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SUPERLINEARLY CONVERGENT EXACT PENALTY
PROJECTED STRUCTURED HESSIAN UPDATING SCHEMES
FOR CONSTRAINED NONLINEAR LEAST SQUARES:
ASYMPTOTIC ANALYSIS

N. MAHDAVI-AMIRI AND M. R. ANSARI"*

Communicated by Mohammad Asadzadeh

ABSTRACT. We present a structured algorithm for solving constrained non-
linear least squares problems, and establish its local two-step Q-superlinear
convergence. The approach is based on an adaptive structured scheme due to
Mahdavi-Amiri and Bartels of the exact penalty method of Coleman and Conn
for nonlinearly constrained optimization problems. The structured adaptation
also makes use of the ideas of Nocedal and Overton for handling quasi-Newton
updates of projected Hessians. We discuss the comparative results of the test-
ing of our programs and three nonlinear programming codes from KNITRO on
some randomly generated test problems due to Bartels and Mahdavi-Amiri.
The results indeed confirm the practical significance of our special considera-
tions for the inherent structure of the least squares.

1. Introduction

An exact penalty method is a sequential unconstrained minimization approach
for solving general nonlinear programming (NLP) problems. Coleman and Conn
[6, 7, 8] presented an effective exact penalty algorithm for solving generally
constrained nonlinear minimization problems. Mahdavi-Amiri and Bartels [14]
adapted the approach to the structured constrained least squares problems. Al-
though computational results given in [14] showed a promising two step super-
linear asymptotic convergence, but the authors did not provide a proof. Here,
we present a variant of the approach in [14]. Our algorithm appropriates the
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ideas of Dennis, Martinez and Tapia [11] for the unconstrained case to the pro-
jected structured Hessian updating and employs a new structurally adapted line
search strategy. We establish a local two-step superlinear convergence and give
supporting computational results.

The remainder of our work is organized as follows. Section 2 gives the no-
tation and relevant results on constrained nonlinear least squares problems and
the exact penalty approach. Section 3 discusses a structured projected Hessian
updating scheme for constrained nonlinear least squares problems. In Section
4, we establish the local two-step superlinear convergence properties. Compu-
tational results in Section 5 substantiate the theoretical results and show that
the new algorithm is competitive as compared to the three algorithms recently
developed in KNITRO [5] integrated package. There, we show the effectiveness
and efficiency of the algorithm on randomly generated test problems of Bartels
and Mahdavi-Amiri [1]. Finally, we conclude in Section 6.

Throughout, ||.|| denotes the Iy norm for vectors or matrices, ||| and |||,
denote the Frobenius norm and weighted Frobenius norm for some nonsingu-

lar matrix M, as defined by |Q|lp = VTrace(QQT) and ||Q|,; = |MQM| -,

respectively.

2. Constrained Nonlinear Least Squares
The problem to be solved is:
min  ¢(z) = =F(z)TF(z)
x

1
2
(2.1) s.t. c,(a:) 0, 7€M
cj(x) >0, je€ M.

where F(z) = [fi(z),..., fi(z)]T, = is an n-vector, and each f5, the ¢; and ¢;
are functions from R™ to R!, all assumed to be twice continuously differentiable.
We refer to each f5 as a residual. Although the problem (2.1) can be solved
by a general constrained nonlinear optimization method, in most circumstances
the inherent structure of the objective function in (2.1) makes it worthwhile to
appropriate specially designed techniques. Notice that if G(z) is the matrix with
its columns being the gradients V f5(x), then

Vo(r) = G(x)F(x),

(2.2) Vig(z) = G(z)G(2)" + S(),

where,

(2.3) S(@) =Y fs(x)V2fs(a).
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In many applications, it is possible to calculate the first partial derivatives that
make up the matrix G(z) explicitly. These could be used to calculate the gra-
dient V¢(x). However, the distinctive feature of a least squares problem is that
by knowing G(z), we can compute the first part of the Hessian V2¢(x) for free.
Moreover, the term G(x)G(z)7T is often more important than the second summa-
tion term in (2.2), either because of near-linearity of the model near the solution
(that is, the V2fs being small) or because of small residues (that is, the fs5 be-
ing small). Most algorithms for nonlinear least squares exploit these structural
properties of the Hessian. For problems where ||[S(z)|| is small compared to
|G(z)G(2)T || as = approaches a minimizer z*, the term S(z) is dropped in (2.2)
to yield the Gauss-Newton method. This method works well when G(z) has full
row rank and ||S(x)|| is “sufficiently small”; for discussions, see [9].

Approximation for S(x) in cases where it cannot be neglected is a recurring
theme in the literature. In unconstrained case, quasi-Newton approximations to
only the second term, S(x), of the Hessian matrix (2.2) have been developed
[11, 12]. Pertinent to our proposal is the work by Dennis, Gay, and Welsch
[10], who made investigations of quasi-Newton updates to a matrix B ~ S(z).
This additive structure was analyzed by Dennis, Martinez and Tapia [11]. These
strategies are called “structured quasi-Newton” methods.

