GENERALIZED RINGS OF MEASURABLE AND CONTINUOUS FUNCTIONS

A. AMINI, B. AMINI, E. MOMTAHAN* AND M. H. SHIRDAREH HAGHIGHI

Communicated by Omid Ali S. Karamzadeh

ABSTRACT. We generalize, simultaneously, the ring of real-valued continuous functions and the ring of real-valued measurable functions.

1. Introduction

Here, by a ring we always mean a commutative ring with identity. A ring R is called regular (in the sense of von Neumann) if for every $a \in R$, there is $b \in R$ such that a = aba. A ring R is called an \aleph_0 -self-injective ring if every module homomorphism $g: I \longrightarrow R$ can be extended to a homomorphism $\hat{g}: R \longrightarrow R$, where I is any countably generated ideal of R (see [10] for more details).

Let X be a non-empty set and \mathbb{R}^X be the collection of all real-valued functions on X. Then, \mathbb{R}^X with the (pointwise) addition and multiplication is a reduced commutative ring. Now, suppose that \mathcal{A} is a non-empty family of subsets of X, and $\mathcal{M}(X,\mathcal{A})$ is the collection of all real-valued functions f on X such that for any open subset U of \mathbb{R} , $\{x \in X \mid f(x) \in U\} \in \mathcal{A}$. If \mathcal{A} is a σ -algebra of subsets on X, then $\mathcal{M}(X,\mathcal{A})$ is known as the set of all \mathcal{A} -measurable real-valued functions on X (see, for example, [7] and for more recent articles, [1, 11]). If f and

MSC(2010): Primary: 54C40; Secondary: 13A99.

Keywords: Rings of continuous functions, rings of measurable functions, regular rings, \aleph_0 -self-injective rings.

Received: 10 July 2010, Accepted: 5 February 2011.

^{*}Corresponding author

[©] 2013 Iranian Mathematical Society.

g are \mathcal{A} -measurable functions, then so are f + g and fg, i.e., $\mathcal{M}(X, \mathcal{A})$ is a subring of \mathbb{R}^X whenever \mathcal{A} is a σ -algebra. Now, if \mathcal{A} is a topology on X, then each member of $\mathcal{M}(X, \mathcal{A})$ is called a continuous function, and $\mathcal{M}(X, \mathcal{A})$ is the ring of (real-valued) continuous functions on X and is denoted by C(X), being under consideration for a long time (see [6] as a classic book in this field, [2, 5] and [9] as some instances of a much larger group of papers on this topic).

For a topological space X, by the family \mathcal{B} of Borel subsets of X we mean the smallest σ -algebra containing all open subsets of X. Any element of the ring $\mathcal{M}(X,\mathcal{B})$ is said to be a Borel measurable function. The σ -algebra \mathcal{L} of all Lebesgue measurable subsets of \mathbb{R} is an extension of the collection of all Borel subsets of \mathbb{R} (see, for example, [12]). Proceeding as above, $\mathcal{M}(\mathbb{R},\mathcal{L})$ is called the set of all Lebesgue measurable functions. We have the following strict hierarchy of subrings of \mathbb{R}^X when $X = \mathbb{R}$:

$$C(X) \subset \mathcal{M}(X,\mathcal{B}) \subset \mathcal{M}(X,\mathcal{L}) \subset \mathbb{R}^X$$
.

It is well-known that, if \mathcal{A} is a σ -algebra, then $\mathcal{M}(X, \mathcal{A})$, the ring of all \mathcal{A} -measurable functions, is a regular ring (see, for example, [7]). In [1], Azadi et al. have also observed that, in this case, $\mathcal{M}(X, \mathcal{A})$ is an \aleph_0 -self-injective ring and moreover, if \mathcal{A} contains all singletons, then $\mathcal{M}(X, \mathcal{A})$ has an essential socle (see [11] for a necessary and sufficient condition under which socle is essential).

As already mentioned, if \mathcal{A} is either a σ -algebra or a topology on X, then $\mathcal{M}(X,\mathcal{A})$ is a subring of \mathbb{R}^X . This brings some general questions to one's attention: which subsets or subrings of \mathbb{R}^X can be written as $\mathcal{M}(X,\mathcal{A})$, for some subset \mathcal{A} of P(X) and on the other hand characterizing subrings (or subsets) of the form $\mathcal{M}(X,\mathcal{A})$? To be more specific, we may ask the following questions: Let $S \subset \mathbb{R}^X$. When does $S = \mathcal{M}(X,\mathcal{A})$, for some $\mathcal{A} \subseteq P(X)$? And if $\mathcal{M}(X,\mathcal{A})$ is a subring of \mathbb{R}^X , what can we say about \mathcal{A} ? Here, we intend to give some light to these questions and related topics.

2. Main results

Definition 2.1. Let X be a non-empty set and $A \subseteq P(X)$. By $\mathcal{M}(X, A)$, we mean the set

$$\{f: X \longrightarrow \mathbb{R} \mid f^{-1}(U) \in \mathcal{A} \text{ for every open subset } U \text{ of } \mathbb{R}\}.$$

Note that for any $\mathcal{A} \subseteq P(X)$, if $\mathcal{M}(X,\mathcal{A}) \neq \emptyset$, then $\emptyset, X \in \mathcal{A}$, since if $f \in \mathcal{M}(X,\mathcal{A})$, then $\emptyset = f^{-1}(\emptyset) \in \mathcal{A}$ and $X = f^{-1}(\mathbb{R}) \in \mathcal{A}$.

Moreover, if $\mathcal{B} \subseteq \mathcal{A} \subseteq P(X)$, then $\mathcal{M}(X,\mathcal{B}) \subseteq \mathcal{M}(X,\mathcal{A})$. It is also worth mentioning that \mathbb{R} can be seen as the subring of \mathbb{R}^X when we consider it as the ring of all constant functions. The next two results provide an answer to our first question, that is, when a subset or a subring of \mathbb{R}^X is in the form of $\mathcal{M}(X,\mathcal{A})$. But, before stating them, we need some more notations. Let $S \subseteq \mathbb{R}^X$, and define $\operatorname{Coz}(S) = \{\operatorname{Coz}(f) : f \in S\}$, where $\operatorname{Coz}(f) = X \setminus f^{-1}(\{0\})$ and $A_S = \{f^{-1}(U) : f \in S\}$, U is an open subset of \mathbb{R} . Moreover, let $\operatorname{pos}(S) = \{f^{-1}((0, +\infty)) \mid f \in S\}$ and $\operatorname{neg}(S) = \{f^{-1}((-\infty, 0)) \mid f \in S\}$.

Lemma 2.2. Suppose $S \subseteq \mathbb{R}^X$, and $A \subseteq P(X)$. Then

- (a) $S \subseteq \mathcal{M}(X, \mathcal{A}_S)$, and $S \subseteq \mathcal{M}(X, \mathcal{A})$ if and only if $\mathcal{A}_S \subseteq \mathcal{A}$, and hence \mathcal{A}_S is the smallest \mathcal{A} such that $S \subseteq \mathcal{M}(X, \mathcal{A})$.
- (b) $A_S = \text{Coz}(S)$ if and only if for every $f \in S$ and $h \in C(\mathbb{R})$, $\text{Coz}(h \circ f) \in \text{Coz}(S)$ if and only if $\mathcal{M}(X, A_S) = \mathcal{M}(X, \text{Coz}(S))$.
- (c) For every $f \in \mathcal{M}(X, A)$ and $h \in C(\mathbb{R})$, $h \circ f \in \mathcal{M}(X, A)$.

