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SOME RESULTS ON WEAKLY CONTRACTIVE MAPS

S. RADENOVIĆ, Z. KADELBURG∗, D. JANDRLIĆ AND A. JANDRLIĆ

Communicated by Behzad Djafari-Rouhani

Abstract. In this paper direct proofs of some common fixed point
results for two and three mappings under weak contractive condi-
tions are given. Some of these results are improved by using differ-
ent arguments of control functions. Examples are presented show-
ing that some generalizations can not be obtained and also that our
results are distinct from the existing ones.

1. Introduction and preliminaries

1.1. Quasicontractive and generalized quasicontractive condi-
tions. It is well known that the Banach contraction principle is a fun-
damental result in the Fixed Point Theory, which has been used and
extended in many different directions. Let (X, d) be a metric space. A
map f : X → X is a contraction if there exists a constant λ ∈ [0, 1) such
that for each x, y ∈ X

(1.1) d(fx, fy) ≤ λd(x, y).
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One possibility is to replace the term d(x, y) on the right-hand side of
(1.1) by the maximum m(x, y) of one of the sets

M5
f (x, y) = {d(x, y), d(x, fx), d(y, fy), d(x, fy), d(y, fx)},

M4
f (x, y) =

{
d(x, y), d(x, fx), d(y, fy), 1

2(d(x, fy) + d(y, fx))
}
,

M3
f (x, y) =

{
d(x, y), 1

2(d(x, fx) + d(y, fy)), 1
2(d(x, fy) + d(y, fx))

}
.

In this case the proof of existence and uniqueness of a fixed point of f
proceeds by the usual construction of a Picard sequence xn+1 = fxn,

x0 ∈ X. Results of this kind where first obtained by Ćirić [7].
When two mappings f, g : X → X are given, and a (unique) common

fixed point of f and g is searched for, one can consider the condition

(1.2) d(fx, fy) ≤ λm(x, y),

where m(x, y) is the maximum of one of the sets

M5
f,g(x, y) = {d(gx, gy), d(gx, fx), d(gy, fy), d(gx, fy), d(gy, fx)},

M4
f,g(x, y) =

{
d(gx, gy), d(gx, fx), d(gy, fy), 1

2(d(gx, fy) + d(gy, fx))
}
,

M3
f,g(x, y) =

{
d(gx, gy), 1

2(d(gx, fx) + d(gy, fy)),

1
2(d(gx, fy) + d(gy, fx))

}
.

Obviously, Mk
f,i(x, y) = Mk

f (x, y) for k ∈ {3, 4, 5}, where i : X → X is

the identity mapping. In this case, the assumption that f(X) ⊂ g(X)
is usually present. Then the proof uses a Jungck sequence yn = fxn =
gxn+1, x0 ∈ X. Also, some condition of compatibility of f and g must
be present. This approach was used by Das and Naik [8].

Alternatively one can use mappings f and g at some places in the
M -sets:

N5
f,g(x, y) = {d(x, y), d(x, fx), d(y, gy), d(x, gy), d(y, fx)},

N4
f,g(x, y) =

{
d(x, y), d(x, fx), d(y, gy), 1

2(d(x, gy) + d(y, fx))
}
,

N3
f,g(x, y) =

{
d(x, y), 1

2(d(x, fx) + d(y, gy)), 1
2(d(x, gy) + d(y, fx))

}
.

In this case (1.2) is usually replaced by:

(1.3) d(fx, gy) ≤ λm(x, y),

where m(x, y) is the maximum of one of the N -sets. In these cases,
the construction of Jungck sequence follows the relations x2n+1 = fx2n,
x2n+2 = gx2n+1, x0 ∈ X.



Some results on weakly contractive maps 627

A further generalization is to consider three or four mappings and
search for their common fixed point. In the case of four mappings
f, g, S, T : X → X, the N -sets take the form

N5
f,g,S,T (x, y) = {d(Sx, Ty), d(Sx, fx), d(Ty, gy), d(Sx, gy), d(Ty, fx)},

N4
f,g,S,T (x, y) = {d(Sx, Ty), d(Sx, fx), d(Ty, gy),

1
2(d(Sx, gy) + d(Ty, fx))

}
,

N3
f,g,S,T (x, y) =

{
d(Sx, Ty), 1

2(d(Sx, fx) + d(Ty, gy)),

1
2(d(Sx, gy) + d(Ty, fx))

}
,

and the contractive condition is in the form (1.3).
In the case of three mappings f, g, S : X → X, one takes T = S and

considers the sets

Nk
f,g,S(x, y) = Nk

f,g,S,S(x, y), k ∈ {3, 4, 5},

and the contractive condition is again in the form (1.3).
Let us mention also that sometimes some of the subsets of M -sets or

N -sets are used in respective contractive conditions.

1.2. Weak and generalized weak contractive conditions. Con-
sider the following two sets of real functions:

Ψ = {ψ : [0,+∞)→ [0,+∞) | ψ is continuous nondecreasing,

and ψ−1({0}) = {0} },
Φ = {ϕ : [0,+∞)→ [0,+∞) | ϕ is lower semi-continuous,

and ϕ−1({0}) = {0} }.

The concept of a weak contraction was introduced in 1997 by Alber and
Guerre-Delabriere [3]. A map f : X → X is called a ϕ-weak contraction
if there exists a function ϕ ∈ Φ such that for each x, y ∈ X

d(fx, fy) ≤ d(x, y)− ϕ(d(x, y)).