2.1. An Exact Penalty Function. Coleman and Conn [7] used the penalty
function,

Yz, ) = pdle) + Y lei@)] = Y min(0,¢;(x)),
€My JEM>

where the penalty parameter u is a positive number. It is well known that for
appropriate values of the penalty parameter u, stationary points of v (z, u) are
either KKT points of the nonlinear program (2.1) or infeasible stationary points;
see Byrd et al. [4]. Pietrzykowski [18] showed this penalty function to be ezact
in the sense that, if 2* is an isolated minimizer of (2.1) and the gradients of the
active (binding) constraints at x* are linearly independent, then there exists a
real number p* > 0 such that a* is also an isolated local minimizer of ¥ (x, u),
for each p, 0 < pu < p*.

2.2. Activity, Stationarity, and Violation. With respect to the embedded al-
gorithm for minimizing 1), two tolerance parameters, € and 7, and five index sets,
AE(z,€), Al(x,€), AC(z,¢€), VE(x,¢) and VI(z,e€), are important for manage-
ment. The parameter € > 0 is used to determine the closeness of any constraint
to zero, and hence, to judge its activity. This is a standard antizigzagging device.
The parameter 7 > 0 is used to judge the distance to the nearest stationary point.
This judgement is used to separate the “global” phase of the algorithm from its
“local” phase. The index sets AE(x,€) of active equality constraints, AI(x,¢) of
active inequality constraints, AC(z,€) of active constraints, V E(x,€) of violated
equality constraints, and VI(x,€) of violated inequality constraints are defined as
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follows:
AC(z,e) ={i € M1 UM, | |ci(x)| < €},
AE(z,€) = AC(z,€) N M, Al(z,e) = AC(z,€) N M,
VE(x,e) = My — AE(x,¢), and VI(x,e) = My — Al(z,e€).
The minimization of v is carried out with the aid of an e—active merit function:
Velw,p) = pole)+ Y sgn(ei(@)ei(@) — > ¢j(a).
1€V E(z,€) JEVI(z,€)
This provides a differentiable approximation to the true merit function . It is
trivial that 1. is equal in value to 1) when € = 0. Loosely speaking, step directions
are determined using ¢, but line searches and optimality tests use 1.
The following vectors and matrices, defined in terms of the index sets above,
are conveniently used:
— the active constraint gradient matrix,
A(x) =[--Ver () Jreac(ae),
— the violated equality constraint gradient matrix,
E(z) =1[--Vei(n) - lievE@,e)>
— the violated inequality constraint gradient matrix,
I(‘T}) = [ o VC]‘(J}) T ]jEVI(r,e)a
— and the violated equality vector of signs,

(@) = [+ sgn(ei(@)) - Jiev B0

Using

the gradient of v, is:
Vise(w, 1) = pGl)F(2) + B(@)m(x) — I(@)e,
and the Hessian of . is:

Ve(r,p) = p(G(2)G(2)" + S(x)) + Y sgnlei(x))Viei(x)
1€V E(x,€)

B Z V2Cj (l‘),
JjeVI(x,e)

where, S(x) is defined by (2.3).

A necessary condition for x* being an isolated local minimizer of ¢ under the
assumptions made above on ¢, the ¢;, and the ¢; is that there exist multipliers
AL, for r € AC(2*,0), such that

(2.4) Vio(a* )= > MNVC(a*) = A(z")\",
re AC(z*,0)
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and
(2.5) —1< A<l reAE(z%0),
(2.6) 0< A <1, reAlI(z"0).

A point z for which only (2.4) above is satisfied is said to be a stationary point
of ¢. If z* is a minimizer, then it is necessary for z* to be a stationary point
and satisfy (2.5) and (2.6). Note that stationarity and optimality are determined
using g, which is 1, with e = 0.

2.3. The Multiplier Estimates. Estimates A, of the numbers A} are calcu-
lated only in the neighborhoods of stationary points. In such neighborhoods, the
numbers A, are taken to be the least squares solution to:

(2.7) min [[A(2)A = Vie(z, pll,

and in practice, the QR decomposition of A(x) is used to solve the least squares
problem:

(2.8) A@):Q[ﬂ:[y Z]{OR}

If ¢ is the number of columns in A(x) and the columns are linearly independent,
then the columns of Y and Z serve as bases for the range space of A(x) and null
space of A(x)T; that is, A(z) = YR, with R nonsingular, A(z)"Z =0, YTY and
ZTZ are the identities. Nearness to a stationarity point is determined by the
stationary tolerance T > 0. The A, are computed only if HZZvae(a:, ,u)H <T.

2.4. The Quadratic Subproblem. Fundamental to the Coleman and Conn
approach is a particular unconstrained quadratic problem:

(2.9) min  (ZTV(z, u)Tw + %wTsz.