Proof. The verification of part (a) is immediate. For part (b), let $\mathcal{A}_S = \operatorname{Coz}(S)$, $f \in S$ and $h \in C(\mathbb{R})$. Since $(h \circ f)^{-1}(U) \in \mathcal{A}_S$, for every open subset U of \mathbb{R} (and hence in $\operatorname{Coz}(S)$) we observe that $\operatorname{Coz}(h \circ f) = (h \circ f)^{-1}(\mathbb{R} \setminus \{0\}) \in \operatorname{Coz}(S)$. The proof of part (c) is almost straightforward.

Proposition 2.3. Suppose $S \subseteq \mathbb{R}^X$. Then, the followings are equivalent:

- (a) $S = \mathcal{M}(X, \mathcal{A})$, for some $\mathcal{A} \subseteq P(X)$.
- (b) $S = \mathcal{M}(X, \mathcal{A}_S)$.
- (c) $S = \mathcal{M}(X, \text{Coz}(S))$.
- (d) $f \in S$ if and only if for every $h \in C(\mathbb{R})$, $Coz(h \circ f) \in Coz(S)$.

Proof. (a) \Rightarrow (b). By Lemma 2.2 (a), $\mathcal{A}_S \subseteq \mathcal{A}$, and hence $\mathcal{M}(X, \mathcal{A}_S) \subseteq \mathcal{M}(X, \mathcal{A}) = S$. On the other hand, again by Lemma 2.2 (a), $S \subseteq \mathcal{M}(X, \mathcal{A}_S)$. This implies that $S = \mathcal{M}(X, \mathcal{A}_S)$.

(b) \Rightarrow (c). With regards to Lemma 2.2 (b), it is enough to show that $\mathcal{A}_S = \operatorname{Coz}(S)$. Let $f^{-1}(U) \in \mathcal{A}_S$, where $f \in S$ and U is an open subset in \mathbb{R} . Define $d_U : \mathbb{R} \longrightarrow \mathbb{R}$ by $d_U(x) = d(x, \mathbb{R} \setminus U)$, where d is the distance function. It is clear that d_U is a continuous function. Now, we observe that $U = d_U^{-1}(\mathbb{R} \setminus \{0\})$, and hence

$$f^{-1}(U) = f^{-1}d_U^{-1}(\mathbb{R} \setminus \{0\}) = (d_U \circ f)^{-1}(\mathbb{R} \setminus \{0\}).$$

Since d_U is continuous and $f \in S$, we have $d_U \circ f \in S$ and this implies that $\mathcal{A}_S = \text{Coz}(S)$.

 $(c)\Rightarrow(d)$. By Lemma 2.2 (c), the verification is immediate.

 $(d)\Rightarrow(a)$. By (d) and Lemma 2.2 (b), $\mathcal{A}_S = \operatorname{Coz}(S)$. Suppose that $f \in \mathcal{M}(X, \mathcal{A}_S)$ and $h \in C(\mathbb{R})$. Hence, $h \circ f \in \mathcal{M}(X, \mathcal{A}_S)$, and so $\operatorname{Coz}(h \circ f) \in \mathcal{A}_S = \operatorname{Coz}(S)$. Now, by $(d), f \in S$.

Corollary 2.4. Let $S = \mathcal{M}(X, A)$ be a subset of \mathbb{R}^X . Then

$$A_S = \text{Coz}(S) = \text{pos}(S) = \text{neg}(S).$$

Proof. In the proof of Proposition 2.3 part (b) \Rightarrow (c), we may consider that $U = d_U^{-1}(\mathbb{R} \setminus \{0\}) = d_U^{-1}((0, +\infty)) = (-d_U)^{-1}((-\infty, 0))$.

What comes in the sequel provides an answer to our second question, characterizing subrings (or subsets) of \mathbb{R}^X in the form $\mathcal{M}(X, \mathcal{A})$. Hence here we begin with a subset of P(X) and investigate the structure of $\mathcal{M}(X, \mathcal{A})$. The words trace and functional trace in the next definitions will make no confusion in the text.

Definition 2.5. Let $f \in \mathbb{R}^X$. The trace of f is defined by

$$\mathcal{T}_f = \{ f^{-1}(\mathbb{R} \setminus \{r\}) : r \in f(X) \}.$$

It is easily seen that for $f \in \mathbb{R}^X$, f is a constant function if and only if $\mathcal{T}_f = \{\emptyset\}$.

Definition 2.6. Suppose that $\emptyset \neq \mathcal{B} \subseteq \mathcal{A} \subseteq P(X)$ and $X \notin \mathcal{B}$. Then, \mathcal{B} is said to be a functional trace in \mathcal{A} whenever there exist a subset $T \subseteq \mathbb{R}$ and a bijection $\phi: T \longrightarrow \mathcal{B}$ such that

- (i) for all $r, s \in T$ with $r \neq s$, $\phi(r) \cup \phi(s) = X$;
- (ii) $\bigcap_{r \in T} \phi(r) = \emptyset$;
- (iii) for every open set $U \subseteq \mathbb{R}$, $(\bigcap_{r \in T \cap U} \phi(r))^c \in \mathcal{A}$.

Theorem 2.7. Let $\mathbb{D}_{\mathcal{A}}$ be the set of all functional traces in \mathcal{A} . Then, the following is a surjection:

$$\theta: \mathcal{M}(X, \mathcal{A}) \longrightarrow \mathbb{D}_{\mathcal{A}}, \quad \theta(f) = \mathcal{T}_f.$$

Proof. First we show that every \mathcal{T}_f belongs to $\mathbb{D}_{\mathcal{A}}$. Let $T = \operatorname{Im} f$ and define $\phi: T \longrightarrow \mathcal{T}_f$ by $\phi(r) = f^{-1}(\mathbb{R} \setminus \{r\})$. We need to show that each \mathcal{T}_f satisfies the three conditions of Definition 2.6. The verification of the first two conditions being evident, we only verify the third one. Suppose that U is an open subset of \mathbb{R} . Since $f \in \mathcal{M}(X, \mathcal{A})$, we have

$$(\bigcap_{r \in T \cap U} \phi(r))^c = \bigcup_{r \in T \cap U} \phi(r)^c = \bigcup_{r \in T \cap U} f^{-1}(\{r\}) = f^{-1}(T \cap U) = f^{-1}(U),$$

which belongs to \mathcal{A} . Now, we show that θ is surjective. Let $\mathcal{B} \in \mathbb{D}_{\mathcal{A}}$. Then there exist a subset $T \subseteq \mathbb{R}$ and a bijection $\phi : T \longrightarrow \mathcal{B}$ satisfying the conditions of Definition 2.6. For every $x \in X$, there exists a unique $r \in T$ such that $x \notin \phi(r)$, by (i) and (ii). Now, define $f : X \longrightarrow \mathbb{R}$ by f(x) = r. One can verify that $f \in \mathcal{M}(X, \mathcal{A})$ and $\mathcal{B} = \mathcal{T}_f$ by (iii). \square

Corollary 2.8. For $A \subseteq P(X)$, $\mathcal{M}(X, A) = \emptyset$ if and only if $\mathbb{D}_A = \emptyset$.

