n—2 and i even j=1

- @ 1 [ is(a))
aeMG i<2n—2 and i even j=1
d
= Vwag © Vwa, ©777 0 vwd2n72t§’
and so Uigy © Viwgy © " O Vg, € VdM. The proof of (2) is now
complete.
Similarly, for d =, 0,9 und i even t - di +k < 2n with k odd,
1 <k <2n—1 and each d; > 0, we have that
d.
. 1 i k
(LTI 1T o] 81
i<2n—2 and i even j=1
d.
. 1 i k
= @ (] T [T o] 81"

aceMG i<2n—2 and i even j=1

—@ (O e ae®)

aeMG i<2n—2 and i even j=1
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d—1

= o 0---0U ov(k)5t2
Wdg Wdg Wdoy, o 1 ’

and S0 Uy O Vg, O+ OVuy, ngk) € VM which completes the
proof.
O

Remark 3.3. An observation shows that Lemma 3.2 gives a subring
structure of

Rar = VM +VM st VAL ot 1 VI st - (Z)p)" (¢ +st™+- - )

in (Z/p)"[s,4)/(s%).
Combining lemmas 3.1, 3.2, and Remark 3.3, we have the following.

Theorem 3.4. Let M € AL, (r > 2). Then, there are subspaces VM
with dimVM = S b;(i =0, 2n — 1) of V™) such that Hz,(M;Z/p)
=0

s 1somorphic to the graded Ting

Ry =VM +VMst o 4 VM =ty VM st 4 (Z/p)" (7 + st +
-+), where the ring structure of Ry is determined by
(1) VM cvM | = V,gM), fori < 2n—1, VM = Z/p is generated
by (1,---,1)T € (Z/p)", VM C Viﬂ\fl, fori < 2n—1 and i even,
and ViM C Vij_‘é, fori+1<2n—1.
(2) Ford=> 1-d; < 2n with each d; > 0, Vg, ©

M — @ (4)
Vi, O+ Oy, € V", where v, =vy7o---ou,

Uj(i)el/;M.
(3) Ford =Y i-di+k <2n with k odd, 1 < k <

2n — 1 and each d; > 0, Visgy © Vwgy © " O Vug, ovgk) S VdM,

i<2n—2 and 1 even

with each

7

i<2n—2 and i even
where v, = Ugi) o---0 Uc(l? with each v](-i) e VM and vgk) e VM.

Remark 3.5. Since H:(M;Z/p) is a free H*(BG;Z/p)-module, we
have that Ry is also a free Z/p[s,t]/(s?)-module.

4. 2-dimensional case

Let M € A5(r > 2). From Theorem 3.4, we have that
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HE(M;Z)p) = VM + VM s 4 (Z/p)(t + st +---).

Theorem 4.1. Let My, Mo € Ay. Then, Hj\(My;Z/p) and HE(Ma; Z/p)
are isomorphic as graded rings if and only if |MT| = |MS|.

Proof. If [ME| = |M§| = r, then let ay,--- ,a, be all fixed points in
MIG and by, -, b, be all fixed points in M2G Thus,

P = o=y w) T € @) lal = X =0}
and

M. . LA
VI =y = )" € @/ |l = X A =0

By Theorem 3.4, we have that

HE (M Z/p) = Rosy = Ve + Vs (Z/p) (¢4 st +-0)

and
* . ~Y M2 (MQ) r
HG(MQ,Z/])) = RMQ = [/0 + Vr s+ (Z/p) (t_|_ st+ - )

Let fo: VOM1 — VbMQ be the identity map,

fl : VT'(Ml)S —>V1EM2)S be fl((xlv e amT)TS) — (]\:?il Nbla Tty ]\CZT Nbr)Tsv

fi: (Z/p)’"t% — (Z/p)rt% be the identity map for i > 2 and i even,

i—1 i—1

fii (@[p)'stT — (Z/p)'st'T be fil(wr, - 2)TstT) = (=N,
v NbT)Tst% for i > 3 and i odd.

T

o
Then, it is easy to check that f = ) f; is an isomorphism between
i=0
R, and Rag,. Thus, HE(My;Z/p) and HE(Ma; Z/p) are isomorphic
as graded rings.

If |MT| # |M§'|, then obviously H}(Mi;Z/p) and H}(Ma;Z/p) are
not isomorphic by their ring structures. O

An observation shows that S? admits a G-action such that |(S?)¢| =
2. Thus, As is non-empty.