The matrix H, is a positive definite approximation of one of two projected Hes-
sian matrices, the choice of which depends upon whether the algorithm is in its
“global” state, that is, far from a stationary point, or in its “local” state, that
is, in the proximity of a stationary point. The two matrices to which H, is to
provide an approximation are “global projected Hessian”,

Z'N e (x, 1) Z,
and “local projected Hessian”,
ZT(Vpe(z,p) = > MVier(2)Z.
reAC(x,e)

The idea to use an approximation of a “two-sided projected Hessian” was sug-
gested by Murray and Wright [15] and was later discussed extensively by Nocedal
and Overton [16]; also see [2, 8]. For the general constrained nonlinear least
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squares (CNLLS) problems, in Section 4, we make use of the ideas in [14] for
structuring and [16] for projecting.

2.5. The Step Directions. The minimization of 1 is carried out using several
alternative step directions derived from t).:

(1) the global horizontal step direction;

(2) the dropping step direction;

(3) the Newton step direction;
(3a) the asymptotic horizontal step direction;
(3b) the vertical step direction.

The global horizontal step direction is hg := Zw, where w is the solution to the
quadratic problem (2.9) that could be found by solving,

(2.10) How=—Z"Vie(z,p).

The matrix H,, of course, approximates the global projected Hessian.

The asymptotic horizontal step direction h4 is a component of the Newton
step direction, h4 + v, that lies in the null space of A(x)T. Newton steps are
only attempted in the neighborhood of stationary points that are expected to be
minimizers. The step direction h4 is computed as in the global case above. In
this case, the matrix H, is to be an approximation of the local projected Hessian.

At x + hy, the constraints of AC(z, €) may no longer be within € of zero. The
vertical step is derived from taking a single Newton step toward the value of v
that could be found by solving,

A(z)"v = =Cac(ze) (@ + ha),

where, C4¢(z,¢) 18 the vector of the active constraint functions, ordered in accor-
dance with the columns of A(x).

The name of dropping step direction derives from the fact that it drops a
function ¢; or ¢; from the collection of active constraints and provides a direction
that gives a local first-order decrease in the penalty function value. It is the step
direction d that satisfies the system of equations,

A(:U)Td = —sgn(\.)er,

where, r € AC(z, €) is chosen for which one of (2.5) or (2.6) is violated, and e, is
the rth unit vector.

2.6. Strategy for Choosing Step Directions and the Algorithm. The
steps described above are used, broadly speaking, as follows:

(1) When HZZTVM(:L',M)H > 7, then we set & < x + ahg, where a line
search is used to determine o > 0.

(2) When || ZZTVpe(z, p)|| <, then the multipliers A,, r € AC(z,¢€), are
approximated by the least squares solution for (2.7).
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(a) If (2.5) or (2.6) is not satisfied, then an index r € AC(x, €) is chosen
for which one of (2.5) or (2.6) is violated, and we set T < z + ad,
where a line search is used to determine o > 0.

(b) If (2.5) and (2.6) are satisfied, then we set & <— z + ha + v. No line
search is used for h4 or v.

Under the standing assumptions on the fs5, ¢;, and ¢j, the steps incurred by
the e—approximation to the penalty function produce descent for the penalty
function if € and 7 are “correctly set”. Here, we assume there exist a line search
strategy to determine the step length satisfying a sufficient decrease in v that is
characterized by the line search assumption (see [7], P. 152 part (v)). We have
a new line search strategy that makes use of the structure of least squares and
global convergence results to be discussed in a separate work. Algorithm 1 below
gives an outline of the classical /1-penalty method.

Algorithm 1. Classical ¢1-penalty method.
Give po > 0 and starting point x°;
fork=0,1,2,...
find minimizer z* of ¢ (z, ), starting at x¥;
if ¥ is feasible then STOP
else
choose new pup1 < pir (80Y, pr1 = px/8);
set a new starting point ¥+ (say, 2 );
endif;
endfor.

Note that when the value of u is too large, in which case the optimal point for
1 may be infeasible, Algorithm 1 reduces i and the minimization of 1 is repeated
(for more details, see the first two algorithms presented by Mahdavi-Amiri and
Bartels [14]).

3. The Projected Least Squares Structure

In the rest of our work, we denote Z(x)TG(2)G(x)T Z(x) by Q.(x). For com-
puting the steps using (2.10), we wish to provide a quasi-Newton approximation
H, for

TuG(@)G(2)" + S(z,\)]Z

where,

S(x,A) = MZfa Wehs(a)+ Y sgn(ei@)Viei()

zeVE(a:,e)

- ) Vi) - > AV

JjeVI(x,€) reAC(z,e)
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The matrix in square brackets is precisely the global Hessian when the A, are
taken to be zero, and it is the local Hessian when the )\, are the least squares
estimates obtained from (2.7). We set

(3.1) H, =pQ.(z)+ B,
and provide a quasi-Newton approximation,
B, ~ ZTS(x,\)Z.

