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GENERALIZED RINGS OF MEASURABLE AND

CONTINUOUS FUNCTIONS

A. AMINI, B. AMINI, E. MOMTAHAN∗ AND M. H. SHIRDAREH HAGHIGHI

Communicated by Omid Ali S. Karamzadeh

Abstract. We generalize, simultaneously, the ring of real-valued
continuous functions and the ring of real-valued measurable func-
tions.

1. Introduction

Here, by a ring we always mean a commutative ring with identity. A
ring R is called regular (in the sense of von Neumann) if for every a ∈ R,
there is b ∈ R such that a = aba. A ring R is called an ℵ0-self-injective
ring if every module homomorphism g : I −→ R can be extended to a
homomorphism ĝ : R −→ R, where I is any countably generated ideal
of R (see [10] for more details).

Let X be a non-empty set and RX be the collection of all real-valued
functions on X. Then, RX with the (pointwise) addition and multi-
plication is a reduced commutative ring. Now, suppose that A is a
non-empty family of subsets of X, and M(X,A) is the collection of all
real-valued functions f on X such that for any open subset U of R,
{x ∈ X | f(x) ∈ U} ∈ A. If A is a σ-algebra of subsets on X, then
M(X,A) is known as the set of all A-measurable real-valued functions
on X (see, for example, [7] and for more recent articles, [1, 11]). If f and
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g are A-measurable functions, then so are f + g and fg, i.e., M(X,A)
is a subring of RX whenever A is a σ-algebra. Now, if A is a topology
on X, then each member of M(X,A) is called a continuous function,
andM(X,A) is the ring of (real-valued) continuous functions on X and
is denoted by C(X), being under consideration for a long time (see [6]
as a classic book in this field, [2, 5] and [9] as some instances of a much
larger group of papers on this topic).

For a topological space X, by the family B of Borel subsets of X we
mean the smallest σ-algebra containing all open subsets of X. Any el-
ement of the ring M(X,B) is said to be a Borel measurable function.
The σ-algebra L of all Lebesgue measurable subsets of R is an extension
of the collection of all Borel subsets of R (see, for example, [12]). Pro-
ceeding as above, M(R,L) is called the set of all Lebesgue measurable
functions. We have the following strict hierarchy of subrings of RX when
X = R :

C(X) ⊂M(X,B) ⊂M(X,L) ⊂ RX .

It is well-known that, if A is a σ-algebra, then M(X,A), the ring
of all A-measurable functions, is a regular ring (see, for example, [7]).
In [1], Azadi et al. have also observed that, in this case, M(X,A) is
an ℵ0-self-injective ring and moreover, if A contains all singletons, then
M(X,A) has an essential socle (see [11] for a necessary and sufficient
condition under which socle is essential).

As already mentioned, if A is either a σ-algebra or a topology on X,
then M(X,A) is a subring of RX . This brings some general questions
to one’s attention: which subsets or subrings of RX can be written as
M(X,A), for some subset A of P (X) and on the other hand charac-
terizing subrings (or subsets) of the form M(X,A)? To be more spe-
cific, we may ask the following questions: Let S ⊂ RX . When does
S = M(X,A), for some A ⊆ P (X)? And if M(X,A) is a subring of
RX , what can we say about A? Here, we intend to give some light to
these questions and related topics.

2. Main results

Definition 2.1. Let X be a non-empty set and A ⊆ P (X). ByM(X,A),
we mean the set

{f : X −→ R | f−1(U) ∈ A for every open subset U of R}.

Note that for any A ⊆ P (X), if M(X,A) 6= ∅, then ∅, X ∈ A,
since if f ∈ M(X,A), then ∅ = f−1(∅) ∈ A and X = f−1(R) ∈ A.
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Moreover, if B ⊆ A ⊆ P (X), then M(X,B) ⊆ M(X,A). It is also
worth mentioning that R can be seen as the subring of RX when we
consider it as the ring of all constant functions. The next two results
provide an answer to our first question, that is, when a subset or a
subring of RX is in the form of M(X,A). But, before stating them, we
need some more notations. Let S ⊆ RX , and define Coz(S) = {Coz(f) :
f ∈ S}, where Coz(f) = X \ f−1({0}) and AS = {f−1(U) : f ∈
S, U is an open subset of R}. Moreover, let pos(S) = {f−1((0,+∞)) |
f ∈ S} and neg(S) = {f−1((−∞, 0)) | f ∈ S}.
Lemma 2.2. Suppose S ⊆ RX , and A ⊆ P (X). Then

(a) S ⊆ M(X,AS), and S ⊆ M(X,A) if and only if AS ⊆ A,and
hence AS is the smallest A such that S ⊆M(X,A).

