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IMPROVED INFEASIBLE-INTERIOR-POINT

ALGORITHM FOR LINEAR COMPLEMENTARITY

PROBLEMS

M. ZANGIABADI∗ AND H. MANSOURI

Communicated by Nezam Mahdavi-Amiri

Abstract. We present a modified version of the infeasible-interior-
point algorithm for monotone linear complementary problems in-
troduced by Mansouri et al. (Nonlinear Anal. Real World Appl.
12(2011) 545–561). Each main step of the algorithm consists of
a feasibility step and several centering steps. We use a different
feasibility step, which targets at the µ+-center. It results a better
iteration bound.

1. Introduction

For a comprehensive learning about interior-point methods (IPMs),
we refer to Roos et al. [5] and Wright [7]. In [4], a full-Newton step in-
feasible interior-point method (IIPM) for linear optimization (LO) was
presented and later this algorithm extended to linear complementarity
problems (LCP) by Mansouri et al. [1]. In this paper we present a
slightly different algorithm which uses a more natural feasibility step,
which targets at the µ+-center.

This paper is organized as follows. First, we review some results which
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are due to [1], and then, apply them to analyze the feasibility and the
centering steps of our algorithm. Then we present our algorithm. Each
main step of the algorithm consists of a feasibility step and several cen-
tering steps. Recall that in [1] the feasibility step targets at the µ-center
of the next pair of perturbed problems. Since the aim of each main iter-
ation is to get a good approximation of the µ+-center of the next pair of
perturbed problems, we take a more natural approach to let the feasibil-
ity step target at the µ+-center of the next pair of perturbed problems.
Finally, we give some concluding remarks.

Notations

The notations used throughout the paper is rather standard: capital
letters denote matrices, lower case letters denote vectors, script capital
letters denote sets, and Greek letters denote scalars. All vectors are con-
sidered to be column vectors. The components of a vector u ∈ Rn will
be denoted by ui, i = 1, · · · , n. The relation u > 0 is equivalent to ui >
0, i = 1, · · · , n, while u ≥ 0 means ui ≥ 0, i = 1, · · · , n. We denote
Rn

+ = {u ∈ Rn : u ≥ 0} , Rn
++ = {u ∈ Rn : u > 0}. For any vector

x ∈ Rn, xmin = min (x1; x2; · · · ; xn) and xmax = max (x1; x2; · · · ; xn).
If u ∈ Rn then U := diag (u) denotes the diagonal matrix having the
components of u as diagonal entries. If x, s ∈ Rn, then xs denotes the
componentwise (Hadamard) product of the vectors x and s. Further-
more, e denotes the all-one vector of length n. The 2-norm and the
infinity norm for vectors are denoted by ‖·‖ and ‖·‖∞, respectively. The
Frobenius matrix norm is given by

‖U‖2 :=
m∑
i=1

n∑
j=1

U2
ij = Tr

(
UTU

)
.

2. Preliminaries

The monotone linear complementarity problem (LCP) is to find vector
pair (x, s) ∈ R2n that satisfies the following conditions

s = Mx+ q, (x, s) ≥ 0, xT s = 0, (P )

where q ∈ Rn and M is an n× n matrix supposed positive semidefinite.
We denote the feasible set of the problem (P ) by

F :=
{

(x, s) ∈ R2n
+ : s = Mx+ q

}
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and its solution set by

F∗ :=
{

(x∗, s∗) ∈ F : (x∗)T s∗ = 0
}
.

Throughout this paper it will be assumed that F∗ is not empty, i.e., (P )
has at least one solution. As usual for infeasible interior-point methods
(IIPMs), we use the starting point as in [1] that one knows some positive
scalars ρp and ρd such that

‖x∗‖∞ ≤ ρp, max {‖s∗‖∞ , ρp ‖Me‖∞ , ‖q‖∞} ≤ ρd,(2.1)

for some (x∗, s∗) ∈ F∗, and the initial iterates are

x0 = ρp e, s0 = ρd e, µ0 = ρp ρd.(2.2)

Using
(
x0
)T
s0 = nρpρd, the total number of iterations in the algorithm

of [1] is bounded above by

72n log
max

{
nρpρd,

∥∥r0∥∥}
ε

,(2.3)

where r0 is the initial value of the residual:

r0 = s0 −Mx0 − q.(2.4)

Up to a constant factor, the iteration bound (2.3) was first obtained by
Potra [2], and it is still the best-known iteration bound for IIPMs.