Here, we discuss a way to derive a secant relation for B, and explain how to
update it. We interpret the multipliers A* to be zero or estimated according to
(2.7), whichever is appropriate at the kth iteration of the algorithm. Consider
the asymptotic case. We assume that the final active set has been identified so
that for all further k, with z* designating the optimal point, we have

AC(zF €) = AC(2*,0), VE(zF, €)= VE(*,0), VI(* e =VIz*,0).
Suppose
B, ~ ZLS(a*, \*) 7y,
and we wish to update B, j to B, ;41 approximating
B.gp1 ~ Zj ST N 2

Nocedal and Overton [16] discussed an approach for the quasi-Newton updating
of projected Hessian approximations of general nonlinear programming problems,
and later Mahdavi-Amiri and Bartels [14] adapted it to approximating S(z*, \F).
The authors in [14] resolved the difference in x along the subspaces defined by
Zk+1 and Yy, 1. Based on their approach, we have

(3.2) T—x=Yq+ Zs,

where, in order to simplify the notation, the presence of a bar above a quantity
indicates that it is taken at iteration k£ 4+ 1, and the absence of a bar indicates
iteration k. If the constraints are linear, then ¢ = 0, for k£ > 0. In the nonlinear
case, asymptotically, we expect Yq to become negligible. This follows the em-
pirical observation that the final iterations are usually taken with an unchanging
set of active constraints. The algorithm converges to the optimal point along
the optimal manifold where the active functions may be regarded as suitably
approximated by linear functions. Observe that, using (3.2), we have

(3.3) s=2z—2), ¢q=YT(z—x).

Similar to the approach in Mahdavi-Amiri and Bartels [14], and assuming neg-
ligibility of Y¢q, the matrix B, is updated such that the new matrix B, satisfies
the secant condition

st =Y,

where, s is defined by (3.3) and

3.3) a
(3.4) y=2"[u(G - G)F + (E — E)t — (I — I)e + A)].
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Therefore, the full projected Hessian required in the minimization process of
Algorithm 1 is taken to be:
H, = ,UQz + B..

But our assumption about the asymptotic negligibility of Y¢ could, of course,
be wrong. To protect ourselves, consistent with the practice of Nocedal and
Overton [16], the update used to obtain B, is carried out only if V¢ has actually
become negligible (that is, small relative to ||s||). This means that we update the
approximation matrix using a structured update formula such as DFP or BFGS
if the following condition holds:

1 lls|l

(35) lall < o e
for v = 0.01, where 7 is a positive constant to be chosen and k is the iteration
number as suggested in [16]. We have observed that B, is updated on most
iterations, suggesting that our underlying assumption about the negligibility of
Yq is, indeed, reasonable.

In order to simplify the notation, for matrix A and y =~ As, we denote the
BFGS update correction by

T T
Yy As(As)
BFGS(s,y,A) = s T A

and the DFP update correction by

(y—As)y" +y(u—As)"  s"(y—As) 7
DFP A) = —
Note that the update rule used by Mahdavi-Amiri and Bartels [14] was the
standard BFGS formula, that is,

B, =B, + BFGS(s,y, B.),

where, s and y are defined by (3.3) and (3.4), respectively. Although computa-

tional results on a variety of test problems showed a local two-step superlinear

convergence of the scheme, but a formal proof is still awaiting. Here, we propose

a different scheme, for which we will be able to prove the superlinear convergence.
In a structured quasi-Newton method, « is set to be

U= pQ.s+y.

Based on the structure principle given by Dennis et al. [11], Engels and Martinez
[12] derived the structured Broyden family. According to this, the BFGS update
is given by

H,=H.+ BFGS(s,U, HY),
and the DFP update is defined by

H.=H,+ DFP(s,U, H),
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where,
H,=uQ,+ B,, and H,= Q. + B..
From this, a BFGS B,-update is determined to be

BZ = BZ + BFGS(S7 U’ H;)’
and a DFP update is given by
(3.6) B, =B, + DFP(s,U, H.).

Either update rule can be used, but we consider the BFGS update formula.
BFGS has been chosen because of its generally satisfactory numerical behavior
in other contexts. Later, we will show that, under standard assumptions, ‘near’
the solution, u’'s is positive and it imposes positive definiteness on the matrix
H’,. Note that, in general, it is possible that H. is not be positive definite, even
if H. is positive definite. In practice, we update B, if and only if (3.5) holds
and u”'s > 0. The positive definiteness of H, is imposed by use of the modified
Cholesky factorization; see [13] and references therein.