They defined this concept for maps on Hilbert spaces and proved the ex-
istence of fixed points. In 2001 Rhoades showed that most of the results
from [3] are still true for any Banach space. In particular, he proved the
following theorem which is obviously one of the generalizations of the
Banach contraction principle because it contains contraction as a special
case (ϕ(t) = (1− k)t).
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Theorem 1.1. [17] Let (X, d) be a complete metric space, and f be a
ϕ-weak contraction on X for some ϕ ∈ Φ. Then f has a unique fixed
point.

Introducing a new generalization of the contraction principle, Dutta
and B.S. Choudhury proved the following theorem.

Theorem 1.2. [11] Let (X, d) be a complete metric space and let f :
X → X be a self-mapping satisfying the inequality

ψ(d(fx, fy)) ≤ ψ(d(x, y))− ϕ(d(x, y)),

for some ψ ∈ Ψ and ϕ ∈ Φ and all x, y ∈ X. Then f has a unique fixed
point.

In generalizing this theorem of Dutta and Choudhury, Beg and Abbas
proved the following result.

Theorem 1.3. [4] Let (X, d) be a metric space and let f be a weakly
contractive mapping with respect to g, that is,

ψ(d(fx, fy)) ≤ ψ(d(gx, gy))− ϕ(d(gx, gy)),

for some ψ ∈ Ψ and ϕ ∈ Φ and all x, y ∈ X. If fX ⊂ gX, and gX is a
complete subspace of X, then f and g have coincidence point in X.

Further, Zhang and Song used the generalized ϕ-weak contraction
which is defined for two mappings and gave conditions for the existence
of a common fixed point.

Theorem 1.4. [18] Let (X, d) be a complete metric space, and f, g :
X → X two mappings such that for all x, y ∈ X

d(fx, gy) ≤ m(x, y)− ϕ(m(x, y)),

where ϕ ∈ Φ, and m(x, y) = maxN4
f,g(x, y). Then there exists a unique

common fixed point of f and g.

Recently, Djorić extended the result of Zhang and Song to a pair of
(ψ,ϕ)-weak contractive mappings. He proved the following theorem.

Theorem 1.5. [10] Let (X, d) be a complete metric space, and let f, g :
X → X be two self-mappings such that for all x, y ∈ X
(1.4) ψ(d(fx, gy)) ≤ ψ(m(x, y))− ϕ(m(x, y)),

for some ϕ ∈ Φ, ψ ∈ Ψ, and m(x, y) = maxN4
f,g(x, y). Then there

exists a unique common fixed point of f and g.



Some results on weakly contractive maps 629

Very recently, Choudhury et al. proved the following two theorems.

Theorem 1.6. [6] Let (X, d) be a complete metric space, and let f :
X → X be such that

ψ(d(fx, fy)) ≤ ψ(m(x, y))− ϕ(max{d(x, y), d(y, fy)}),
for some ϕ ∈ Φ, ψ ∈ Ψ, and m(x, y) = maxM4

f (x, y). Then f has a
unique fixed point.

Theorem 1.7. [6] Let (X, d) be a complete metric space. Let f, g : X →
X be self-mappings such that for all x, y ∈ X,

ψ(d(fx, gy)) ≤ ψ(m(x, y))− ϕ(max{d(x, y), d(x, fx), d(y, gy)}),
where ϕ ∈ Φ, ψ ∈ Ψ, and m(x, y) = maxN4

f,g(x, y). Then f and g have
a unique common fixed point. Moreover, any fixed point of f is a fixed
point of g and conversely.

The following weak-contractive common fixed point result for four
mappings was recently obtained by Abbas and Djorić.

Theorem 1.8. [2] Suppose that f, g, S, T are self-mappings on a com-
plete metric space (X, d), fX ⊂ TX, gX ⊂ SX, and let the pairs (f, S)
and (g, T ) be weakly compatible. If for some ϕ ∈ Φ, ψ ∈ Ψ and for all
x, y ∈ X,

ψ(d(fx, gy)) ≤ ψ(m(x, y))− ϕ(m(x, y))

holds, where m(x, y) = maxN4
f,g,S,T (x, y), then f, g, S, T have a unique

common fixed point, provided one of the ranges fX, gX, SX, TX is
closed.

Let us mention also an important recent paper of Jachymski [12] who
showed that some of the results involving two functions ϕ ∈ Φ and ψ ∈ Ψ
can be reduced to the case of one function ϕ′ ∈ Φ. It was also shown by
Popescu in [16] that conditions on functions ψ and ϕ can be weakened.

Some other works related to the concept of weak contractions are
[1, 5, 9, 14].

In this paper direct proofs of some common fixed point results for
two and three mappings under weak contractive conditions are given.
Some of these results are slightly improved by using different arguments
of control functions. Examples are presented showing that some gen-
eralizations can not be obtained and also that our results are distinct
from the existing ones. Also, some improvements of results of weak
Hardy-Rogers type are given.
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2. An auxiliary result

Assertions similar to the following lemma were used (and proved) in
the course of proofs of several fixed point results in various papers.

Lemma 2.1. Let (X, d) be a metric space and let {yn} be a sequence in
X such that d(yn+1, yn) is nonincreasing and that

(2.1) lim
n→∞

d(yn+1, yn) = 0.

If {y2n} is not a Cauchy sequence, then there exist an ε > 0 and two
sequences {mk} and {nk} of positive integers such that the following four
sequences tend to ε when k →∞:
(2.2)
d(y2mk

, y2nk
), d(y2mk

, y2nk+1), d(y2mk−1, y2nk
), d(y2mk−1, y2nk+1).