(b) AS = Coz(S) if and only if for every f ∈ S and h ∈ C(R),
Coz(h ◦ f) ∈ Coz(S) if and only if M(X,AS) =M(X,Coz(S)).

(c) For every f ∈M(X,A) and h ∈ C(R), h ◦ f ∈M(X,A).

Proof. The verification of part (a) is immediate. For part (b), let AS =
Coz(S), f ∈ S and h ∈ C(R). Since (h ◦ f)−1(U) ∈ AS , for every
open subset U of R (and hence in Coz(S)) we observe that Coz(h ◦
f) = (h ◦ f)−1(R \ {0}) ∈ Coz(S). The proof of part (c) is almost
straightforward. �

Proposition 2.3. Suppose S ⊆ RX . Then, the followings are equiva-
lent:

(a) S =M(X,A), for some A ⊆ P (X).
(b) S =M(X,AS).
(c) S =M(X,Coz(S)).
(d) f ∈ S if and only if for every h ∈ C(R), Coz(h ◦ f) ∈ Coz(S).

Proof. (a)⇒(b). By Lemma 2.2 (a), AS ⊆ A, and hence M(X,AS) ⊆
M(X,A) = S. On the other hand, again by Lemma 2.2 (a), S ⊆
M(X,AS). This implies that S =M(X,AS).

(b)⇒(c). With regards to Lemma 2.2 (b), it is enough to show that
AS = Coz(S). Let f−1(U) ∈ AS , where f ∈ S and U is an open subset
in R. Define dU : R −→ R by dU (x) = d(x,R \ U), where d is the
distance function. It is clear that dU is a continuous function. Now, we
observe that U = d−1

U (R \ {0}), and hence

f−1(U) = f−1d−1
U (R \ {0}) = (dU ◦ f)−1(R \ {0}).

Since dU is continuous and f ∈ S, we have dU ◦ f ∈ S and this implies
that AS = Coz(S).
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(c)⇒(d). By Lemma 2.2 (c), the verification is immediate.
(d)⇒(a). By (d) and Lemma 2.2 (b), AS = Coz(S). Suppose that

f ∈ M(X,AS) and h ∈ C(R). Hence, h ◦ f ∈ M(X,AS), and so
Coz(h ◦ f) ∈ AS = Coz(S). Now, by (d), f ∈ S. �

Corollary 2.4. Let S =M(X,A) be a subset of RX . Then

AS = Coz(S) = pos(S) = neg(S).

Proof. In the proof of Proposition 2.3 part (b)⇒(c), we may consider
that U = d−1

U (R \ {0}) = d−1
U ((0,+∞)) = (−dU )−1((−∞, 0)). �

What comes in the sequel provides an answer to our second question,
characterizing subrings (or subsets) of RX in the formM(X,A). Hence
here we begin with a subset of P (X) and investigate the structure of
M(X,A). The words trace and functional trace in the next definitions
will make no confusion in the text.

Definition 2.5. Let f ∈ RX . The trace of f is defined by

Tf = {f−1(R \ {r}) : r ∈ f(X)}.

It is easily seen that for f ∈ RX , f is a constant function if and only
if Tf = {∅}.

Definition 2.6. Suppose that ∅ 6= B ⊆ A ⊆ P (X) and X /∈ B. Then, B
is said to be a functional trace in A whenever there exist a subset T ⊆ R
and a bijection φ : T −→ B such that

(i) for all r, s ∈ T with r 6= s, φ(r) ∪ φ(s) = X;
(ii)

⋂
r∈T φ(r) = ∅;

(iii) for every open set U ⊆ R, (
⋂

r∈T∩U φ(r))c ∈ A.

Theorem 2.7. Let DA be the set of all functional traces in A. Then,
the following is a surjection:

θ :M(X,A) −→ DA, θ(f) = Tf .

Proof. First we show that every Tf belongs to DA. Let T = Imf and
define φ : T −→ Tf by φ(r) = f−1(R \ {r}). We need to show that each
Tf satisfies the three conditions of Definition 2.6. The verification of the
first two conditions being evident, we only verify the third one. Suppose
that U is an open subset of R. Since f ∈M(X,A), we have

(
⋂

r∈T∩U
φ(r))c =

⋃
r∈T∩U

φ(r)c =
⋃

r∈T∩U
f−1({r}) = f−1(T ∩ U) = f−1(U),
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which belongs to A. Now, we show that θ is surjective. Let B ∈ DA.
Then there exist a subset T ⊆ R and a bijection φ : T −→ B satisfying
the conditions of Definition 2.6. For every x ∈ X, there exists a unique
r ∈ T such that x /∈ φ(r), by (i) and (ii). Now, define f : X −→ R by
f(x) = r. One can verify that f ∈M(X,A) and B = Tf by (iii). �

Corollary 2.8. For A ⊆ P (X), M(X,A) = ∅ if and only if DA = ∅.