4. Local Superlinear Convergence

Here, we prove a local two-step superlinear convergence of our method. The
asymptotic analysis is developed following the approach in Nocedal and Overton
[16]. Our main new results here are the ones concerned with the analysis of our
proposed structures in the projected Hessian and are given by Lemma 4.11 and
Theorem 4.13; our other results have some similarities to the ones in [16], but
correspond to our specific nonlinear least squares structure. To achieve a local
two-step Q-superlinear convergence, we need to show that the relation (4.3), to
be seen in Corollary 4.9, is satisfied with some bounds on errors of z-values. We
will denote x* as a local optimal solution of problem (2.1) and suppose the active
set at z* to be {1,...,t}. Furthermore, we assume that we are sufficiently close
to z* so that the proper active set has been identified. Throughout the rest of
this section, we need the following assumptions and notations.

Assumptions 4.1.

(A) ¢ and c;,i € My UMa, are twice continuously differentiable and their first
and second derivatives are uniformly bounded in norm on a compact set
D;

(B) {zk} is generated by Algorithm 1 starting from an arbitrary initial point,
and ¥ € D, for all k;

(C) the gradients of the active constraints for all x € D are linearly indepen-
dent.

Assumptions 4.2. Assume that Assumptions 4.1 hold, and that Y (z) and Z(z),
given by a particular implementation of (2.8), are Lipschitz continuous in D. We
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assume that V2¢, V3¢, i € AC, and Q = ZTGGTZ are Lipschitz continuous
matriz functions such that

1Q(z) = QI < L[z -yl
Notation 4.3. Let e, = 2F —z*, g = Voo, W = V¢ — Zle \iV3e, S, =
ZTS(x, N Z, St = Z*TS(x*, N\ Z*, H = Z*TW*Z*, and G% = Z*TY*, where
* denotes evaluation at (x*,\*). Let \(x) be the least squares estimate at x for
(2.7). We also write \* for \(z*) and Wy for W (z*, \F).

Remark 4.4. Consider the function g(x) — A(z)\(z), the gradient (with respect
to x) of the Lagrangian function,

Lz, A) = ¢(z,p) — Z Aici().
i€ M1UMs
The Jacobian of this function is W (x) — A(x)A(x), where W (z) is the Hessian
(with respect to x) of the Lagrangian function and \ represents the derivative of
Az). Since M(x) may be written as (A(z)T A(x)) ") A(z)Tg(x), it follows from
Assumptions 4.2 that )\(x), as well as W(x), is Lipschitz continuous in a neigh-
borhood of x*. Thus, the mean value theorem (see Ortega and Rheinboldt [17]),
for |lex|| and ||eg+1]| small enough, gives

4.1 zr Jk+1 — gk — Ap\E — Wit phtl — gk <Oy ||2Ftt — 2 ’
k+1

)

Remark 4.5. Note that by the definition of Algorithm 1, we always have
VI (aF ! — 2F) = —RECac(aF + 1),

ZE (xh Tt — 2k = —H;;Z{gk,
2
(4.2) Cac(z® + h*) = Cac(a®) + O(Hth ).

Lemma 4.6. If Assumptions 4.2 hold and HZ_; s bounded above, then

(@) ||2*]] = Ollex).
(i) [[o*]| = Odllexl)-

Proof. By Algorithm 1,
W= -z H ZIV¢(2F) = — 2, H [ ZEV L (2", 2.

Since Hz_é is bounded above, then we have

| ).

Thus, using the fact that VL(x*, \*) = 0, and Lipschitz continuity, we obtain (i).
From Algorithm 1 and (4.2), we have

- O(HVL(Q:"”,)\*)

2
o = — (AT A) T Cac (et + 1) = —Ap(AT A0 (Cacla®) + O( ¥ |)).
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Thus,
] < a1 401 Jescten] oy

But, Cyc(z*) = 0. Thus, using the Lipschitz continuity of the ¢;, and the
boundedness of Ay(AL Ax)~t, we have (ii). O

The next lemma shows the quadratic contraction of certain quantities.

Lemma 4.7. Assume that for a given k, ||ex|| and ||ex—1]| are sufficiently small.
Then,

() ||V ersr]| < Collexll”.
i) [V er]| < Colllexl® + llex—1]),
(i) [[VF (a*H = 2R)|| < Colllexl® + llex—1l).
Proof. Applying the Lipschitz continuity of C4c(x) and Lemma 4.6, the proofs
are quite similar to the ones given for Lemma 4.1 in [16]. O

The next theorem shows the important tow-step contraction in the error.