The following example provides a different situation in which $\mathcal{M}(X, \mathcal{A}) = \mathbb{R}$.

Example 2.9. (i) If $A = \{X, \emptyset\}$, then $\mathcal{M}(X, A) = \mathbb{R}$. Note that in this case, A is both a (trivial) σ -algebra and a topology.

- (ii) Let $X = \mathbb{R}$ and $A = \{(a,b) \mid a,b \in \mathbb{R} \cup \{\pm \infty\}\}$. We claim that $\mathcal{M}(\mathbb{R},A) = \mathbb{R}$. Let $f \in \mathcal{M}(\mathbb{R},A)$ and $f(x) \neq f(y)$, for some $x,y \in \mathbb{R}$. Suppose that $f(x) \in U$ and $f(y) \in V$, where U and V are two disjoint open intervals in \mathbb{R} . We have $f^{-1}(U \cup V) = f^{-1}(U) \cup f^{-1}(V)$. The right hand side is a disjoint union of two open intervals which is never an interval again. Hence, f must be a constant function, i.e., $\mathcal{M}(\mathbb{R},A) = \mathbb{R}$.
- (iii) Let |X| > 2. Put $A = \{X,\emptyset\} \cup \{\{x\} \mid x \in X\}$. Then, $\mathcal{M}(X,\mathcal{A}) = \mathbb{R}$. Here, \mathcal{A} is neither a σ -algebra nor a topology. To see that $\mathcal{M}(X,\mathcal{A}) = \mathbb{R}$, it is enough to show that all members of $\mathcal{M}(X,\mathcal{A})$ are constant functions. Suppose, on the contrary, there is a non-constant function $f \in \mathcal{M}(X,\mathcal{A})$. So, there are $x,y \in X$ such that f(x) < f(y). Now,

$$f^{-1}((-\infty, f(y))) \cup f^{-1}((f(x), +\infty)) = X,$$

but $x \in f^{-1}((-\infty, f(y)))$, $y \notin f^{-1}((-\infty, f(y)))$, and $f^{-1}((-\infty, f(y)))$ belongs to A. Hence, we must have $f^{-1}((-\infty, f(y))) = \{x\}$. The same argument shows that $f^{-1}((f(x), +\infty)) = \{y\}$. Now, since |X| > 2, we have a contradiction. It is worth to mention that if X is infinite and $A = \{all \text{ finite subsets of } X\} \cup \{X\}$, then $\mathcal{M}(X, A) = \mathbb{R}$. The proof is the same. Again, in this case, A is neither a topology nor a σ -algebra.

(iv) In general, let $|X| = \aleph$, where \aleph is an infinite cardinal. Put

$$\mathcal{A} = \{ B \subseteq X \mid B = X \text{ or } |B| < \aleph \}.$$

Then, $\mathcal{M}(X, \mathcal{A}) = \mathbb{R}$. When $\aleph > \aleph_0$, in spite of being closed under countable unions, \mathcal{A} is neither a σ -algebra nor a topology.

Corollary 2.10. For $A \subseteq P(X)$, the followings are equivalent:

(a)
$$\mathcal{M}(X,\mathcal{A}) \neq \emptyset$$
.

- (b) $X, \emptyset \in \mathcal{A}$.
- (c) $\mathbb{R} \subseteq \mathcal{M}(X, \mathcal{A})$.
- (d) $\{\emptyset\} \in \mathbb{D}_{\mathcal{A}}$.

The next corollary gives a necessary and sufficient condition on \mathcal{A} under which $\mathcal{M}(X,\mathcal{A}) = \mathbb{R}$.

Corollary 2.11. For $A \subseteq P(X)$, $\mathcal{M}(X, A) = \mathbb{R}$ if and only if $\mathbb{D}_A = \{\emptyset\}$.

The following proposition helps us to make some more useful examples.

Theorem 2.12. Let X be an infinite set and \aleph be a cardinal number. Then, we have the following assertions.

- (a) If $S = \{ f \in \mathbb{R}^X : \exists F \subsetneq X, |F| \leq \aleph, f|_{X \setminus F} \text{ is constant} \}$, then $S = \mathcal{M}(X, \mathcal{A}_S) \text{ and } \mathcal{A}_S = \{ A \subseteq X : |A| \leq \aleph \text{ or } |X \setminus A| \leq \aleph \}.$
- (b) If $S = \{ f \in \mathbb{R}^X : \exists F \subsetneq X, |F| < \aleph, f|_{X \setminus F} \text{ is constant} \}$, then $S = \mathcal{M}(X, \mathcal{A}_S) \text{ and } \mathcal{A}_S = \{ A \subseteq X : |A| < \aleph \text{ or } |X \setminus A| < \aleph \}.$
- (c) If \aleph is an infinite cardinal number, then in the above two cases the set S is a subring of \mathbb{R}^X .

Proof. (a): First we show that $A_S = \{A \subseteq X : |A| \le \aleph \text{ or } |X \setminus A| \le \aleph\}$. Let $A \subseteq X$ and either $|A| \le \aleph$ or $|X \setminus A| \le \aleph$. Suppose that $f = \chi_A$, the characteristic function of A. Since $f^{-1}((\frac{1}{2}, \frac{3}{2})) = A$ and $f \in S$, we have $A \in A_S$. Now, let $f \in S$ and U be an open subset of \mathbb{R} . There exists a set $F \subsetneq X$ such that $|F| \le \aleph$ and $f|_{X \setminus F} = r$ (the constant). If $r \in U$, then $X \setminus F \subseteq f^{-1}(U)$. Hence, $|X \setminus f^{-1}(U)| \le |F| \le \aleph$. If $r \notin U$, then $f^{-1}(U) \subseteq F$. Therefore, $|f^{-1}(U)| \le \aleph$.