To describe the aim of this article, we need to recall the main ideas
underlying the algorithm in [1]. For any ν with 0 < ν ≤ 1, we consider
the perturbed problem (Pν), defined by

s−Mx− q = νr0, (x, s) ≥ 0. (Pν)

Note that if ν = 1 then (x, s) =
(
x0, s0

)
yields a strictly feasible solution

of (Pν). Owing to the choice of initial iterates, we may conclude that if
ν = 1 then (Pν) has a strictly feasible solution, which means that the
perturbed problem then satisfies the well-known interior-point condition
(IPC). More generally one has the following lemma.

Lemma 2.1. If the original problem (P ) is feasible then the perturbed
problem (Pν) satisfies the IPC.

We assume that (P ) is feasible, it follows from Lemma 2.1 that the
problem (Pν) satisfies the IPC for each ν ∈ (0, 1]. But then its central
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path exists. This means that the following system has a unique solution
for every µ > 0

(2.5)
s−Mx− q = νr0, x ≥ 0, s ≥ 0,

xs = µe.

If ν ∈ (0, 1] and µ = νρpρd, we denote this unique solution in the
sequel as (x (ν) , s (ν)). Using this notation, we have, by taking ν = 1,
(x (1) , s (1)) =

(
x0, s0

)
= (ρpe, ρde).

We measure proximity of iterates (x, s) to the µ-center of the perturbed
problem (Pν) by quantity δ (x, s; µ), which is defined as follows:

δ (x, s; µ) =
1√
2

∥∥v − v−1∥∥ , where v :=

√
xs

µ
.(2.6)

Initially, we have x = ρp e and s = ρd e and µ0 = ρpρd, where v = e
and δ (x, s; µ) = 0. In the sequel, we assume that at the start of each
iteration, δ (x, s; µ) is smaller than or equal to a small threshold value
τ > 0. So certainly this is true at the start of the first iteration.

3. An iteration of the algorithm

In this section we describe one iteration of our algorithm. As we
established above, if ν = 1 and µ = µ0, then (x, s) =

(
x0, s0

)
is the

µ-center of the perturbed problem (Pν). This is our initial iterate.

We measure proximity to the µ-center of the perturbed problem by the
quantity δ (x, s; µ) as defined in (2.6). Initially we thus have

δ (x, s; µ) = 0.

In what follows we assume that at the start of each iteration, just be-
fore the feasibility step, δ (x, s; µ) is smaller than or equal to a small
threshold value τ > 0. So this is certainly true at the start of the first
iteration.

Suppose that for some ν ∈ (0, 1], we have (x, s) satisfying the feasibility
condition (2.5) and for ν = µ

µ0
, and xT s ≤

(
n+ δ2

)
µ and δ (x, s; µ) ≤ τ .

We reduce µ to µ+ = (1− θ)µ, with θ ∈ (0, 1), and find new iterates

(x+, s+) that satisfy (2.5), with µ replaced by µ+ and ν by ν+ = µ+

µ0
,

and such that xT s ≤
(
n+ δ2

)
µ+ and δ (x+, s+; µ+) ≤ τ . Note that

ν+ = (1− θ) ν.
To be more precise, this is achieved as follows. Each main iteration
consists of feasibility step and a few centering steps. The feasibility step
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serves to get iterates
(
xf , sf

)
that are strictly feasible for (Pν+), and

close to its µ-center (x (µ+, ν+) , s (µ+, ν+)).
In fact, the feasibility step is designed in a such a way that

δ
(
xf , sf ; µ+

)
≤ 1√

2
.