Theorem 4.8. Suppose that Algorithm 1 is applied with any update rule. Let To

be a given constant. Then, Je1 > 0 such that for any iteration k, if HZ_;AH < 79,

H kH <719 and ||ex—1] < €1, then
() HekH < Ckl ‘JekflkH; , ,
(ii) [[Vily (@t —ab)]] < Cl(HekH + llex—1]").-
(iid) [lexr1ll < Cr(ller—1ll” + [|(Hop — HD)ZE, ex]])
2 *
(1v) Nlexsill < Crlllex—ll® + [[(Hap — HE) ZE (28 = 2¥)]]).
Here, C1 is a constant, depending on T and €1 but not on k. Assume for conve-
nience that C; > 1 (the assumption that HHZ_;H < 19 is needed only for (iii)).
Proof. Applying the Lipschitz continuity of Z(x), the proofs of (i), (iii), and (iv)
are quite similar to the ones given for Theorem 4.1 in [16].
For (ii), we have from (i) and Lemma 4.7(i),
1V erpa]] < Cllexa|

where C is a constant. Thus,

’Ykal(xk+1 _ xk)H < HYkT(ka . xk)” 4 HYlgj‘rl _ YkTH ka+l _ ka

< [V @Rt = )|+ 95 = YT Ulesal + llexl).
Now, by (i), Lipschitz continuity of ¥ and Lemma 4.7(iii), we obtain (ii). O

The next corollary gives sufficient conditions for a two-step Q-superlinear con-
vergence. Nocedal and Overton [16] established these conditions for a two-step
superlinear convergence of their approach for nonlinear programs, in general, and
here we establish them for our approach for the least squares problem.
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Corollary 4.9. Suppose that Algorithm 1 is applied with any update rule. If

zF — 2, Hz_liH < 79, for all k, and
_ [(Bzk = 57) skl
then 2% — x*, at a two-step Q-superlinear rate.

Proof. Apply (3.1), Lipschitz continuity of Q(z) and (4.3) to obtain

[(H — HZ) s

[T — k| — 0.

Now, the desired result is obtained in the light of Theorem 4.8 by Corollary 4.1
in [16]. g

Note that as pointed out in [16], Corollary 4.9 is a variation of Powell’s sufficient
condition for a local two-step Q-superlinear convergence [19].

Lemma 4.10. Suppose that in Algorithm 1, (3.5) holds at iteration k . Then
[t = | < (1 m) sl

Proof. By (3.3), we have

[t = aH| < [V Vi @5 = 28|+ | Zesa 2T @8 = 2| = Nl + el

and the result follows from (3.5). O

In what follows, define:

M= (H;)_% and o} = max(H:nk+1 — ||, ||2* — 2*|),

i

and set:

Fr/ ! ~ A —1
2k = MHz,kM7 U = Muk, Sk = M Sk, Hz’k+1 = MHZJCJrlM.

Lemma 4.11. Suppose that Assumptions 4.2 hold. Assume that =¥, 251 € D.
If yx in (3.4) satisfies

(4.4) lye — SZskll < e skl

for some positive sequence {vy} with o, <y for all k, then
(4.5) lur — HZspll < (Lp+ Dy llsell
and

(4.6) k= 8kl < 1M (Lp+ Doy 13-

Furthermore, assume that v, <~ with v sufficiently small. Then, there
exist positive constants 51 and Bo such that

(4.7) Bull3kll® < sguk < B2 13klI*, and By l|3l| < l|axll < B2 |13l -
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Proof. Assumptions 4.2 and (4.4) yield:
g — sl < e Q(H) = Q)

< (Lpog + i) skl

and since by assumption we know oy, < 7, we then have (4.5).
By (4.5), we have

N A * 2 a
[ = Skl < [|M][ flux = HIspll < M| (Lpp+ Ve lsell < IMI" (L D 301

and this yields (4.6).
If 4/ = || M||* (L + 1), then (4.6) gives:

skl + llye — STkl

Skup — H=§k||2‘ = | 5% (e — 31)| < 118kll Nl — 85l < M) (L + 1)y |35 )17
<M (L + Dy (186l =+ 13517,
and thus we have
(1 =) 18l? < stun < (1+7") 131
The inequality (4.6) yields:

Mkl = N8kl < N — 8kl < " [I3ll
and
Q=) I8l < llaell < (1 ++) 151 -
Thus, for v sufficiently small, 4" < 1 and so (4.7) is established. (Il

Note that a result of Lemma 4.11 is used as conditions for updating, that is,
we update B, if and only if s} u; > 0 and (3.5) holds.

Lemma 4.12. For some positive constants Ky and Ky and any x € D, zF e D,
(i) HZ(:E)TS(xk, N Z(x) — Z(a:)TS(a:*,)\*)Z(:U)H < Ky ka - :1:*|
(i) [|ZLS(z, M2))Zk — Z*T S (2, A(2)) Z*|| < Ky ||a* — 2*||.