The following example provides a different situation in whichM(X,A) =
R.

Example 2.9. (i) If A = {X, ∅}, then M(X,A) = R. Note that in this
case, A is both a (trivial) σ-algebra and a topology.

(ii) Let X = R and A = {(a, b) | a, b ∈ R ∪ {±∞}}. We claim
that M(R,A) = R. Let f ∈ M(R,A) and f(x) 6= f(y), for some
x, y ∈ R. Suppose that f(x) ∈ U and f(y) ∈ V , where U and V are two
disjoint open intervals in R. We have f−1(U ∪ V ) = f−1(U) ∪ f−1(V ).
The right hand side is a disjoint union of two open intervals which is
never an interval again. Hence, f must be a constant function, i.e.,
M(R,A) = R.

(iii) Let |X| > 2. Put A = {X, ∅} ∪ {{x} | x ∈ X}. Then,
M(X,A) = R. Here, A is neither a σ-algebra nor a topology. To see
that M(X,A) = R, it is enough to show that all members of M(X,A)
are constant functions. Suppose, on the contrary, there is a non-constant
function f ∈ M(X,A). So, there are x, y ∈ X such that f(x) < f(y).
Now,

f−1((−∞, f(y))) ∪ f−1((f(x),+∞)) = X,

but x ∈ f−1((−∞, f(y))), y /∈ f−1((−∞, f(y))), and f−1((−∞, f(y)))
belongs to A. Hence, we must have f−1((−∞, f(y))) = {x}. The same
argument shows that f−1((f(x),+∞)) = {y}. Now, since |X| > 2, we
have a contradiction. It is worth to mention that if X is infinite and
A = {all finite subsets of X} ∪ {X}, then M(X,A) = R. The proof is
the same. Again, in this case, A is neither a topology nor a σ-algebra.

(iv) In general, let |X| = ℵ, where ℵ is an infinite cardinal. Put

A = {B ⊆ X | B = X or |B| < ℵ}.
Then, M(X,A) = R. When ℵ > ℵ0, in spite of being closed under
countable unions, A is neither a σ-algebra nor a topology.

Corollary 2.10. For A ⊆ P (X), the followings are equivalent:

(a) M(X,A) 6= ∅.
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(b) X, ∅ ∈ A.
(c) R ⊆M(X,A).
(d) {∅} ∈ DA.

The next corollary gives a necessary and sufficient condition on A
under which M(X,A) = R.

Corollary 2.11. For A ⊆ P (X), M(X,A) = R if and only if DA =
{∅}.

The following proposition helps us to make some more useful exam-
ples.

Theorem 2.12. Let X be an infinite set and ℵ be a cardinal number.
Then, we have the following assertions.

(a) If S = {f ∈ RX : ∃F ( X, |F | ≤ ℵ, f |X\F is constant}, then

S =M(X,AS) and AS = {A ⊆ X : |A| ≤ ℵ or |X \A| ≤ ℵ}.
(b) If S = {f ∈ RX : ∃F ( X, |F | < ℵ, f |X\F is constant}, then

S =M(X,AS) and AS = {A ⊆ X : |A| < ℵ or |X \A| < ℵ}.
(c) If ℵ is an infinite cardinal number, then in the above two cases

the set S is a subring of RX .

Proof. (a): First we show that AS = {A ⊆ X : |A| ≤ ℵ or |X \A| ≤ ℵ}.
Let A ⊆ X and either |A| ≤ ℵ or |X \ A| ≤ ℵ. Suppose that f = χA,
the characteristic function of A. Since f−1((1

2 ,
3
2)) = A and f ∈ S, we

have A ∈ AS . Now, let f ∈ S and U be an open subset of R. There
exists a set F ( X such that |F | ≤ ℵ and f |X\F = r (the constant). If

r ∈ U , then X \ F ⊆ f−1(U). Hence, |X \ f−1(U)| ≤ |F | ≤ ℵ. If r /∈ U ,
then f−1(U) ⊆ F . Therefore, |f−1(U)| ≤ ℵ.