Proof. If {y2n} is not a Cauchy sequence, then there exist ε > 0 and
sequences {mk} and {nk} of positive integers such that

nk > mk > k, d(y2mk
, y2nk−2) < ε, d(y2mk

, y2nk
) ≥ ε

for all positive integers k. Then

ε ≤ d(y2mk
, y2nk

) ≤ d(y2mk
, y2nk−2) + d(y2nk−2, y2nk−1) + d(y2nk−1, y2nk

)

< ε+ d(y2nk−2, y2nk−1) + d(y2nk−1, y2nk
).

Using (2.1) we conclude that

(2.3) lim
k→∞

d(y2mk
, y2nk

) = ε.

Further,

d(y2mk
, y2nk

) ≤ d(y2mk
, y2nk+1) + d(y2nk+1, y2nk

),

and

d(y2mk
, y2nk+1) ≤ d(y2mk

, y2nk
) + d(y2nk

, y2nk+1).

Passing to the limit when k → ∞ and using (2.1) and (2.3), we obtain
that

lim
k→∞

d(y2mk
, y2nk+1) = ε.

That the remaining two sequences in (2.2) tend to ε can be proved
similarly. �
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3. Weak contractions for three mappings

In this section we prove the existence of coincidence point and com-
mon fixed point for three mappings satisfying the generalized (ψ,ϕ)-
contractive condition. Our main result is the following theorem.

Theorem 3.1. Let (X, d) be a metric space, and let f, g, S : X → X be
three mappings such that for all x, y ∈ X
(3.1) ψ(d(fx, gy)) ≤ ψ(m(x, y))− ϕ(m1(x, y)),

for some ϕ ∈ Φ, ψ ∈ Ψ, where m(x, y) = maxN4
f,g,S(x, y) and

m1(x, y) = max{d(Sx, Sy), d(fx, Sx), d(gy, Sy)}.
If fX ∪ gX ⊂ SX and SX is a complete subspace of X, then f, g and
S have a unique point of coincidence. Moreover, if (f, S) and (g, S) are
weakly compatible, then f, g and S have a unique common fixed point.

Recall that a point u ∈ X is called a coincidence point of the pair
(f, g) and v is its point of coincidence if fu = gu = v. The pair (f, g)
is said to be weakly compatible if for each x ∈ X, fx = gx implies
fgx = gfx.

Proof. Let x0 ∈ X be arbitrary. Using the condition fX ∪ gX ⊂ SX,
choose a sequence {xn} such that Sx2n+1 = fx2n and Sx2n+2 = gx2n+1

for all n ∈ N0. Applying the contractive condition (3.1) we obtain that

ψ(d(Sx2n+1, Sx2n+2)) = ψ(d(fx2n, gx2n+1))

≤ ψ(m(x2n, x2n+1))− ϕ(m1(x2n, x2n+1))

≤ ψ(m(x2n, x2n+1)),

which implies that d(Sx2n+1, Sx2n+2) ≤ m(x2n, x2n+1). In a similar way
one obtains that d(Sx2n+2, Sx2n+3) ≤ m(x2n+1, x2n+2).

Now from the triangle inequality for metric d we have

m(x2n, x2n+1) = max{d(Sx2n, Sx2n−1), d(Sx2n+1, Sx2n),

d(Sx2n, Sx2n−1), 1
2(d(Sx2n−1, Sx2n+1) + d(Sx2n, Sx2n))}

= max{d(Sx2n, Sx2n−1), d(Sx2n+1, Sx2n), 1
2d(Sx2n−1, Sx2n+1)}

≤ max{d(Sx2n, Sx2n−1), d(Sx2n+1, Sx2n),

1
2(d(Sx2n−1, Sx2n) + d(Sx2n, Sx2n+1))}

= max{d(Sx2n, Sx2n−1), d(Sx2n+1, Sx2n)},
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and similarly,

m(x2n+1, x2n+2) ≤ max{d(Sx2n+1, Sx2n), d(Sx2n+2, Sx2n+1)}.

If d(Sx2n+1, Sx2n) > d(Sx2n, Sx2n−1), then m(x2n, x2n+1) =
d(Sx2n+1, Sx2n) > 0, and also m1(x2n, x2n+1) = d(Sx2n+1, Sx2n) > 0.
Contractivity condition (3.1) would imply that

ψ(d(Sx2n+1, Sx2n)) ≤ ψ(d(Sx2n+1, Sx2n))− ϕ(d(Sx2n+1, Sx2n)),

and, since ϕ ∈ Φ, d(Sx2n+1, Sx2n) = 0. A contradiction.
So, we have

(3.2) d(Sx2n+1, Sx2n) ≤ m(x2n, x2n+1) ≤ d(Sx2n, Sx2n−1).

Similarly, we obtain that

(3.3) d(Sx2n+2, Sx2n+1) ≤ m(x2n+1, x2n+2) ≤ d(Sx2n+1, Sx2n).

Therefore, the sequence {d(Sxn+1, Sxn)} is nonincreasing and bounded
from below. So,

lim
n→∞

d(Sxn+1, Sxn) = lim
n→∞

m(xn+1, xn) = lim
n→∞

m1(xn+1, xn) = r ≥ 0.

Letting n→∞ in inequality

ψ(d(Sxn+1, Sxn)) ≤ ψ(m(xn+1, xn))− ϕ(m1(xn+1, xn))

we obtain ψ(r) ≤ ψ(r) − ϕ(r) which is a contradiction unless r = 0.
Hence,

(3.4) lim
n→∞

d(Sxn+1, Sxn) = 0.