)

Proof. These results follow almost directly by using ||Z|| = 1, the Lipschitz con-
tinuities of S(x, A\(x)) and Z(x), and the boundedness of ||S(x, A(z))|| on D. O

Theorem 4.13. Let sy and yi be defined by (3.3) and (3.4), respectively. Then,
there exists €3 > 0 such that if |legx|| < €2 and ||ex+1]] < €2, then

(4.8) lye — SZsill < Comax(|le|l, lexsll) skl + ([ Z7S*Y " qrll,
where, Cy > 1 is a constant independent of k, and if (3.5) holds, then
lye — SZskll < vk llskll

where,
nl[Z=s*Y*||

ox <y < Co(1 +n)og + A+ R
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Proof. In order to simplify the notation, the presence of a bar above a quantity
indicates that it is evaluated at z*t!, and the absence of a bar indicates that it
is evaluated at z*. From (4.1), Taylor’s theorem, and Lipschitz continuities of
V2¢, the V2¢; and A(z), for ep sufficiently small, we have

w(G - G)F = Mka )WV f1(2)) (T — z) + Ui (T — z),
(E—E)Tr:( Z sgn(ci(z ))V2cl( ))(i—x)+U2(:E—a:),

i€V E(z,0)
(I-De=( > V%)@ —2)+Us(x — ),
JjEVI(Z,0)
(A=Ax=( > VXe(@)(®—2)+ Us(T - ),
re AC(z,0)

(A= A)A =) =Us(z — ),
where, ||U;|| = O(||z — z||), for i = 1,...,5. Since ZT A = 0, then by (3.4) we get
y=Z" (WG~ G)F + (E — E)7 — (I — Ie + A))
= ZT((C — QVF + (E — E)i — (I — I)e + AX+ (A — A)(A — )
=218z, Nz —2)+ 27U (z — ),

where, Ul = O([|z — z|))._
Recall that £ — x = Zs 4+ Yq, and thus

y=2"S(z,\)(Zs+Yq)+ Z'U(Zs + Yq).
Then, we have
(49) y-Sis=(Z"S(@NZ-S:+Z"UZ)s+ (Z"S(z, \NY + Z"UY)q.
But
(4.10) Oz — &) = O(max(|lz — =", = — 2*])):

Now, in the light of Lemma 4.12 and provided that ey is sufficiently small, it is
straightforward to show that

(4.11) |1Z7S(z,N)Z - S; + Z"UZ|| < K} |z — =],
and
(4.12) 1(Z7S(z, MY + ZTUY)q|| < |1 2°S*Y*q|| + K} |7 — =,

where, K|, and K| are some positive constants. Hence, (4.9), (4.11) and (4.12)
give:

(4.13) ly = SZsll < 12°S*Y™q|| + (Ko + K1) [|2 — =] .
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Now, by (4.10) and (4.13) we have (4.8).
By (4.8) and Lemma 4.10,

ly = SZsll < e llsll
where,
gl
skl
Note that we can assume Cy > 1. Now, in Algorithm 1, if the update formula is
used at iteration k, that is, (3.5) holds, then we have
nl| =Sy

ok < < Co(1+n)or + (| Z757Y7

or < < Co(1+n)ox +

Next, we state a well-known lemma.

Lemma 4.14. Let

e = sl 1 540.
3% 3

Assume that the update formula (3.6) is used at iteration k. Then, u;‘gsk >0 and

* _ o ||uk - Sk;H *
(414) ([ Hpn = H <= @06f)!/? + =Z2m=0) || L — H2,
az |lug — HE sl
sk
where, ag € (0,1], a1, ag are constants independent of k, and
AL —HD8e ]y, 7 :
e H o
1> 0, =< a5l =2k 772
0, H;k =H;.
Proof. See Broyden, Dennis, and Moré ([3], P. 223 along with P. 242). O

To achieve a superlinear rate of convergence, we need a more refined version
of (4.14) by extending the result in [3].

Lemma 4.15. Let the assumptions of Lemma 4.14 hold. Then, there are ag, oy
and as, constants independent of k, such that

|t = HZ Ly <((1 = a08))? + e |2 = |) 1o = HE
+ o H:ck —
where,
(. k—H2)3k ]|,
1> 0= Mg Hea#H

0, sz—H*
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Proof. The result is obtained by Lemma 4.14, Lipschitz continuity of Q(z) and
the fact that H;k —H. ;= p1(Qr+1 — Q). O

Now, by (3.1), Lipschitz continuity of @Q(x) and with Lemma 4.15 at hand, the
local linear convergence theorem (Theorem 4.3 in [16]) holds as stated next.

Theorem 4.16. Suppose that Assumptions 4.2 hold. Let the matriz B, be
updated by (3.6). Let the sequence {wk} be generated by Algorithm 1. Then, for

any r € (0,1), there exist positive constants € and 0 such that if ||eo|| < € and
|B2o — S|l < 6, then

lextall < 7ller—ll, k=1,
that is, ©F — x* at least at a two-step Q-linear rate.
Now, we are ready to state our main result.

Theorem 4.17. Suppose that all conditions of Theorem 4.16 hold. Then, the
sequence {xk} generated by Algorithm 1 with the structured DFP update rule
(3.6), converges two-step Q-superlinearly to x*.