Now, we show that S = M(X,AS). That S ⊆ M(X,AS) is al-
ways true. Suppose that for a moment, ℵ is an infinite cardinal. Now,
let f ∈ M(X,AS). We show that f ∈ S. For every rational t ∈ Q,
either |f−1((−∞, t))| ≤ ℵ or |f−1([t,+∞))| ≤ ℵ. If for all t ∈ Q,
|f−1((−∞, t))| ≤ ℵ, then X =

⋃
t∈Q f

−1((−∞, t)) has cardinality less

than or equal to ℵ. Similarly, if for every t ∈ Q, |f−1([t,+∞))| ≤ ℵ,
then |X| ≤ ℵ. And in the two cases, f ∈ S. So, let |f−1((−∞, t1))| > ℵ
and |f−1([t2,+∞))| > ℵ, for some t1, t2 ∈ Q. Since |f−1((−∞, t2))| ≤
ℵ, t2 < t1. Put r = sup{t ∈ Q : |f−1((−∞, t))| ≤ ℵ}. Since
f−1((−∞, r)) =

⋃
t∈Q, t<r f

−1(−∞, t), we have |f−1((−∞, r))| ≤ ℵ.

Now, if t > r, then |f−1((−∞, t))| > ℵ and so |f−1([t,+∞))| ≤ ℵ. Since
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f−1((r,+∞)) =
⋃

t∈Q, t>r f
−1([t,+∞)), we have |f−1((r,+∞))| ≤ ℵ.

Hence, |f−1(R \ {r})| ≤ ℵ. Now, by setting F = f−1(R \ {r}), we
see that f ∈ S. For finite cardinals, the above proof works, with the
exception that the first two cases in the proof do not happen.

(b): If ℵ is a finite or an uncountable cardinal, then the above proof
works as well. For the case ℵ = ℵ0, we divide the proof in the following
two parts.

Part (∗): Let X be countable. Without loss of generality, we may
suppose that X = N, which in this case S is the subset of RN consisting
of all eventually constant sequences. As above, AS is equal to the set of
all subsets Y of N, where Y or N \ Y is finite. Now, we will show that
M(N,AS) = S. To see that M(N,AS) ⊆ S, let f ∈ M(N,AS). We
claim that im(f) is a finite subset of R; otherwise, f has a strictly mono-
tonic subsequence. Therefore, there are integers n1 < n2 < · · · in N such
that {f(n1), f(n2), . . . } is a strictly monotonic sequence. Now, we may
choose an open subset U of R, which contains all f(n1), f(n3), f(n5), . . .
but does not contain f(n2), f(n4), f(n6), · · · . Now, f−1(U) is not in AS .
Hence, im(f) must be finite, say, {x1, x2, . . . , xn}. But in this case, it
is easy to see that, exactly one of the f−1({xi}) is infinite, i.e., f is
eventually constant and f ∈ S. Hence, S =M(N,AS).

Part (∗, ∗): Let X be an uncountable set. Then,

S = {f : X −→ R | f is constant except on a finite subset of X}.
We show that S = M(X,AS) where AS = {Y ⊆ X | Y or X \
Y is finite}. Let f ∈ M(X,AS). We claim that the image of f is
countable. On the contrary, suppose that the image of f is uncount-
able. In this case, there is t ∈ R such that both (−∞, t) ∩ im(f) and
(t,+∞) ∩ im(f), are infinite. Hence, f−1((−∞, t)) and f−1((t,+∞))
are not in AS , giving a contradiction. This implies that the image
must be countable. Now, there exists a ∈ R such that f−1({a}) is un-
countable. Since f ∈ M(X,AS), we must have both f−1((−∞, a)) and
f−1((a,+∞)) being finite. So, f is everywhere equal to the constant a,
except on a finite set, i.e., f ∈ S.

(c): Let f, g ∈ S. There are subsets F and G of X such that |F |, |G| ≤
ℵ and f |X\F and g|X\G are constant. Since f + g and fg are both
constant on X \ (F ∪ G) and |F ∪ G| ≤ ℵ, f + g and fg belong to S.
The proof of the second part is the same. �

The examples of this article show that, apparently, no rules govern on
A forM(X,A) being a subring of RX . In Example 2.9, we observe that
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different kinds of subsets of P (X) generate the same subring of RX , that
is, R. These raise a natural question: if S is a subring of RX (containing
R), then does there exist A ⊆ P (X) such that S =M(X,A)? The next
example answers the question negatively.