As a consequence of Theorem 4.1, we have the following.
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Corollary 4.2. Let r > 2 be a positive integer. All G-manifolds in A}
determine a unique equivariant cohomology up to isomorphism if A is
non-empty.

Remark 4.3. For each M € AL(r > 2), its equivariant cohomology ring
HE(M;Z)p) can be expressed in a simpler way. We have that

H¢(M; Z/p) =

ay=-=ap,tfdega=0
{o= (1, 00) € (Z/p)[s,8]/ (") { = . ,

2 N, =0, ifdega =1
where ay,--- ,a, are all fived points in MY and xg(a;) = Ng,t.

5. Ring homomorphisms induced by G-equivariant maps

In this section, the task is to give a description for the homomor-
phism between equivariant cohomology rings of two G-manifolds in Ag,
induced by a G-equivariant map and to show a characterization of the
homomorphism.

Theorem 5.1. Let f : My — My be a G-equivariant map for My € Al

2n’

My € A2 (r1,m2 > 2) and f* be the induced homomorphism between
graded rings

R, = Vi +Vs o+ VRt V2 st 4
(Z/p)" (" + st" + )

and
Ry, = VM 4 vMsp o pvthmtypylh gn-ty
(Z/p)" (" + st +---).
Then, there is a linear map o from (Z/p)™ to (Z/p)™ such that f* =
i i—1 5 i
S otz + Y ost'z, where f*(8) = Y o(v)tz + 3 U(vj)st%,

i even j odd i even j odd
i i1 : ‘
for B = 3 wit2+ > wvjst'z € Ry,. In particular, if ri =ry =7
i even j odd

and f* is an isomorphism, then o € GL(r,Z/p).



540 Chen and Wang

Proof. Since f* is a ring homomorphism, f*((1,---,1)7) = (1,---,1)7
—— ——
T2 T1
and f*((k,---,k)") = (k,--- , k)T, for k € Z/p. It is easy to check that
—— ——
T2 1

f* is linear. Since the restriction f*|z/pyran @ (Z/p)"2t" — (Z/p)"*t"
is linear, there exists a linear map o from (Z/p)™ to (Z/p)" such that
Flafpyraem = at”.

By Remark 3.5 we know that Ryy,,i = 1,2, are free Z/p[s,t]/(s?)-
modules, and that f* is a module homomorphism between R,z and
Ry 1f i > 2n and i is even, since f*|(z/pyran = ot™, we have that for

x € (Z/p)"™,
Fr(atd) = fratm)es ™ = o(z)ts.

Thus, f*| i = at%, for ¢ > 2n and ¢ even. Similarly, we have that
(Z/p)r2t2
i—1
f* i-1 = ost 2z , for 1 > 2n and 7 odd.
(Z/p)r2st 2"

Finally we consider the case of the dimension being less than 2n. For
0<i<2nandieven, let v € ViM2 C (Z/p)™. Since f*|z/pyrapm = ot™,
we have that

Frt2)in2 = f*(ut") = o (v)tn,

and so f*(vt%) = O'(U)t%. Thus, f*’V,M%% = at%, for 0 <i < 2n and @
even.

In a similar way, using f*|(z/pyr2n = ost™, we have that f*\ViM2 S5 =
ast%, for 0 <14 < 2n and 7 odd.

If 1 = ro = r and f* is an isomorphism, it is easy to see that
o € GL(r,Z/p). This completes the proof. O

Remark 5.2. o in Theorem 5.1 has the following property:

o(zoy) =o(x)oo(y), for any z,y € (Z/p)™.
In fact, since f*|(z/pyr2en = ot™ and f*|z/pyragen = at®™, for any x,y €
(Z/p)", we have

o(zoy)t™ = f*(xoyt?) = f*(xt") [*(yt") = o(x) o o (y)t*",
and so o(xoy) = o(x) o a(y).

Combining Theorem 5.1 and Remark 5.2, we have the following.
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Proposition 5.3. With the notation of Theorem 5.1, let f : My — Mo
be a G-equivariant map for My € A3l and My € AL, Then, there
is a linear map o from (Z/p)"™? to (Z/p)™ satisfying the property that
o(xoy)=o(x)oo(y), for any x,y € (Z/p)™ and that o linearly maps
VZ-M2 to V;Ml, fori < 2n.

Remark 5.4. Let My, My € Ag,. We see that if |M| # |MS|, then
H{(My;Z)p) and HE(Ma; Z/p) must not be isomorphic as graded rings.
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