Proof. By Theorem 4.16 and Lipschitz continuity of Q(x), we have

(4.15) [(Bzk = SZ)skll = O (Hz ke — HZ) skl -
Considering (4.15) and Lipschitz continuity of Z(x), the rest of proof follows quite
similar to the proof of Theorem 4.4 in [16]. O

5. Computational Results

Here, we report the comparative results obtained on some test problems. For
brevity, the global convergence results, implementation details and more extensive
computational results will come in a separate paper. Bartels and Mahdavi- Aimiri
[1] presented a program for random generation of general nonlinearly constrained
nonlinear programming problems. They also gave an example of a least squares
problem where the dimensions and the curvature of the problem could be varied.
We considered seven problems generated from this class of problems. All of these
random test problems have both nonlinear constraints and nonlinear residual
functions in the objective function. Our program has successfully solved all of
the considered problems quite efficiently. The local convergence on all problems
clearly showed a two-step superlinear rate. We compared our results with the
ones obtained by our testing of three algorithms (Interior/Direct, Interior/CG
and Active-Set) recently developed in the KNITRO 6.0 package. Our call to
programs in KNITRO are managed by a C++ program having the same test-
ing environment as our program. For the three programs, we used the default
parameter values without defining any spacial case for the objective function or
constraints, and used the dense quasi-Newton BFGS Hessian approximation of
the Hessians.
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TABLE 1. Results on randomly generated test problems

PN | SP | ¢ | MA&A D CG AS
1 1 1 19 36 45 45
1 10 | 1 40 o8 62 327
1 {100 1 40 83 7 97
2 1 | -1 25 42 45 45
2 |10 | -1 45 64 76 256
2 | 100 | -1 42 91 72 132
3 1 |-10 37 52 69 54
3 | 10 |-10 45 67 7 312
3 | 100 | -10 37 93 87 74
4 1 1 36 266 163 151
4 10| 1 56 169 130 | 417
5) 1 | -1 95 386 139 193
5 | 10 | -1 117 182 99 766
6 1 1 105 533 | 3096 | 406
6 |10 | 1 116 8140 | 17787 | 406
7 1] -1 125 13174 | 423 127
7 | 10 | -1 140 7835 | 255 | 3813

The measures taken to implement Algorithm 1 such as test for nearness to
stationarity, test for feasibility and other computational decisions are the same
as the corresponding ones in [14]. The numerical positive definiteness of the
matrix H, is enforced by using the modified Cholesky factorization described in
[13] during the process of solving (2.10).

Our algorithm was coded in a portable subset of C++ and ran in double
precision arithmetic on the microsoft visual C++ 6.0 compiler on an x86-based
PC with an AMD 1667Mhz processor. The parameters of Sections 4 and the
corresponding ones that appeared in [14] were set as follows:

n=1,7=0.1, e=0.01, y=10"", # =107% and 8 =1075.

These values were determined by experience as ones that have worked well on
most of the problems we had tried.

Our method of counting function evaluations is consistent with KNITRO, so
that it serves as a basis for comparison. Obviously, the function evaluations are
compared on cases where the algorithms have converged to the same solution
point. In Table 1, we report the results obtained on three sets of random prob-
lems (problems 1, 2 and 3 as set 1, problems 4 and 5 as set 2, and finally problems
6 and 7 as set 3) generated and tested by Bartels and Mahdavi-Amiri [1]. Each
set of random problems are generated with all quantities (z*, Lagrange multipli-
ers, Uy, etc.) being exactly the same, and only having different V2L obtained by
setting different values for o (V2L is definite if ¢ > 0 and is indefinite if o < 0;
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for details, see [1]). The numbers of the equality constraints, the inequality con-
straints and the active constraints at solution for the three sets respectively are
(2, 3,4), (5,5, 7) and (8, 12, 10). In Table 1, the “SP” column shows the value
to which all component of the starting point are set. The “o” column shows
the value considered for o. The columns headed by “MA&A”, “D”, “CG” and
“AS” respectively give the number of function evaluations required by our algo-
rithm, Interior/Direct (barrier), Interior/CG (barrier) and Active-Set algorithms.
The results show our method to be competitive in comparison with those solved
by KNITRO. Thus, our new code here with the projected structured Hessian
updating along with the new line search strategy significantly outperforms the
three general nonlinear algorithms of KNITRO [5]. This attests to the practical
appropriateness of our structural approach to nonlinear least squares.

6. Conclusions

We proposed a structurally projected exact penalty method for solving con-
strained nonlinear least squares problems. The projected structure makes appro-
priate use of the ideas of Nocedal and Overton for general nonlinear programs.
The analytical and numerical results showed our proposed algorithm to be ef-
ficient and reliable. We proved a local two-step superlinear convergence. We
implemented the proposed algorithm and tested the resulting program and three
nonlinear programming codes from KNITRO on some randomly generated prob-
lems of Bartels and Mahdavi-Amiri. The results indeed confirmed the practical
significance of our special structured considerations for the projected least squares
Hessians.
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