We next prove that {Sxn} is a Cauchy sequence. According to (3.4), it
is sufficient to show that the subsequence {Sx2n} is a Cauchy sequence.
Suppose that this is not the case. Applying Lemma 2.1 to the sequence
yn = Sxn we obtain that there exist ε > 0 and two sequences of positive
integers {mk} and {nk} such that the sequences

d(Sx2mk
, Sx2nk

), d(Sx2mk
, Sx2nk+1),

d(Sx2mk−1, Sx2nk
), d(Sx2mk−1, Sx2nk+1).

all tend to ε when k →∞.
Now, from the definition of m(x, y) and from (3.2), (3.3) and the

obtained limits, we have

(3.5) lim
k→∞

m(x2mk−1, x2nk
) = lim

k→∞
m1(x2mk−1, x2nk

) = ε.
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Putting x = x2nk
, y = x2mk−1 in (3.1) we have

ψ(d(Sx2nk+1, Sx2mk
)) = ψ(d(fx2nk

, g2mk−1))

≤ ψ(m(x2nk
, x2mk−1))− ϕ(m1(x2nk

, x2mk−1)).

Letting k →∞, utilizing (3.5) and the obtained limits, we get

ψ(ε) ≤ ψ(ε)− ϕ(ε),

which is a contradiction if ε > 0.
This shows that {Sx2n} is a Cauchy sequence and hence {Sxn} is a

Cauchy sequence.
Since the subspace SX is complete, there exist u, v ∈ X such that

Sxn → v = Su (n→∞). We shall prove that Su = fu = gu.
To see it, we have

ψ(d(fu, Sx2n+2)) = ψ(d(fu, gx2n+1))(3.6)

≤ ψ(m(u, x2n+1))− ϕ(m1(u, x2n+1)),

where

m(u, x2n+1) = max{d(Su, Sx2n+1), d(fu, Su), d(gx2n+1, Sx2n+1),

1
2(d(fu, Sx2n+1) + d(gx2n+1, Su))}

→ max{0, d(fu, Su), 0, 1
2d(fu, Su)} = d(fu, Su),

as n→∞, and also

m1(u, x2n+1) = max{d(Su, Sx2n+1), d(fu, Su), d(gx2n+1, Sx2n+1)}
→ d(fu, Su).

Letting n→∞ in (3.6) we obtain

ψ(d(fu, Su)) ≤ ψ(d(fu, Su))− ϕ(d(fu, Su))

which implies ϕ(d(fu, Su)) = 0. Hence, d(fu, Su) = 0, i.e.,
fu = Su = v.

Similarly, using that

ψ(d(Sx2n+1, gu)) = ψ(d(fx2n, gu))

≤ ψ(m(x2n, u))− ϕ(m1(x2n, u)),

where

m(x2n, u) = max{d(Sx2n, Su), d(fx2n, Sx2n), d(gu, Su),

1
2(d(fx2n, Su) + d(gu, Sx2n))}

→ max{0, 0, d(gu, Su), 1
2(d(gu, Su))} = d(gu, Su),
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and m1(x, y) → d(gu, Su), it can be deduced that gu = Su = v. It
follows that v is a common point of coincidence for f, g and S, i.e.,

v = fu = gu = Su.

Now we prove that the point of coincidence of f, g, S is unique. Sup-
pose that there is another point v1 ∈ X such that v1 = fu1 = gu1 = Su1

for some u1 ∈ X. Using condition (3.1) we obtain that

(3.7) ψ(d(v, v1)) = ψ(d(fu, gu1)) ≤ ψ(m(u, u1))− ϕ(m1(u, u1)),

where

m(u, u1) = max{d(Su, Su1), d(fu, Su), d(gu1, Su1),

1
2(d(fu, Su1) + d(gu1, Su))}

= max{d(v, v1), 0, 0, 1
2(d(v, v1) + d(v1, v))} = d(v, v1),

and m1(u, u1) = max{d(Su, Su1), d(fu, Su), d(gu1, Su1)} = d(v, v1).
Now, (3.7) implies that ϕ(d(v, v1)) = 0, i.e., d(v, v1) = 0. Hence, v = v1.

Using weak compatibility of the pairs (f, S) and (g, S) and a classical
result of G. Jungck, we conclude that the mappings f, g, S have a unique
common fixed point, i.e., fv = gv = Sv = v. The proof of the theorem
is complete. �

By setting S = iX (the identity mapping of X) in Theorem 3.1, we
obtain Theorem 1.7 of Choudhury et al., which is a variation of Theorem
1.5 of Djorić.

By setting T = S in Theorem 1.8 of Abbas and Djorić, one obtains a
slightly weaker variant of our Theorem 3.1.

Now, we give an example of the case when Theorem 3.1 can be applied,
while the known results are not applicable.

Example 3.2. Let X = [0, 1] be endowed with the Euclidean metric
d(x, y) = |x− y| and let f(x) = g(x) = 1

3x, S(x) = 2
3x for each x ∈ X.
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Then d(fx, gy) = 1
3 |x− y| and

m(x, y) = max{d(Sx, Sy), d(Sx, fx), d(Sy, gy), 1
2(d(Sy, fx) + d(Sx, gy))}

= max{2
3 |x− y| ,

1
3x,

1
3y,

1
6(|x− 2y|+ |y − 2x|)}

=


2
3(x− y), 0 ≤ y ≤ x

2
x
3 ,

x
2 ≤ y ≤ x

y
3 , x ≤ y ≤ 2x
2
3(y − x), 2x ≤ y ≤ 1

= m1(x, y).