Now, we show that $S = \mathcal{M}(X, \mathcal{A}_S)$. That $S \subseteq \mathcal{M}(X, \mathcal{A}_S)$ is always true. Suppose that for a moment, \aleph is an infinite cardinal. Now, let $f \in \mathcal{M}(X, \mathcal{A}_S)$. We show that $f \in S$. For every rational $t \in \mathbb{Q}$, either $|f^{-1}((-\infty,t))| \leq \aleph$ or $|f^{-1}([t,+\infty))| \leq \aleph$. If for all $t \in \mathbb{Q}$, $|f^{-1}((-\infty,t))| \leq \aleph$, then $X = \bigcup_{t \in \mathbb{Q}} f^{-1}((-\infty,t))$ has cardinality less than or equal to \aleph . Similarly, if for every $t \in \mathbb{Q}$, $|f^{-1}([t,+\infty))| \leq \aleph$, then $|X| \leq \aleph$. And in the two cases, $f \in S$. So, let $|f^{-1}((-\infty,t_1))| > \aleph$ and $|f^{-1}([t_2,+\infty))| > \aleph$, for some $t_1,t_2 \in \mathbb{Q}$. Since $|f^{-1}((-\infty,t_2))| \leq \aleph$, $t_2 < t_1$. Put $t = \sup\{t \in \mathbb{Q} : |f^{-1}((-\infty,t))| \leq \aleph\}$. Since $t = t_1$. Now, if $t > t_2$, then $t = t_1$ is and so $t = t_2$. Now, if $t > t_3$, then $t = t_4$ is and so $t = t_4$. Since

 $f^{-1}((r,+\infty)) = \bigcup_{t \in \mathbb{Q}, \ t>r} f^{-1}([t,+\infty))$, we have $|f^{-1}((r,+\infty))| \leq \aleph$. Hence, $|f^{-1}(\mathbb{R} \setminus \{r\})| \leq \aleph$. Now, by setting $F = f^{-1}(\mathbb{R} \setminus \{r\})$, we see that $f \in S$. For finite cardinals, the above proof works, with the exception that the first two cases in the proof do not happen.

(b): If \aleph is a finite or an uncountable cardinal, then the above proof works as well. For the case $\aleph = \aleph_0$, we divide the proof in the following two parts.

Part (*): Let X be countable. Without loss of generality, we may suppose that $X = \mathbb{N}$, which in this case S is the subset of $\mathbb{R}^{\mathbb{N}}$ consisting of all eventually constant sequences. As above, \mathcal{A}_S is equal to the set of all subsets Y of \mathbb{N} , where Y or $\mathbb{N} \setminus Y$ is finite. Now, we will show that $\mathcal{M}(\mathbb{N}, \mathcal{A}_S) = S$. To see that $\mathcal{M}(\mathbb{N}, \mathcal{A}_S) \subseteq S$, let $f \in \mathcal{M}(\mathbb{N}, \mathcal{A}_S)$. We claim that $\operatorname{im}(f)$ is a finite subset of \mathbb{R} ; otherwise, f has a strictly monotonic subsequence. Therefore, there are integers $n_1 < n_2 < \cdots$ in \mathbb{N} such that $\{f(n_1), f(n_2), \ldots\}$ is a strictly monotonic sequence. Now, we may choose an open subset U of \mathbb{R} , which contains all $f(n_1), f(n_3), f(n_5), \ldots$ but does not contain $f(n_2), f(n_4), f(n_6), \cdots$. Now, $f^{-1}(U)$ is not in \mathcal{A}_S . Hence, $\operatorname{im}(f)$ must be finite, say, $\{x_1, x_2, \ldots, x_n\}$. But in this case, it is easy to see that, exactly one of the $f^{-1}(\{x_i\})$ is infinite, i.e., f is eventually constant and $f \in S$. Hence, $S = \mathcal{M}(\mathbb{N}, \mathcal{A}_S)$.

Part (*,*): Let X be an uncountable set. Then,

 $S = \{f : X \longrightarrow \mathbb{R} \mid f \text{ is constant except on a finite subset of } X\}.$

We show that $S = \mathcal{M}(X, \mathcal{A}_S)$ where $\mathcal{A}_S = \{Y \subseteq X \mid Y \text{ or } X \setminus Y \text{ is finite}\}$. Let $f \in \mathcal{M}(X, \mathcal{A}_S)$. We claim that the image of f is countable. On the contrary, suppose that the image of f is uncountable. In this case, there is $t \in \mathbb{R}$ such that both $(-\infty, t) \cap \text{im}(f)$ and $(t, +\infty) \cap \text{im}(f)$, are infinite. Hence, $f^{-1}((-\infty, t))$ and $f^{-1}((t, +\infty))$ are not in \mathcal{A}_S , giving a contradiction. This implies that the image must be countable. Now, there exists $a \in \mathbb{R}$ such that $f^{-1}(\{a\})$ is uncountable. Since $f \in \mathcal{M}(X, \mathcal{A}_S)$, we must have both $f^{-1}((-\infty, a))$ and $f^{-1}((a, +\infty))$ being finite. So, f is everywhere equal to the constant a, except on a finite set, i.e., $f \in S$.

(c): Let $f,g \in S$. There are subsets F and G of X such that $|F|,|G| \leq \aleph$ and $f|_{X \setminus F}$ and $g|_{X \setminus G}$ are constant. Since f+g and fg are both constant on $X \setminus (F \cup G)$ and $|F \cup G| \leq \aleph$, f+g and fg belong to S. The proof of the second part is the same.

The examples of this article show that, apparently, no rules govern on \mathcal{A} for $\mathcal{M}(X,\mathcal{A})$ being a subring of \mathbb{R}^X . In Example 2.9, we observe that

different kinds of subsets of P(X) generate the same subring of \mathbb{R}^X , that is, \mathbb{R} . These raise a natural question: if S is a subring of \mathbb{R}^X (containing \mathbb{R}), then does there exist $A \subseteq P(X)$ such that $S = \mathcal{M}(X, A)$? The next example answers the question negatively.

Example 2.13. Let $X = \mathbb{N}$. Then, we may consider $\mathbb{R}^{\mathbb{N}}$ as the collection of all sequences in \mathbb{R} . We show that $\mathbb{R}^{\mathbb{N}}$ has a subring which is not of the form $\mathcal{M}(\mathbb{N}, \mathcal{A})$. Let S be the set of all convergent sequences in \mathbb{R} . It is clear that S is a subring of $\mathbb{R}^{\mathbb{N}}$. On the contrary, suppose that $S = \mathcal{M}(\mathbb{N}, \mathcal{A})$, for some $\mathcal{A} \subseteq P(\mathbb{N})$. Define $f : \mathbb{N} \longrightarrow \mathbb{R}$ by $f(n) = \frac{1}{n}$, for every $n \in \mathbb{N}$. Then, $f \in S$. Let $T \subseteq \mathbb{N}$. For each $i \in T$, suppose that W_i is an open interval containing only $\frac{1}{i}$ (it does not contain $\frac{1}{j}$, for $j \neq i$). Let $V = \bigcup_{i \in T} W_i$. Hence, $f^{-1}(V) = T$. This implies that $T \in \mathcal{A}$. But this says that $\mathcal{A} = P(\mathbb{N})$, i.e., $\mathcal{M}(\mathbb{N}, \mathcal{A}) = \mathbb{R}^{\mathbb{N}}$, giving a contradiction.

Although for a subring S of \mathbb{R}^X , $\mathcal{M}(X, \mathcal{A}_S)$ need not be a subring of \mathbb{R}^X , but we may associate a subring of the form $\mathcal{M}(X, \mathcal{A})$ to S.

Definition 2.14. Let S be a subring of \mathbb{R}^X . Then, we put

$$\overline{S} = \bigcap \{ \mathcal{M}(X, \mathcal{A}) \mid \mathcal{M}(X, \mathcal{A}) \text{ is a subring of } \mathbb{R}^X \text{ containing } S \}.$$

We call \overline{S} , the ring closure of S.