Example 2.13. Let X = N. Then, we may consider RN as the collection
of all sequences in R. We show that RN has a subring which is not of
the form M(N,A). Let S be the set of all convergent sequences in R.
It is clear that S is a subring of RN. On the contrary, suppose that
S = M(N,A), for some A ⊆ P (N). Define f : N −→ R by f(n) = 1

n ,
for every n ∈ N. Then, f ∈ S. Let T ⊆ N. For each i ∈ T , suppose
that Wi is an open interval containing only 1

i (it does not contain 1
j ,

for j 6= i). Let V =
⋃

i∈T Wi. Hence, f−1(V ) = T . This implies that

T ∈ A. But this says that A = P (N), i.e., M(N,A) = RN, giving a
contradiction.

Although for a subring S of RX , M(X,AS) need not be a subring of
RX , but we may associate a subring of the form M(X,A) to S.

Definition 2.14. Let S be a subring of RX . Then, we put

S =
⋂
{M(X,A) | M(X,A) is a subring of RX containing S}.

We call S, the ring closure of S.

It is a useful fact that for a family {Ai}i∈I of subsets of P (X), we
always have M(X,

⋂
i∈I Ai) =

⋂
i∈IM(X,Ai). Based on this simple

fact, we see that ifM(X,A) is a subring of RX , then there always exists
B ⊆ P (X) which is minimal among those subsets C such thatM(X, C) =
M(X,A). To observe this, let Γ = {C ⊆ P (X) | M(X, C) =M(X,A)}.
Then, put B =

⋂
C∈Γ C. Since

⋂
C∈ΓM(X, C) = M(X,

⋂
C∈Γ C) =

M(X,B), we are done. By the aforementioned fact and Lemma 2.2-
(a), S is a subring of RX of the form M(X,AS), where

AS =
⋂
{A | M(X,A) is a subring of RX containing S}.

Since S ⊆M(X,P (X)) = RX , the collections in the above definition
are never empty. The ring closure of subrings of RX has the following
properties.

Proposition 2.15. Let S and T be subrings of RX . Then

(a) S = S.
(b) If S ⊆ T , then S ⊆ T and AS ⊆ AT .
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(c) If S =M(X,A), for some A ⊆ P (X), then S = S and AS ⊆ A.

A question arises immediately: let S be a subring of RX and S =
M(X,AS), the ring closure of S. If S or S is a regular ring, then is AS
necessarily a σ-algebra or even a topology?

The part (∗) of the proof of Theorem 2.12 and the next example show
that this is not the case. In the part (∗), we also observe that S = S
is a regular ring, but there is no topology or σ-algebra A such that
S =M(N,A); since, Otherwise, A must contain all singletons of N, and
hence A = P (N).

Example 2.16. Let X be a completely regular space which is not a
P -space (for example, let X = [0, 1]) and put S = C(X). Then, S =
C(X) =M(X, τ), where τ is the topology on the set X. By Proposition
2.15, S = S. If S = M(X,A), for some σ-algebra A ⊆ P (X), then S
has to be a regular ring. But, this is not possible, due to X not being a
P -space. For details, see [6].

Remark 2.17. In rings of continuous functions and rings of measur-
able functions, regularity (in the sense of von Neumann) and ℵ0-self-
injectivity always come together (see [5] and [1], respectively). However,
this is not the case in M(X,A), in general. In the part (∗, ∗) of the
proof of Theorem 2.12, we observe that S = M(X,AS) is a regular
ring, and AS is neither a σ-algebra nor a topology. However, S is not
an ℵ0-self-injective ring. For this, by [8, Theorem 2.2], it is enough
to show that there are two orthogonal disjoint countable subsets of S
such that they cannot be separated. Let Y1 = {x1, x2, . . . } ⊆ X and
Y2 = {y1, y2, . . . } ⊆ X such that Y1 ∩ Y2 = ∅. Define fi = χ{xi} and
gi = χ{yi}, for i = 1, 2, . . . . Now, {f1, f2, . . . } and {g1, g2, . . . } are two
orthogonal subsets of S. But, there is no element h in S, which can sep-
arate them from each other, for if hf2

i = fi and hgi = 0, then h(xi) = 1
and h(yi) = 0, for any i ∈ N, but such an h does not belong to S. It
is also worth to mention that if S = M(X,B), for some other subset
B of P (X), then B is never a σ-algebra, while otherwise S must be an
ℵ0-self-injective ring (see [1]).

Example 2.18. Let X be an uncountable set and

S = {f : X −→ R | f is constant except on a countable subset of X}.