Since
(
xf , sf

)
is strictly feasible for (Pν+), we can easily get iterates

(x+, s+) that are strictly feasible for (Pν+), and such that

δ
(
x+, s+; µ+

)
≤ τ,

just by performing a few centering steps starting at
(
xf , sf

)
and target-

ing at the µ+-center of (Pν+).
Before describing the search directions used in the feasibility step and

the centering step, we give a more formal description of the algorithm
in figure 1.

Infeasible full-Newton-step algorithm

Input:
Accuracy parameter ε > 0;
barrier update parameter θ, 0 < θ < 1;
threshold parameter τ > 0;
x0, s0 > 0 and µ0 > 0 such that x0s0 = µ0e.

begin
x := x0 > 0, s := s0 > 0; µ := µ0;
while max (nµ, ‖r‖) ≥ ε do
begin

feasibility step:

(x, s) := (x, s) +
(
∆fx, ∆fs

)
;

µ-update:

µ := (1− θ)µ;

centering steps:

while δ (x, s; µ) ≥ τ do
begin

(x, s) := (x, s) + (∆x, ∆s) ;
end

end
end

Figure 1. Infeasible full-Newton-step algorithm
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According to the definition of (Pν) the feasibility equation for (Pν) is
given by

s−Mx− q = νr0, (x, s) ≥ 0,

and this of (Pν+) by

s−Mx− q = ν+r0, (x, s) ≥ 0.

To get iterates that are feasible for (Pν+) we need search directions ∆fx
and ∆fs such that

(s+ ∆fs)−M(x+ ∆fx)− q = ν+r0,
(
x+ ∆fx, s+ ∆fs

)
> 0.

Since (x, s) is feasible for (Pν), it follows that ∆fx and ∆fs should
satisfy

M∆fx−∆fs = θνr0.

Therefore, the following system is used to define ∆fx and ∆fs:

M∆fx−∆fs = θνr0,(3.1)

s∆fx+ x∆fs = (1− θ)µe− xs.(3.2)

It is easy to see that if (x, s) is feasible for the perturbed problem (Pν),
then after the feasibility step the iterates satisfy the feasibility condition
for (Pν+), provided that they are nonnegative. Assuming that before
the step δ (x, s; µ) ≤ τ holds, and by taking θ small enough, it can be
guaranteed that after the step, the iterates

xf = x+ ∆fx,(3.3)

sf = s+ ∆fs.(3.4)

are nonnegative and moreover δ
(
xf , sf ; µ+

)
≤ 1√

2
, where

µ+ = (1− θ)µ.
So, after the µ-update, the iterates are feasible for (Pν+), and µ is such
that δ

(
xf , sf ; µ+

)
≤ 1√

2
.

Remark 3.1. For (3.2), we use the linearization of xfsf = (1− θ)µe,
which means that we target at the µ+-center. While in [1], the lineariza-
tion of xfsf = µe is used (targeting at the µ-center). As our aim is
to calculate a feasible solution to (Pν+), which should also lie in the
quadratic convergence neighborhood to it’s µ+-center, the direction used
here is more natural and intuitively better.



Improved infeasible-interior-point algorithm for linear complementarity problems 793

In the centering steps, starting at iterates (x, s) =
(
xf , sf

)
and tar-

geting at the µ-center, the search directions ∆x, and ∆s are the unique
directions defined by

(3.5)
∆s−M∆x = 0,
s∆x+ x∆s = µe− xs.

Denoting the iterates after a centering step as x+ and s+, we recall the
following from [1].

Lemma 3.2. If δ := δ (x, s; µ) ≤ 1, then the new iterates are feasible,

i.e. x+ and s+ are nonnegative, and (x+)
T
s+ ≤

(
n+ δ2

)
µ. Moreover,

if δ = δ (x, s; µ) ≤ 1√
2
, then δ = δ (d, s; µ) ≤ δ2.