It is a useful fact that for a family $\{A_i\}_{i\in I}$ of subsets of P(X), we always have $\mathcal{M}(X,\bigcap_{i\in I}A_i)=\bigcap_{i\in I}\mathcal{M}(X,A_i)$. Based on this simple fact, we see that if $\mathcal{M}(X,A)$ is a subring of \mathbb{R}^X , then there always exists $\mathcal{B}\subseteq P(X)$ which is *minimal* among those subsets \mathcal{C} such that $\mathcal{M}(X,\mathcal{C})=\mathcal{M}(X,A)$. To observe this, let $\Gamma=\{\mathcal{C}\subseteq P(X)\mid \mathcal{M}(X,\mathcal{C})=\mathcal{M}(X,A)\}$. Then, put $\mathcal{B}=\bigcap_{\mathcal{C}\in\Gamma}\mathcal{C}$. Since $\bigcap_{\mathcal{C}\in\Gamma}\mathcal{M}(X,\mathcal{C})=\mathcal{M}(X,\bigcap_{\mathcal{C}\in\Gamma}\mathcal{C})=\mathcal{M}(X,\mathcal{B})$, we are done. By the aforementioned fact and Lemma 2.2-(a), \overline{S} is a subring of \mathbb{R}^X of the form $\mathcal{M}(X,A_{\overline{S}})$, where

$$\mathcal{A}_{\overline{S}} = \bigcap \{ \mathcal{A} \mid \mathcal{M}(X, \mathcal{A}) \text{ is a subring of } \mathbb{R}^X \text{ containing } S \}.$$

Since $S \subseteq \mathcal{M}(X, P(X)) = \mathbb{R}^X$, the collections in the above definition are never empty. The ring closure of subrings of \mathbb{R}^X has the following properties.

Proposition 2.15. Let S and T be subrings of \mathbb{R}^X . Then

- (a) $\overline{\overline{S}} = \overline{S}$.
- (b) If $S \subseteq T$, then $\overline{S} \subseteq \overline{T}$ and $\mathcal{A}_{\overline{S}} \subseteq \mathcal{A}_{\overline{T}}$.

(c) If
$$S = \mathcal{M}(X, \mathcal{A})$$
, for some $\mathcal{A} \subseteq P(X)$, then $\overline{S} = S$ and $\mathcal{A}_{\overline{S}} \subseteq \mathcal{A}$.

A question arises immediately: let S be a subring of \mathbb{R}^X and $\overline{S} = \mathcal{M}(X, \mathcal{A}_{\overline{S}})$, the ring closure of S. If S or \overline{S} is a regular ring, then is $\mathcal{A}_{\overline{S}}$ necessarily a σ -algebra or even a topology?

The part (*) of the proof of Theorem 2.12 and the next example show that this is not the case. In the part (*), we also observe that $S = \overline{S}$ is a regular ring, but there is no topology or σ -algebra \mathcal{A} such that $S = \mathcal{M}(\mathbb{N}, \mathcal{A})$; since, Otherwise, \mathcal{A} must contain all singletons of \mathbb{N} , and hence $\mathcal{A} = P(\mathbb{N})$.

Example 2.16. Let X be a completely regular space which is not a P-space (for example, let X = [0,1]) and put S = C(X). Then, $S = C(X) = \mathcal{M}(X,\tau)$, where τ is the topology on the set X. By Proposition 2.15, $\overline{S} = S$. If $S = \mathcal{M}(X,\mathcal{A})$, for some σ -algebra $\mathcal{A} \subseteq P(X)$, then S has to be a regular ring. But, this is not possible, due to X not being a P-space. For details, see [6].

Remark 2.17. In rings of continuous functions and rings of measurable functions, regularity (in the sense of von Neumann) and \aleph_0 -selfinjectivity always come together (see [5] and [1], respectively). However, this is not the case in $\mathcal{M}(X,\mathcal{A})$, in general. In the part (*,*) of the proof of Theorem 2.12, we observe that $S = \mathcal{M}(X, A_S)$ is a regular ring, and A_S is neither a σ -algebra nor a topology. However, S is not an \aleph_0 -self-injective ring. For this, by [8, Theorem 2.2], it is enough to show that there are two orthogonal disjoint countable subsets of S such that they cannot be separated. Let $Y_1 = \{x_1, x_2, \dots\} \subseteq X$ and $Y_2 = \{y_1, y_2, \dots\} \subseteq X \text{ such that } Y_1 \cap Y_2 = \emptyset. \text{ Define } f_i = \chi_{\{x_i\}} \text{ and } f_i$ $g_i = \chi_{\{y_i\}}, \text{ for } i = 1, 2, \dots$ Now, $\{f_1, f_2, \dots\}$ and $\{g_1, g_2, \dots\}$ are two orthogonal subsets of S. But, there is no element h in S, which can separate them from each other, for if $hf_i^2 = f_i$ and $hg_i = 0$, then $h(x_i) = 1$ and $h(y_i) = 0$, for any $i \in \mathbb{N}$, but such an h does not belong to S. It is also worth to mention that if $S = \mathcal{M}(X,\mathcal{B})$, for some other subset \mathcal{B} of P(X), then \mathcal{B} is never a σ -algebra, while otherwise S must be an \aleph_0 -self-injective ring (see [1]).

Example 2.18. Let X be an uncountable set and

 $S = \{f: X \longrightarrow \mathbb{R} \mid f \text{ is constant except on a countable subset of } X\}.$

We have $A_S = \{Y \subseteq X \mid Y \text{ or } X \setminus Y \text{ is countable}\}$. By Theorem 2.12, $S = \mathcal{M}(X, A_S)$. It is notable that, here, A_S is a σ -algebra and contains

all singletons. Hence, $\mathcal{M}(X, \mathcal{A}_S)$ is a regular, \aleph_0 -self-injective ring with an essential socle.

Proposition 2.19. Let $A \subseteq P(X)$. If $f \in \mathcal{M}(X, A)$, then |f| and f^n are in $\mathcal{M}(X, A)$, for every $n \in \mathbb{N}$. Moreover, for every positive real number r, $f^r \in \mathcal{M}(X, A)$, provided that $f(X) \subseteq [0, +\infty)$.

Proof. The verification is immediate if we remind that for every $h \in C(\mathbb{R})$ and $f \in \mathcal{M}(X, \mathcal{A})$, we have $h \circ f \in \mathcal{M}(X, \mathcal{A})$.

Corollary 2.20. Let $A \subseteq P(X)$ such that $\mathcal{M}(X, A) \neq \emptyset$. If $\mathcal{M}(X, A)$ is closed under addition, then it is a subring of \mathbb{R}^X .

Proof. Note that
$$fg = \frac{1}{2}((f+g)^2 - f^2 - g^2)$$
.

Since topologies and σ -algebras are closed under finite unions and finite intersections, the first question which comes to mind is that if \mathcal{A} is closed under finite unions and finite intersections, then is $\mathcal{M}(X,\mathcal{A})$ a ring? Or even if \mathcal{A} is a ring of subsets of X, that is, when \mathcal{A} is closed under finite unions and complements (and hence closed under finite intersections), then is $\mathcal{M}(X,\mathcal{A})$ necessarily a subring of \mathbb{R}^X ? Although under this condition, the constant functions $0,1\in\mathcal{M}(X,\mathcal{A})$, we do not know whether $\mathcal{M}(X,\mathcal{A})$ is a ring. In general, if $S=\mathcal{M}(X,\mathcal{A})$ is a ring, then \mathcal{A} itself is not necessarily closed under finite unions and finite intersections (see Example 2.9). However, in Theorem 2.21, we see a positive statement about \mathcal{A}_S .