We have AS = {Y ⊆ X | Y or X \ Y is countable}. By Theorem 2.12,
S =M(X,AS). It is notable that, here, AS is a σ-algebra and contains
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all singletons. Hence, M(X,AS) is a regular, ℵ0-self-injective ring with
an essential socle.

Proposition 2.19. Let A ⊆ P (X). If f ∈ M(X,A), then |f | and fn

are in M(X,A), for every n ∈ N. Moreover, for every positive real
number r, f r ∈M(X,A), provided that f(X) ⊆ [0,+∞).

Proof. The verification is immediate if we remind that for every h ∈
C(R) and f ∈M(X,A), we have h ◦ f ∈M(X,A). �

Corollary 2.20. Let A ⊆ P (X) such that M(X,A) 6= ∅. If M(X,A)
is closed under addition, then it is a subring of RX .

Proof. Note that fg = 1
2((f + g)2 − f2 − g2). �

Since topologies and σ-algebras are closed under finite unions and fi-
nite intersections, the first question which comes to mind is that if A
is closed under finite unions and finite intersections, then is M(X,A) a
ring? Or even if A is a ring of subsets of X, that is, when A is closed
under finite unions and complements (and hence closed under finite in-
tersections), then is M(X,A) necessarily a subring of RX? Although
under this condition, the constant functions 0, 1 ∈M(X,A), we do not
know whether M(X,A) is a ring. In general, if S =M(X,A) is a ring,
then A itself is not necessarily closed under finite unions and finite inter-
sections (see Example 2.9). However, in Theorem 2.21, we see a positive
statement about AS .

Theorem 2.21. Let S =M(X,A) be a subring of RX . Then
(a) AS is closed under finite unions and finite intersections.
(b) S is a regular ring if and only if AS is closed under complements.

Proof. (a) According to Proposition 2.19, if f ∈ S, then |f | ∈ S. Hence,
if f, g ∈ S, then max(f, g) and min(f, g) are in S, for

max(f, g) =
1

2
(f + g + |f − g|) and min(f, g) =

1

2
(f + g − |f − g|).

Now, let U, V ∈ AS . Then, by Corollary 2.4, U = f−1((0,+∞)) and
V = g−1((0,+∞)), for some f, g ∈ S. Hence, U ∩ V = h−1((0,+∞))
and U ∪ V = k−1((0,+∞)), where h = min(f, g) and k = max(f, g),
respectively. Therefore, both U ∩ V and U ∪ V belong to AS .

(b) First suppose that S is a regular ring and U ∈ AS . Then,
U = f−1((0,∞)), for some f ∈ S. Since X \ U = f−1((−∞, 0]) =
f−1((−∞, 0))∪f−1({0}), by part (a) it suffices to show that f−1({0}) ∈
AS . There exists g ∈ S with f = fgf . Let e = fg. Then, e2 = e ∈ S
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and f−1({0}) = e−1({0}) = e−1((−1, 1)) ∈ AS . Therefore, AS is closed
under complements.

Conversely, suppose that AS is closed under complements and f ∈ S.
Let U = f−1({0}). Then, U = X \ f−1(R \ {0}) ∈ AS . Define g : X −→
R by g(x) = 1/f(x), if x /∈ U , and g(x) = 0, if x ∈ U . Then, it is easy
to show that g ∈ S = M(X,AS) and f = fgf . Hence, S is a regular
ring. �

A pm-ring is a commutative ring in which every prime ideal is con-
tained in a unique maximal ideal. In the literature, pm-rings are also
called the Gelfand rings. This was first introduced by G. Demarco and
A. Orsatti in [4]. Examples of pm-rings are rings of continuous functions,
regular rings, local rings, zero-dimensional rings, etc. Also, Contessa [3]
showed that a commutative ring is a pm-ring if and only if for every
m ∈ R, there exist a, b ∈ R such that (1 − am)(1 − bm′) = 0, where
m′ = 1−m. Now, we show that if M(X,A) is a subring of RX , then it
is always a pm-ring.

Theorem 2.22. If M(X,A) is a ring, then it is a reduced pm-ring.

Proof. Let f ∈ M(X,A). We must find g, h ∈ M(X,A) such that
(1 − gf)(1 − hf ′) = 0, where f ′ = 1 − f . Let’s define φ : R −→ R as
follows: φ(x) = 1/x, if |x| > 1/3, and φ(x) = 9x, if |x| ≤ 1/3. Now, put
g := φ ◦ f and h := φ ◦ f ′. It is easy to verify that (1− gf)(1−hf ′) = 0.
That M(X,A) is a reduced ring comes from this fact that RX is a
reduced ring. Hence, the proof is complete. �

3. Some descriptive examples for X = R

Here, in addition to the previous examples, we present more examples
to show that the notion M(X,A) is not a trivial continuation of rings
of continuous or measurable functions. For a measurable subset U of R,
let m(U) be its Lebesgue measure. We refer the reader to the standard
text books in measure theory for the definition of the Lebesgue measure
and measurable functions.