For ψ(t) = 3t and ϕ(t) = t we have ψ(d(fx, gy)) = ψ(1
3 |x− y|) =

|x− y| and

ψ(m(x, y))− ϕ(m1(x, y)) =


4
3(x− y), 0 ≤ y ≤ x

2
2x
3 ,

x
2 ≤ y ≤ x

2y
3 , x ≤ y ≤ 2x
4
3(y − x), 2x ≤ y ≤ 1

Now we easily conclude that the mappings f, g and S 6= iX satisfy the
relation (3.1). Hence, the existence of a common fixed point of these
three mappings under weak contractive conditions follows from Theorem
3.1.

The proof of the following theorem is similar to that of Theorem 3.1.

Theorem 3.3. Let (X, d) be a complete metric space, and f, g, S : X →
X three mappings such that for all x, y ∈ X

(3.8) ψ(d(fx, gy)) ≤ ψ(m(x, y))− ϕ(m1(x, y)),

where m(x, y) = maxN3
f,g,S(x, y) and

m1(x, y) = max{d(Sx, Sy), d(fx, Sx), d(gy, Sy)},

and where ψ ∈ Ψ and ϕ ∈ Φ. If fX ∪ gX ⊂ SX and SX is a com-
plete subspace of X, then f, g and S have a unique point of coincidence.
Moreover, if (f, S) and (g, S) are weakly compatible, then f, g and S
have a unique common fixed point.

The following example shows that the same conclusion may not hold
if one takes m(x, y) = maxN5

f,g,S(x, y).
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Example 3.4. Let X = {p, q, r, s}, where p = (0, 0, 0), q = (4, 0, 0),
r = (2, 2, 0), s = (2,−2, 1), and let d be the Euclidean metric in R3.
Consider the mappings: S = iX , identity mapping of X, fp = fs = r,
fq = fr = s, gp = gs = q, gq = gr = p. By a careful computation it is
easy to obtain that

d(fx, gy) ≤ 3

4
max{d(x, y), d(x, fx), d(y, gy), d(x, gy), d(y, fx)},

for all x, y ∈ X. This means that taking ψ(t) = t, ϕ(t) = 1
4 t, the

condition (3.8) is satisfied, because it reduces to d(fx, gy) ≤ 3
4M(x, y).

Obviously, the mappings f, g and S have no fixed points.

Remark 3.5. Note that if

m(x, y) = max
{
d(Sx, Sy), d(fx, Sx), d(gy, Sy), d(fx, Sy), 1

2d(gy, Sx)
}
,

then the result can again be obtained.

Finally, we state the following generalizations of Theorems 1.6 and 1.7.

Theorem 3.6. Let (X, d) be a metric space, and let f, S : X → X be
mappings such that for all x, y ∈ X

ψ(d(fx, fy)) ≤ ψ(m(x, y))− ϕ(max{d(Sx, Sy), d(Sy, fy)}),
where ϕ ∈ Φ, ψ ∈ Ψ, and m(x, y) ∈ M4

f,S(x, y). If fX ⊂ SX and
SX is a complete subspace of X, then f and S have a unique point of
coincidence. Moreover, if (f, S) is weakly compatible, then f and S have
a unique common fixed point.

Theorem 3.7. Let (X, d) be a metric space, and f, g, S : X → X are
three self-mappings such that for all x, y ∈ X,

ψ(d(fx, gy)) ≤ ψ(m(x, y))− ϕ(max{d(Sx, Sy), d(Sx, fx), d(Sy, gy)}),
where ϕ ∈ Φ, ψ ∈ Ψ, and m(x, y) ∈ N4

f,g,S(x, y). If fX ∪ gX ⊂ SX and
SX is a complete subspace of X, then f, g and S have a unique point of
coincidence. Moreover, if (f, S) and (g, S) are weakly compatible, then
f, g and S have a unique common fixed point.

4. Weak contractions for two mappings

In this subsection we deduce another variation of Djorić’s Theorem
1.5 on weak contractions for two mappings. The difference is that we do
not use the maximum of the N -set, but its arbitrary element.
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Theorem 4.1. Let (X, d) be a complete metric space and f, g : X → X
be two mappings such that for some ϕ ∈ Φ, ψ ∈ Ψ and for all x, y ∈ X
there exists u(x, y) ∈ N4

f,g(x, y) such that

(4.1) ψ(d(fx, gy)) ≤ ψ(u(x, y))− ϕ(u(x, y)).

Then f and g have a unique common fixed point.

Proof. Let us prove first that the common fixed point of f and g is
unique (if it exists). Suppose that p 6= q are two distinct common fixed
points of f and g. Then (4.1) implies that

ψ(d(p, q)) = ψ(d(fp, gq)) ≤ ψ(u(p, q))− ϕ(u(p, q)),

where u(p, q) ∈ N4
f,g(p, q) = {d(p, q), 0, 0, d(p, q)} = {0, d(p, q)}. Check-

ing both possible cases, we readily obtain that d(p, q) = 0, i.e., p = q.
In order to prove the existence of a common fixed point, proceed

in the usual way, constructing a Jungck sequence by x2n+1 = fx2n,
x2n+2 = gx2n+1, for arbitrary x0 ∈ X. Consider the two possible cases.