Theorem 2.21. Let $S = \mathcal{M}(X, \mathcal{A})$ be a subring of \mathbb{R}^X . Then

- (a) A_S is closed under finite unions and finite intersections.
- (b) S is a regular ring if and only if A_S is closed under complements.

Proof. (a) According to Proposition 2.19, if $f \in S$, then $|f| \in S$. Hence, if $f, g \in S$, then $\max(f, g)$ and $\min(f, g)$ are in S, for

$$\max(f,g) = \frac{1}{2}(f+g+|f-g|) \text{ and } \min(f,g) = \frac{1}{2}(f+g-|f-g|).$$

Now, let $U, V \in \mathcal{A}_S$. Then, by Corollary 2.4, $U = f^{-1}((0, +\infty))$ and $V = g^{-1}((0, +\infty))$, for some $f, g \in S$. Hence, $U \cap V = h^{-1}((0, +\infty))$ and $U \cup V = k^{-1}((0, +\infty))$, where $h = \min(f, g)$ and $k = \max(f, g)$, respectively. Therefore, both $U \cap V$ and $U \cup V$ belong to \mathcal{A}_S .

(b) First suppose that S is a regular ring and $U \in \mathcal{A}_S$. Then, $U = f^{-1}((0,\infty))$, for some $f \in S$. Since $X \setminus U = f^{-1}((-\infty,0]) = f^{-1}((-\infty,0)) \cup f^{-1}(\{0\})$, by part (a) it suffices to show that $f^{-1}(\{0\}) \in \mathcal{A}_S$. There exists $g \in S$ with f = fgf. Let e = fg. Then, $e^2 = e \in S$

and $f^{-1}(\{0\}) = e^{-1}(\{0\}) = e^{-1}((-1,1)) \in \mathcal{A}_S$. Therefore, \mathcal{A}_S is closed under complements.

Conversely, suppose that A_S is closed under complements and $f \in S$. Let $U = f^{-1}(\{0\})$. Then, $U = X \setminus f^{-1}(\mathbb{R} \setminus \{0\}) \in A_S$. Define $g : X \longrightarrow \mathbb{R}$ by g(x) = 1/f(x), if $x \notin U$, and g(x) = 0, if $x \in U$. Then, it is easy to show that $g \in S = \mathcal{M}(X, A_S)$ and f = fgf. Hence, S is a regular ring. \square

A pm-ring is a commutative ring in which every prime ideal is contained in a unique maximal ideal. In the literature, pm-rings are also called the Gelfand rings. This was first introduced by G. Demarco and A. Orsatti in [4]. Examples of pm-rings are rings of continuous functions, regular rings, local rings, zero-dimensional rings, etc. Also, Contessa [3] showed that a commutative ring is a pm-ring if and only if for every $m \in R$, there exist $a, b \in R$ such that (1 - am)(1 - bm') = 0, where m' = 1 - m. Now, we show that if $\mathcal{M}(X, \mathcal{A})$ is a subring of \mathbb{R}^X , then it is always a pm-ring.

Theorem 2.22. If $\mathcal{M}(X, \mathcal{A})$ is a ring, then it is a reduced pm-ring.

Proof. Let $f \in \mathcal{M}(X, \mathcal{A})$. We must find $g, h \in \mathcal{M}(X, \mathcal{A})$ such that (1 - gf)(1 - hf') = 0, where f' = 1 - f. Let's define $\phi : \mathbb{R} \longrightarrow \mathbb{R}$ as follows: $\phi(x) = 1/x$, if |x| > 1/3, and $\phi(x) = 9x$, if $|x| \le 1/3$. Now, put $g := \phi \circ f$ and $h := \phi \circ f'$. It is easy to verify that (1 - gf)(1 - hf') = 0. That $\mathcal{M}(X, \mathcal{A})$ is a reduced ring comes from this fact that \mathbb{R}^X is a reduced ring. Hence, the proof is complete.

3. Some descriptive examples for $X = \mathbb{R}$

Here, in addition to the previous examples, we present more examples to show that the notion $\mathcal{M}(X,\mathcal{A})$ is not a trivial continuation of rings of continuous or measurable functions. For a measurable subset U of \mathbb{R} , let $\mathrm{m}(U)$ be its Lebesgue measure. We refer the reader to the standard text books in measure theory for the definition of the Lebesgue measure and measurable functions.

Example 3.1. Let $X = \mathbb{R}$ and

$$\mathcal{A} = \{ U \subseteq \mathbb{R} \mid \mathbf{m}(U) = 0 \} \cup \{ \mathbb{R} \}.$$

Then, $\mathcal{M}(\mathbb{R}, \mathcal{A}) = \mathbb{R}$. Suppose $f \in \mathcal{M}(\mathbb{R}, \mathcal{A})$. We can write $\mathbb{R} = \bigcup_{i=1}^{\infty} (a_i, b_i)$, where $m((a_i, b_i)) = b_i - a_i = 1$. Since $\mathbb{R} = \bigcup_{i=1}^{\infty} f^{-1}((a_i, b_i))$ and a countable union of zero measure subsets of \mathbb{R} has zero measure,

 $f^{-1}((a_i,b_i)) = \mathbb{R}$, for some $i \in \mathbb{N}$. Then, again, we can write the interval $I_1 = (a_i,b_i)$ as a finite union of open intervals with length $\frac{1}{2}$. There must be an interval $I_2 = (c,d) \subset I_1$ such that $m((c,d)) = d - c = \frac{1}{2}$ and $f^{-1}((c,d)) = \mathbb{R}$. Continuing this process, we get a decreasing sequence $I_1 \supset I_2 \supset \cdots$ of open intervals such that $m(I_n) = \frac{1}{n}$ and $f^{-1}(I_n) = \mathbb{R}$, for each $n \in \mathbb{N}$. Thus, $f^{-1}(\bigcap_{n=1}^{\infty} I_n) = \bigcap_{n=1}^{\infty} f^{-1}(I_n) = \mathbb{R}$, and hence $\bigcap_{n=1}^{\infty} I_n$ should be a singleton $\{a\}$. Therefore, f(x) = a, for all $x \in \mathbb{R}$.