Example 3.1. Let X = R and

A = {U ⊆ R | m(U) = 0} ∪ {R}.

Then, M(R,A) = R. Suppose f ∈ M(R,A). We can write R =⋃∞
i=1(ai, bi), where m((ai, bi)) = bi−ai = 1. Since R =

⋃∞
i=1 f

−1((ai, bi))
and a countable union of zero measure subsets of R has zero measure,
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f−1((ai, bi)) = R, for some i ∈ N. Then, again, we can write the inter-
val I1 = (ai, bi) as a finite union of open intervals with length 1

2 . There

must be an interval I2 = (c, d) ⊂ I1 such that m((c, d)) = d− c = 1
2 and

f−1((c, d)) = R. Continuing this process, we get a decreasing sequence
I1 ⊃ I2 ⊃ · · · of open intervals such that m(In) = 1

n and f−1(In) = R,

for each n ∈ N. Thus, f−1(
⋂∞

n=1 In) =
⋂∞

n=1 f
−1(In) = R, and hence⋂∞

n=1 In should be a singleton {a}. Therefore, f(x) = a, for all x ∈ R.

Example 3.2. Let X = R and

R = {f ∈ RR | f is almost everywhere constant},

where by an almost everywhere constant function, we mean a function
which is everywhere constant except on a set with zero measure. We
claim that R =M(R,A), where

A = {Y ⊆ R | Y or R \ Y has zero measure}.

Suppose that f ∈ R and f(x) = c everywhere except on a set with zero
measure. Let U be an open subset in R. Either c ∈ U or c /∈ U , which
implies that R \ f−1(U) or f−1(U) has zero measure. This shows that
R ⊆ M(R,A). Now, let f ∈ M(R,A). Then, as in Example 3.1, we
can find a decreasing sequence I1 ⊃ I2 ⊃ · · · of open intervals such that
m(In) = 1

n and m(R \ f−1(In)) = 0, for each n ∈ N. Since

R \ f−1(
∞⋂
n=1

In) = R \
∞⋂
n=1

f−1(In) =
∞⋃
n=1

(R \ f−1(In))

has measure zero,
⋂∞

n=1 In 6= ∅ and so should be a singleton {a}. There-
fore, f is almost everywhere constant a, i.e., f ∈ R. Note that A is
a σ-algebra which is not a topology. Therefore, M(R,A) is an ℵ0-self-
injective regular ring with essential socle.

Example 3.3. Let X = R and R be the set of all measurable functions
f : R −→ R such that f is constant everywhere except on a set with
finite measure. We show that R =M(R,A), where

A = {Y ⊆ R | Y or R \ Y has finite measure}.

It is not difficult to observe that R ⊆M(R,A). Now, let f ∈M(R,A).
It is clear that f is a measurable function. For every x ∈ R, either
f−1((−∞, x)) or f−1((x,+∞)) has finite measure. Without loss of gen-
erality, we may suppose that f−1((−∞, x)) has finite measure for some
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x ∈ R. We put

α = sup{x | f−1((−∞, x)) has finite measure}.
We claim that f−1((−∞, α)) has finite measure. Otherwise, there is
x1 < α such that m(f−1((−∞, x1))) > 1 and then we can chose x2 such
that x1 < x2 < α and m(f−1((−∞, x2))) > 1+m(f−1((−∞, x1])). Now,
by induction we will have an increasing sequence x1 < x2 < x3 < · · · < α
such that

m(f−1((−∞, xn+1))) > 1 + m(f−1((−∞, xn])).

In particular, m(f−1((xn, xn+1))) > 1. Now, consider the open subsets

W1 =

∞⋃
n=1

(x2n−1, x2n) and W2 =

∞⋃
n=1

(x2n, x2n+1).

Then, W1∩W2 = ∅ and the inverse images of both of them have infinite
measure, which is a contradiction. Therefore, f−1((−∞, α)) has finite
measure. In particular, α 6= +∞. By the definition of α, for each x > α,
f−1((−∞, x)) has infinite measure, and hence f−1((x,+∞)) has finite
measure. Now, the same line of proof shows that f−1((α,+∞)) has finite
measure as well. So, f(x) = α, except on a set of finite measure.