Suppose that xn = xn+1 for some n ∈ N. Then xn+1 = xn+2 and
it follows that the sequence is eventually constant, and so convergent.
Indeed, let, e.g., n = 2k (in the case n = 2k + 1 the proof is similar).
Then, putting x = x2k, y = x2k+1 in (4.1), we get that there exists

u ∈ {d(x2k, x2k+1), d(x2k, fx2k), d(x2k+1, gx2k+1),

1
2(d(x2k, gx2k+1) + d(x2k+1, fx2k))}

= {0, d(x2k+1, x2k+2), 1
2d(x2k, x2k+2)},

such that ψ(d(x2k+1, x2k+2) ≤ ψ(u)− ϕ(u). Consider the three possible
cases:

1◦ u = 0; it trivially follows that x2k = x2k+1.
2◦ u = d(x2k+1, x2k+2); it follows that

ψ(d(x2k+1, x2k+2)) ≤ ψ(d(x2k+1, x2k+2))− ϕ(d(x2k+1, x2k+2)),

and by the properties of functions ψ and ϕ that x2k = x2k+1.
3◦ u = 1

2d(x2k, x2k+2); since u ≤ 1
2(d(x2k, x2k+1) + d(x2k+1, x2k+2)) =

1
2d(x2k+1, x2k+2), it follows that

ψ(d(x2k+1, x2k+2) ≤ ψ(
1

2
d(x2k+1, x2k+2))− ϕ(1

2d(x2k, x2k+2))

≤ ψ(
1

2
d(x2k+1, x2k+2)),
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implying that d(x2k+1, x2k+2 ≤ 1
2d(x2k+1, x2k+2) which is only possible

if x2k = x2k+1.
Now suppose that xn 6= xn+1 for all n ∈ N. Putting x = x2n, y =

x2n−1 in (4.1), we get that there exists

u ∈ {d(x2n, x2n−1), d(x2n, fx2n), d(x2n−1, gx2n−1),

1
2(d(x2n, gx2n−1) + d(x2n−1, fx2n))}

= {d(x2n, x2n−1), d(x2n, x2n+1), 1
2d(x2n−1, x2n+1)},

such that ψ(d(x2n+1, x2n) ≤ ψ(u) − ϕ(u). Consider the three possible
cases:

1◦ u = d(x2n, x2n−1); it follows that

ψ(d(x2n+1, x2n)) ≤ ψ(d(x2n, x2n−1))− ϕ(d(x2n, x2n−1))

< ψ(d(x2n, x2n−1))

and d(x2n+1, x2n) < d(x2n, x2n−1).
2◦ u = d(x2n, x2n+1); it follows that

ψ(d(x2n+1, x2n)) ≤ ψ(d(x2n, x2n+1))− ϕ(d(x2n, x2n+1))

< ψ(d(x2n, x2n+1)),

which is impossible.
3◦ u = 1

2d(x2n−1, x2n+1); it follows that

ψ(d(x2n+1, x2n)) ≤ ψ(
1

2
d(x2n−1, x2n+1))− ϕ(

1

2
d(x2n−1, x2n+1)).

By the properties of functions ψ and ϕ we obtain that
d(x2n+1, x2n) ≤ 1

2(d(x2n−1, x2n) + d(x2n + d2n+1))
and d(x2n+1, x2n) ≤ d(x2n, x2n−1).

Hence, at any possible case, d(x2n+1, x2n) ≤ d(x2n, x2n−1) and, simi-
larly, d(x2n+2, x2n+1) ≤ d(x2n+1, x2n). Thus, the sequence {d(xn, xn+1)}
is nonincreasing; moreover,

d(x2n+2, x2n+1) ≤ u(x2n+1, x2n) ≤ d(x2n+1, x2n),(4.2)

d(x2n+1, x2n) ≤ u(x2n, x2n−1) ≤ d(x2n, x2n−1).(4.3)

Now we prove that

(4.4) d(xn, xn+1)→ 0 n→∞.

Indeed, passing to the limit in (4.2) and (4.3) when n → ∞, we obtain
that d(xn+1, xn) → r and u(xn+1, xn) → r (n → ∞) for some r ≥ 0. If
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r > 0, then passing to the limit in

ψ(d(x2n+1, x2n+2)) ≤ ψ(u(x2n, x2n+1))− ϕ(u(x2n, x2n+1))

we obtain that ψ(r) ≤ ψ(r) − ϕ(r) and r = 0 by the properties of
functions ψ ∈ Ψ, ϕ ∈ Φ. Hence, (4.4) holds.

We next prove that {xn} is a Cauchy sequence. According to (4.4), it
is sufficient to show that the subsequence {x2n} is a Cauchy sequence.
Suppose that this is not the case. Applying Lemma 2.1 we obtain that
there exist ε > 0 and two sequences of positive integers {mk} and {nk}
such that the sequences

d(x2mk
, x2nk

), d(x2mk
, x2nk+1), d(x2mk−1, x2nk

), d(x2mk−1, x2nk+1).

all tend to ε when k →∞.
Now, from (4.2), (4.3) and the obtained limits, we have

(4.5) lim
k→∞

u(x2mk−1, x2nk
) = ε,

for any u(x2mk−1, x2nk
) ∈ N4

f,g(x2mk−1, x2nk
). Letting k →∞, utilizing

(4.5) and the obtained limits, we get

ψ(ε) ≤ ψ(ε)− ϕ(ε),

which is a contradiction if ε > 0.
This shows that {x2n} is a Cauchy sequence and hence {xn} is a

Cauchy sequence.
Since the space (X, d) is complete, there exists p ∈ X such that

limn→∞ xn = p. Then also x2n+1 = fx2n → p and x2n = gx2n−1 → p
(n→∞). Putting x = x2n and y = p in (4.1), we get ψ(d(fx2n, gp)) ≤
ψ(u)− ϕ(u), where

u ∈ {d(x2n, p), d(x2n, fx2n), d(p, gp), 1
2(d(x2n, gp) + d(p, fx2n))}.