Example 3.2. Let $X = \mathbb{R}$ and

$$R = \{ f \in \mathbb{R}^{\mathbb{R}} \mid f \text{ is almost everywhere constant} \},$$

where by an almost everywhere constant function, we mean a function which is everywhere constant except on a set with zero measure. We claim that $R = \mathcal{M}(\mathbb{R}, \mathcal{A})$, where

$$\mathcal{A} = \{ Y \subseteq \mathbb{R} \mid Y \text{ or } \mathbb{R} \setminus Y \text{ has zero measure} \}.$$

Suppose that $f \in R$ and f(x) = c everywhere except on a set with zero measure. Let U be an open subset in \mathbb{R} . Either $c \in U$ or $c \notin U$, which implies that $\mathbb{R} \setminus f^{-1}(U)$ or $f^{-1}(U)$ has zero measure. This shows that $R \subseteq \mathcal{M}(\mathbb{R}, \mathcal{A})$. Now, let $f \in \mathcal{M}(\mathbb{R}, \mathcal{A})$. Then, as in Example 3.1, we can find a decreasing sequence $I_1 \supset I_2 \supset \cdots$ of open intervals such that $m(I_n) = \frac{1}{n}$ and $m(\mathbb{R} \setminus f^{-1}(I_n)) = 0$, for each $n \in \mathbb{N}$. Since

$$\mathbb{R} \setminus f^{-1}(\bigcap_{n=1}^{\infty} I_n) = \mathbb{R} \setminus \bigcap_{n=1}^{\infty} f^{-1}(I_n) = \bigcup_{n=1}^{\infty} (\mathbb{R} \setminus f^{-1}(I_n))$$

has measure zero, $\bigcap_{n=1}^{\infty} I_n \neq \emptyset$ and so should be a singleton $\{a\}$. Therefore, f is almost everywhere constant a, i.e., $f \in R$. Note that A is a σ -algebra which is not a topology. Therefore, $\mathcal{M}(\mathbb{R}, A)$ is an \aleph_0 -self-injective regular ring with essential socle.

Example 3.3. Let $X = \mathbb{R}$ and R be the set of all measurable functions $f : \mathbb{R} \longrightarrow \mathbb{R}$ such that f is constant everywhere except on a set with finite measure. We show that $R = \mathcal{M}(\mathbb{R}, \mathcal{A})$, where

$$\mathcal{A} = \{ Y \subseteq \mathbb{R} \mid Y \text{ or } \mathbb{R} \setminus Y \text{ has finite measure} \}.$$

It is not difficult to observe that $R \subseteq \mathcal{M}(\mathbb{R}, \mathcal{A})$. Now, let $f \in \mathcal{M}(\mathbb{R}, \mathcal{A})$. It is clear that f is a measurable function. For every $x \in \mathbb{R}$, either $f^{-1}((-\infty, x))$ or $f^{-1}((x, +\infty))$ has finite measure. Without loss of generality, we may suppose that $f^{-1}((-\infty, x))$ has finite measure for some

 $x \in \mathbb{R}$. We put

$$\alpha = \sup\{x \mid f^{-1}((-\infty, x)) \text{ has finite measure}\}.$$

We claim that $f^{-1}((-\infty,\alpha))$ has finite measure. Otherwise, there is $x_1 < \alpha$ such that $\operatorname{m}(f^{-1}((-\infty,x_1))) > 1$ and then we can chose x_2 such that $x_1 < x_2 < \alpha$ and $\operatorname{m}(f^{-1}((-\infty,x_2))) > 1 + \operatorname{m}(f^{-1}((-\infty,x_1]))$. Now, by induction we will have an increasing sequence $x_1 < x_2 < x_3 < \cdots < \alpha$ such that

$$m(f^{-1}((-\infty, x_{n+1}))) > 1 + m(f^{-1}((-\infty, x_n))).$$

In particular, $m(f^{-1}((x_n, x_{n+1}))) > 1$. Now, consider the open subsets

$$W_1 = \bigcup_{n=1}^{\infty} (x_{2n-1}, x_{2n})$$
 and $W_2 = \bigcup_{n=1}^{\infty} (x_{2n}, x_{2n+1}).$

Then, $W_1 \cap W_2 = \emptyset$ and the inverse images of both of them have infinite measure, which is a contradiction. Therefore, $f^{-1}((-\infty,\alpha))$ has finite measure. In particular, $\alpha \neq +\infty$. By the definition of α , for each $x > \alpha$, $f^{-1}((-\infty,x))$ has infinite measure, and hence $f^{-1}((x,+\infty))$ has finite measure. Now, the same line of proof shows that $f^{-1}((\alpha,+\infty))$ has finite measure as well. So, $f(x) = \alpha$, except on a set of finite measure.

Notice that A is neither a σ -algebra nor a topology; however, $\mathcal{M}(\mathbb{R}, A)$ is a regular ring which is not \aleph_0 -self-injective. For this, it is enough to show that there are two orthogonal disjoint countable subsets of R such that they cannot be separated. Define $f_i = \chi_{[i-1,i)}$ and $g_i = \chi_{[-i,-i+1)}$, for $i = 1, 2, \ldots$ Now, $\{f_1, f_2, \ldots\}$ and $\{g_1, g_2, \ldots\}$ are two orthogonal subsets of R. But, there is no element h in R, which can separate them from each other, for if $hf_i^2 = f_i$ and $hg_i = 0$, then h(x) = 1, for $x \geq 0$, and h(x) = 0, for x < 0, but such an h does not belong to R.

Example 3.4. Let R be the set of all functions $f : \mathbb{R} \longrightarrow \mathbb{R}$ such that for some $c \in \mathbb{R}$, $f^{-1}(\{c\})$ contains an open dense subset of \mathbb{R} . It is easy to see that R is a subring of $\mathbb{R}^{\mathbb{R}}$. We show that $R = \mathcal{M}(\mathbb{R}, \mathcal{B})$, where

$$\mathcal{B} = \{ Y \subseteq \mathbb{R} \mid Y \text{ or } \mathbb{R} \setminus Y \text{ contains an open dense subset of } \mathbb{R} \}.$$

The implication $R \subseteq \mathcal{M}(\mathbb{R}, \mathcal{B})$ is straightforward. Now, let $f \in \mathcal{M}(\mathbb{R}, \mathcal{B})$. For every $x \in \mathbb{R}$, either $f^{-1}((-\infty, x))$ or $f^{-1}((x, +\infty))$ is contained in a closed nowhere dense subset of \mathbb{R} . Without loss of generality, we may suppose that, for some $x \in \mathbb{R}$, $f^{-1}((-\infty, x))$ is contained in a closed nowhere dense subset of \mathbb{R} . Let α be the supremum of the following set $\{x \mid f^{-1}((-\infty, x)) \text{ is contained in a closed nowhere dense subset of } \mathbb{R}\}$. We have $f^{-1}((-\infty,\alpha)) = \bigcup_{n=1}^{\infty} f^{-1}((-\infty,x_n))$, where $\{x_n\}$ is an increasing sequence converging to α . Thus, $f^{-1}((-\infty,\alpha))$ is a nowhere dense subset of \mathbb{R} and hence $f^{-1}((-\infty,\alpha))$ is contained in a closed nowhere dense subset of \mathbb{R} . In particular, $\alpha \neq +\infty$. By the definition of α , for each $x > \alpha$, $f^{-1}((-\infty,x))$ contains an open dense subset of \mathbb{R} . Hence, $f^{-1}((x,+\infty))$ is contained in a closed nowhere dense subset of \mathbb{R} . Now, the same proof shows that $f^{-1}((\alpha,+\infty))$ is contained in a closed nowhere dense subset of \mathbb{R} as well. So, $f^{-1}(\{\alpha\})$ contains an open dense subset of \mathbb{R} , and hence $f \in R$. Note that \mathcal{B} is neither a σ -algebra nor a topology, but $\mathcal{M}(\mathbb{R},\mathcal{B})$ is a regular ring.