Notice that A is neither a σ-algebra nor a topology; however,M(R,A)
is a regular ring which is not ℵ0-self-injective. For this, it is enough to
show that there are two orthogonal disjoint countable subsets of R such
that they cannot be separated. Define fi = χ[i−1,i) and gi = χ[−i,−i+1),
for i = 1, 2, . . . . Now, {f1, f2, . . . } and {g1, g2, . . . } are two orthogonal
subsets of R. But, there is no element h in R, which can separate them
from each other, for if hf2

i = fi and hgi = 0, then h(x) = 1, for x ≥ 0,
and h(x) = 0, for x < 0, but such an h does not belong to R.

Example 3.4. Let R be the set of all functions f : R −→ R such that
for some c ∈ R, f−1({c}) contains an open dense subset of R. It is easy
to see that R is a subring of RR. We show that R =M(R,B), where

B = {Y ⊆ R | Y or R \ Y contains an open dense subset of R}.
The implication R ⊆M(R,B) is straightforward. Now, let f ∈M(R,B).
For every x ∈ R, either f−1((−∞, x)) or f−1((x,+∞)) is contained in
a closed nowhere dense subset of R. Without loss of generality, we may
suppose that, for some x ∈ R, f−1((−∞, x)) is contained in a closed
nowhere dense subset of R. Let α be the supremum of the following set

{x | f−1((−∞, x)) is contained in a closed nowhere dense subset of R}.
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We have f−1((−∞, α)) =
⋃∞

n=1 f
−1((−∞, xn)), where {xn} is an in-

creasing sequence converging to α. Thus, f−1((−∞, α)) is a nowhere
dense subset of R and hence f−1((−∞, α)) is contained in a closed
nowhere dense subset of R. In particular, α 6= +∞. By the defini-
tion of α, for each x > α, f−1((−∞, x)) contains an open dense subset
of R. Hence, f−1((x,+∞)) is contained in a closed nowhere dense sub-
set of R. Now, the same proof shows that f−1((α,+∞)) is contained
in a closed nowhere dense subset of R as well. So, f−1({α}) contains
an open dense subset of R, and hence f ∈ R. Note that B is neither a
σ-algebra nor a topology, but M(R,B) is a regular ring.

Observe that if A = {Y ⊆ R | Y or R\Y is an open dense subset of R},
then M(R,A) is a subset of RX which is not a ring. Let K ⊆ R be the
Cantor set and f = χK and g = χR\{0}. Since K,R \ {0} ∈ A, we have
f, g ∈ M(R,A). But, fg = χK\{0} /∈ M(R,A), and hence M(R,A) is

not a subring of RX .

4. A remark

If in the definition ofM(X,A), we replace open subsets of R by open
intervals, then we will have the following subset of RX :

M′(X,A) = {f : X → R | f−1(U) ∈ A for every open interval U in R}.
Perhaps the reader asks himself/herself: What is the relation be-

tween M(X,A) and M′(X,A)? In spite of the fact that M(X,A) ⊆
M′(X,A), as the following example shows, they behave differently. But,
when A is a σ-algebra or a topology, then they are equal. Recall that
in Theorem 2.12-(∗), if AF = {Y ⊆ N | Y or N \ Y is finite}, then
M(N,AF ) is equal to the ring of all eventually constant sequences, while
this is not the case for M′(N,AF ).

Example 4.1. Let X = N. We show that RN has a subring which
is not of the form M′(N,A). Let R be the set of all eventually con-
stant sequences. It is clear that R is a subring of RN. Suppose that
R ⊆M′(N,A), for some A ⊆ P (N). As in Theorem 2.12(∗), we see that
the minimal (possible) choice for a subset A for which R ⊆M′(N,A) is
AF = {Y ⊆ N | Y or N \ Y is finite}. But, we observe that M′(N,AF )
contains all convergent sequences. Let f = (an) be a convergent se-
quence and lim an = a. Now, let U be an open interval in R. Then,
either a ∈ U or a /∈ U . Hence, N\f−1(U) or f−1(U) is finite. Therefore,
f ∈ M′(N,AF ). This implies that R is a proper subset of M′(N,AF ).
It is also worth to mention that M′(N,AF ) itself is not a ring. For, if
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bn = n and cn = (−1)n

n , then g = (bn) and h = (cn) are in M′(N,AF ),
but gh = (bncn) = ((−1)n) does not belong to M′(N,AF ). Therefore,
we have the following hierarchy:

R =M(N,AF ) ⊂ the set of all convergent sequences ⊂M′(N,AF ).
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