So, in this case we have four possibilities:
1◦ ψ(d(fx2n, gp)) ≤ ψ(d(x2n, p))− ϕ(d(x2n, p));
2◦ ψ(d(fx2n, gp)) ≤ ψ(d(x2n, fx2n))− ϕ(d(x2n, fx2n));
3◦ ψ(d(fx2n, gp)) ≤ ψ(d(p, gp))− ϕ(d(p, gp));
4◦ ψ(d(fx2n, gp)) ≤ ψ(1

2(d(x2n, gp) + d(p, fx2n)))− ϕ(1
2(d(x2n, gp) +

d(p, fx2n))).
Passing to the limit when n → ∞ in these four relations, we obtain

one of the next three inequalities:

ψ(d(p, gp)) ≤ ψ(0)− ϕ(0), ψ(d(p, gp)) ≤ ψ(d(p, gp))− ϕ(d(p, gp)),

ψ(d(p, gp)) ≤ ψ(1
2d(p, gp)) + ϕ(1

2d(p, gp)) ≤ ψ(d(p, gp)) + ϕ(1
2d(p, gp)).
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In each of the cases it easily follows that gp = p.
Now, putting x = y = p in (4.1), one gets

ψ(d(fp, gp)) ≤ ψ(u)− ϕ(u),

where u ∈ {0, d(p, fp), 1
2d(p, fp)} and in each of the possible three cases

it easily follows that fp = p. Hence, p is a common fixed point of f
and g. �

Putting g = f in Theorem 4.1, one obtains

Corollary 4.2. Let (X, d) be a complete metric space and f : X → X
be such that for some ϕ ∈ Φ, ψ ∈ Ψ and for all x, y ∈ X there exists
u(x, y) ∈M4

f (x, y) such that

ψ(d(fx, fy)) ≤ ψ(u(x, y))− ϕ(u(x, y)).

Then f has a unique common fixed point.

Remark 4.3. If we use the contractivity condition in the form

ψ(d(fx, gy)) ≤ ψ(maxN4
f,g(x, y))− ϕ(u),

where u ∈ N4
f,g(x, y), instead of (4.1), then it may happen that common

fixed point of f and g is not unique. Indeed, take f = g = iX . Then
N4

f,g(x, y) = {0, d(x, y)}, so maxN4
f,g(x, y) = d(x, y) and when u = 0

the condition is fulfilled.

5. Weak conditions of Hardy-Rogers type

If (X, d) is a metric space and f : X → X a selfmap, then the following
distances are usually used in forming several contractive conditions:

d(x, y), d(x, fx), d(y, fy), d(x, fy), d(y, fx), d(fx, fy),

for distinct points x, y ∈ X. In Sections 1, 3 and 4 we have constructed
several M - and N -sets and used them to form weak contractive con-
ditions. In this section we consider a kind of convex combinations of
these distances (as is done in the so-called Hardy-Rogers contractive
conditions) and form the respective weak conditions.

For example, we can consider the expressions

Θ5
f (x, y) = Ad(x, y) +Bd(x, fx) + Cd(y, fy) +Dd(x, fy) + Ed(y, fx),

(5.1)

Θ4
f (x, y) = ad(x, y) + bd(x, fx) + cd(y, fy) + e[d(x, fy) + d(y, fx)],

(5.2)
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where 1◦ A > 0, B,C,D,E ≥ 0, A+B+C +D+E ≤ 1 (for expression
(5.1)), and 2◦ a > 0, b, c, e ≥ 0, a+ b+ c+ 2e ≤ 1 (for expression (5.2)).

In the recent paper [15], H.K. Nashine and I. Altun considered (in the
frame of ordered metric spaces) the weak contractive condition in the
form

ψ(d(fx, fy)) ≤ ψ(Θ4
f (x, y))− ϕ(Θ4

f (x, y)),

where ψ ∈ Ψ and ϕ ∈ Φ. In this section we use the respective (more gen-
eral) condition with the expression Θ5

f (x, y). For the sake of simplicity,
we stay in the frame of metric spaces without order.

Theorem 5.1. Let (X, d) be a complete metric space and f : X → X.
If there exist ψ ∈ Ψ and ϕ ∈ Φ such that for all x, y ∈ X,

(5.3) ψ(d(fx, fy)) ≤ ψ(Θ5
f (x, y))− ϕ(Θ5

f (x, y)),

holds, then f has a unique fixed point.

Proof. The given condition (5.3) and properties of functions ψ and ϕ
imply that

(5.4) d(fx, fy) ≤ Θ5
f (x, y)

for each x, y ∈ X. Starting with an arbitrary x0 ∈ X, construct the
Picard sequence by xn+1 = fxn. The condition (5.4) implies that

d(xn+1, xn+2) = d(fxn, fxn+1)

≤ Ad(xn, xn+1) +Bd(xn, xn+1) + Cd(xn+1, xn+2)

+Dd(xn, xn+2) + Ed(xn+1, xn+1)

≤ (A+B +D)d(xn, xn+1) + (C +D)d(xn+1, xn+2),

implying that

(1− C −D)d(xn+1, xn+2) ≤ (A+B +D)d(xn, xn+1),

and, similarly,

(1−B − E)d(xn+2, xn+1) ≤ (A+ C + E)d(xn+1, xn).