Observe that if $A = \{Y \subseteq \mathbb{R} \mid Y \text{ or } \mathbb{R} \setminus Y \text{ is an open dense subset of } \mathbb{R} \}$, then $\mathcal{M}(\mathbb{R}, \mathcal{A})$ is a subset of \mathbb{R}^X which is not a ring. Let $K \subseteq \mathbb{R}$ be the Cantor set and $f = \chi_K$ and $g = \chi_{\mathbb{R} \setminus \{0\}}$. Since $K, \mathbb{R} \setminus \{0\} \in \mathcal{A}$, we have $f, g \in \mathcal{M}(\mathbb{R}, \mathcal{A})$. But, $fg = \chi_{K \setminus \{0\}} \notin \mathcal{M}(\mathbb{R}, \mathcal{A})$, and hence $\mathcal{M}(\mathbb{R}, \mathcal{A})$ is not a subring of \mathbb{R}^X .

4. A remark

If in the definition of $\mathcal{M}(X, \mathcal{A})$, we replace open subsets of \mathbb{R} by open intervals, then we will have the following subset of \mathbb{R}^X :

 $\mathcal{M}'(X,\mathcal{A}) = \{ f : X \to \mathbb{R} \mid f^{-1}(U) \in \mathcal{A} \text{ for every open interval } U \text{ in } \mathbb{R} \}.$

Perhaps the reader asks himself/herself: What is the relation between $\mathcal{M}(X,\mathcal{A})$ and $\mathcal{M}'(X,\mathcal{A})$? In spite of the fact that $\mathcal{M}(X,\mathcal{A}) \subseteq \mathcal{M}'(X,\mathcal{A})$, as the following example shows, they behave differently. But, when \mathcal{A} is a σ -algebra or a topology, then they are equal. Recall that in Theorem 2.12-(*), if $\mathcal{A}_F = \{Y \subseteq \mathbb{N} \mid Y \text{ or } \mathbb{N} \setminus Y \text{ is finite}\}$, then $\mathcal{M}(\mathbb{N},\mathcal{A}_F)$ is equal to the ring of all eventually constant sequences, while this is not the case for $\mathcal{M}'(\mathbb{N},\mathcal{A}_F)$.

Example 4.1. Let $X = \mathbb{N}$. We show that $\mathbb{R}^{\mathbb{N}}$ has a subring which is not of the form $\mathcal{M}'(\mathbb{N}, \mathcal{A})$. Let R be the set of all eventually constant sequences. It is clear that R is a subring of $\mathbb{R}^{\mathbb{N}}$. Suppose that $R \subseteq \mathcal{M}'(\mathbb{N}, \mathcal{A})$, for some $\mathcal{A} \subseteq P(\mathbb{N})$. As in Theorem 2.12(*), we see that the minimal (possible) choice for a subset \mathcal{A} for which $R \subseteq \mathcal{M}'(\mathbb{N}, \mathcal{A})$ is $\mathcal{A}_F = \{Y \subseteq \mathbb{N} \mid Y \text{ or } \mathbb{N} \setminus Y \text{ is finite}\}$. But, we observe that $\mathcal{M}'(\mathbb{N}, \mathcal{A}_F)$ contains all convergent sequences. Let $f = (a_n)$ be a convergent sequence and $\lim a_n = a$. Now, let U be an open interval in \mathbb{R} . Then, either $a \in U$ or $a \notin U$. Hence, $\mathbb{N} \setminus f^{-1}(U)$ or $f^{-1}(U)$ is finite. Therefore, $f \in \mathcal{M}'(\mathbb{N}, \mathcal{A}_F)$. This implies that R is a proper subset of $\mathcal{M}'(\mathbb{N}, \mathcal{A}_F)$. It is also worth to mention that $\mathcal{M}'(\mathbb{N}, \mathcal{A}_F)$ itself is not a ring. For, if

 $b_n = n$ and $c_n = \frac{(-1)^n}{n}$, then $g = (b_n)$ and $h = (c_n)$ are in $\mathcal{M}'(\mathbb{N}, \mathcal{A}_F)$, but $gh = (b_n c_n) = ((-1)^n)$ does not belong to $\mathcal{M}'(\mathbb{N}, \mathcal{A}_F)$. Therefore, we have the following hierarchy:

 $R = \mathcal{M}(\mathbb{N}, \mathcal{A}_F) \subset \text{ the set of all convergent sequences } \subset \mathcal{M}'(\mathbb{N}, \mathcal{A}_F).$

Acknowledgments

The authors thank the referee for his/her many wonderful comments and remarks to improve this work significantly.

References

- [1] H. Azadi, M. Henriksen and E. Momtahan, Some properties of algebras of real-valued measurable functions, *Acta Math. Hungar.* **124** (2009), no. 1-2, 15–23.
- [2] F. Azarpanah and O. A. S. Karamzadeh, Algebraic characterization of some disconnected spaces, *Ital. J. Pure Appl. Math.* 12 (2002) 158–168.
- [3] M. Contessa, On pm rings, Comm. Algebra 10 (1982), no. 1, 93–108.
- [4] G. De Marco and A. Orsatti, Commutative rings in which every prime ideal is contained in a unique maximal ideal, *Proc. Amer. Math. Soc.* **30** (1971) 459–466.
- [5] A. Estaji and O. A. S. Karamzadeh, On C(X) modulo its socle, *Comm. Algebra* **31** (2003), no. 4, 1561–1571.
- [6] L. Gillman and M. Jerison, Rings of Continuous Functions, Springer-Verlag, New York-Heidelberg, 1976.
- [7] A. W. Hager, Algebras of measurable functions, Duke Math. J. 38 (1971) 21–27.
- [8] O. A. S. Karamzadeh, On a question of Matlis, Comm. Algebra 25 (1997), no. 9, 2717–2726.
- [9] O. A. S. Karamzadeh and M. Rostami, On the intrinsic topology and some related ideals of C(X), *Proc. Amer. Math. Soc.* **93** (1985), no. 1, 179–184.
- [10] E. Momtahan, On \aleph_0 -injectivity, Comm. Algebra **32** (2004), no. 10, 3883–3896.
- [11] E. Momtahan, Essential ideals in rings of measurable functions, Comm. Algebra 38 (2010), no. 12, 4739–4746.
- [12] R. M. dudley, Real Analysis and Probability, Cambridge Studies in Applied Mathematics, 74, Cambridge University Press, Cambridge, 2002.

A. Amini

Department of Mathematics, College of Sciences, Shiraz University, Shiraz 71454, Iran

Email: aamini@shirazu.ac.ir

B. Amini

Department of Mathematics, College of Science, Shiraz University, Shiraz 71454, Iran Email: bamini@shirazu.ac.ir

E. Momtahan

Department of Mathematics, College of Science, Yasouj University, P. O. Box 75918-74831, Iran

Email: e-momtahan@mail.yu.ac.ir

M. H. Shirdareh Haghigi

Department of Mathematics, College of Science, Shiraz University, Shiraz 71454, Iran Email: shirdareh@susc.ac.ir