Adding up, one obtains that

d(xn+1, xn+2) ≤ λd(xn, xn+1),

where λ = 2A+B+C+D+E
2−B−C−D−E ≤ 1. It follows that {d(xn+1, xn)} is a nonin-

creasing sequence of nonnegative numbers, which tends to some r ≥ 0.
In order to prove that r = 0, put x = xn+1 and y = xn in (5.3) to obtain

(5.5) ψ(d(xn+2, xn+1)) ≤ ψ(Θ5
f (xn+1, xn))− ϕ(Θ5

f (xn+1, xn)),
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where

Θ5
f (xn+1, xn) = Ad(xn+1, xn) +Bd(xn+1, xn+2) + Cd(xn, xn+1)

+Dd(xn+1, xn+1) + Ed(xn, xn+2)

≤ (A+ C + E)d(xn, xn+1) + (B + E)d(xn+1, xn+2).

Similarly,

Θ5
f (xn, xn+1) ≤ (A+ C +D)d(xn, xn+1) + (B +D)d(xn+1, xn+2).

On the other hand, (5.4) implies that

Θ5
f (xn+1, xn) ≥ d(xn+1, xn+2).

In the case when D = E, passing to the limit when n → ∞, we obtain
that limn→∞Θ5

f (xn+1, xn) = r; the same conclusion is obtained ifD < E

(or D > E). Hence, passing to the (upper) limit in (5.5), we get that
ψ(r) ≤ ψ(r)− ϕ(r), implying that r = 0.

As in previous proofs, in order to obtain that {xn} is a Cauchy se-
quence, suppose that it is not the case and using Lemma 2.1 deduce that
there exist ε > 0 and two sequences {mk} and {nk} of positive integers
such that nk > mk > k and the sequences

d(x2mk
, x2nk

), d(x2mk
, x2nk+1), d(x2mk−1, x2nk

), d(x2mk−1, x2nk+1)

all tend to ε. Putting x = x2nk
and y = 22mk−1 in (5.3) gives

ψ(d(x2nk+1, x2mk
) = ψ(d(fx2nk

, fx2mk−1))

≤ ψ(Θ5
f (x2nk

, x2mk−1))− ϕ(Θ5
f (x2nk

, x2mk−1)).

Here

Θ5
f (x2nk

, x2mk−1) = Ad(x2nk
, x2mk−1) +Bd(x2nk

, x2nk+1)

+ Cd(x2mk−1, x2nk
) +Dd(x2nk

, x2mk
) + Ed(x2mk−1, x2nk+1)

→ Aε+B · 0 + c · 0 +Dε+ Eε = (A+D + E)ε,

when k → ∞. Since also d(x2nk+1, x2mk
) → ε when k → ∞, we obtain

that

ψ(ε) ≤ ψ((A+D+E)ε)−ϕ((A+D+E)ε) ≤ ψ(ε)−ϕ((A+D+E)ε),

implying that ε = 0 (because A > 0).
Thus, the sequence {xn} converges to some z in the complete metric

space X. In order to prove that fz = z, suppose the contrary and put
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x = xn and y = z in (5.4). It follows that

d(fxn, fz) ≤ Ad(xn, z) +Bd(xn, xn+1) + Cd(z, fz)

+Dd(xn, fz) + Ed(z, xn+1).

Passing to the limit when n→∞ gives that

d(z, fz) ≤ (C +D)d(z, fz) < (A+B + C +D + E)d(z, fz) ≤ d(z, fz).

A contradiction, since A > 0.
The proof that the fixed point of f is unique is standard. �

When two functions f, g : X → X are given, expressions

Θ5
f,g(x, y) = Ad(x, y) +Bd(x, fx) + Cd(y, gy) +Dd(x, gy) + Ed(y, fx),

Θ4
f,g(x, y) = ad(x, y) + bd(x, fx) + cd(y, gy) + e[d(x, gy) + d(y, fx)],

can be used, with the following assumptions on coefficients: 1◦ A > 0,
B,C,D,E ≥ 0, A+B+C+D+E ≤ 1, and (B = C or D = E); 2◦ a > 0,
b, c, e ≥ 0, a+b+c+2e ≤ 1. Again, the condition with Θ4

f,g(x, y) was used

by Nashine and Altun [15]. The proof of the following generalization of
their result is similar to that of Theorem 5.1, by using the procedure as
in [13].

Theorem 5.2. Let (X, d) be a complete metric space and f, g : X → X
be two maps. If there exist ψ ∈ Ψ and ϕ ∈ Φ such that for all x, y ∈ X,

(5.6) ψ(d(fx, gy)) ≤ ψ(Θ5
f,g(x, y))− ϕ(Θ5

f,g(x, y)),

holds, then f and g have a unique common fixed point.
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[7] Lj. B. Ćirić, A generalization of Banach’s contraction principle, Proc. Amer.
Math. Soc. 45 (1974) 267–273.

[8] K. M. Das and K. V. Naik, Common fixed-point theorems for commuting maps
on a metric space, Proc. Amer. Math. Soc. 77 (1979), no. 3, 369–373.

[9] B. Djafari Rouhani and S. Moradi, Common fixed point of multivalued general-
ized ϕ-weak contractive mappings, Fixed Point Theory Appl. (2010), Article ID
708984, 13 pp.
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