The centering steps serve to get iterates that satisfy

xT s ≤
(
n+ δ2

)
µ+ and δ

(
x, s; µ+

)
≤ τ,

where τ is much smaller than 1√
2
. By using Lemma 3.2, the required

number of centering steps can easily be obtained. This goes as follows.
After µ-update, we have δ

(
xf , sf ; µ+

)
≤ 1√

2
, and hence after k center-

ing steps, the iterates (x, s) satisfy

δ
(
x, s; µ+

)
≤
(

1√
2

)2k

.

Just as in [1] this implies that no more than

log2

(
log2

1

τ2

)
(3.6)

centering steps are needed.

4. Analysis of the feasibility step

Let (x, s) denote the iterates at the start of an iteration and assume
δ (x, s; µ) ≤ τ . Recall that at the start of the first iteration, this is
certainly true because then δ (x, s; µ) = 0.
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4.1. The effect of the feasibility step and the choice of θ.

As we established in Section 3, the feasibility step generates new it-
erates (xf , sf ) that satisfy the feasibility condition for (Pν+). A cru-
cial element in the analysis is to show that after the feasibility step
δ
(
xf , sf ; µ+

)
≤ 1√

2
, i.e., that the new iterates are within the region

where the Newton process targeting at µ+-center of (Pν+) is quadrati-
cally convergent.
Define

v =

√
xs

µ
, dfx =

v∆fx

x
, dfs =

v∆fs

s
,(4.1)

by the use of (3.2) and (4.1), we get

(4.2)

xfsf = xs+
(
x∆fx+ s∆fs

)
+ ∆fx∆fs

= (1− θ)µe+ ∆fx∆fs

= (1− θ)µe+ xs
v2
dfxd

f
s = µ

(
(1− θ) e+ dfxd

f
s

)
.

Lemma 4.1. The iterates
(
xf , sf

)
are strictly feasible if and only if

(1− θ) e+ dfxd
f
s > 0

Proof. The proof is similar to the proof of Lemma 3.1 in [1], and is
omitted. �

Corollary 4.2. The iterates
(
xf , sf

)
are strictly feasible if

∥∥∥dfxdfs∥∥∥
∞
<

1− θ.

Proof. By Lemma 4.1 xf and sf are strictly feasible if and only if

(1− θ) e+ dfxd
f
s > 0. Since the last inequality holds if

∥∥∥dfxdfs∥∥∥
∞
< 1− θ,

the corollary follows. �

We proceed by deriving an upper bound for δ
(
xf , sf ; µ+

)
. According

to definition (2.6) one has

δ
(
xf , sf ; µ+

)
=

1

2

∥∥∥∥vf − (vf)−1∥∥∥∥ , where vf =

√
xfsf

µ+
.

In the sequel we denote δ
(
xf , sf ; µ+

)
also shortly by δ

(
vf
)
, and we

have the following result.
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Lemma 4.3. If
∥∥∥dfxdfs∥∥∥

∞
< 1− θ, then

2δ
(
vf
)2
≤

∥∥∥dfxdfs1−θ

∥∥∥2
1−

∥∥∥dfxdfs1−θ

∥∥∥
∞

.

Proof. To simplify the notations in this proof, let z := dfxd
f
s

1−θ . After

dividing both sides in (4.2) by µ+ we get

(
vf
)2

=
µ
[
(1− θ) e+ dfxd

f
s

]
µ+

=
µ [(1− θ) e+ (1− θ) z]

(1− θ)µ
= e+ z.

Hence we have

2δ
(
vf
)2

=
n∑
i=1

((
vfi

)2
+
(
vfi

)
−2− 2

)
=

n∑
i=1

(
1 + zi +

1

1 + zi
− 2

)

=
n∑
i=1

z2i
1 + zi

≤
n∑
i=1

z2i
1− |zi|

≤
n∑
i=1

z2i
1− ‖z‖∞

=
‖z‖2

1− ‖z‖∞
,

where the inequalities are due to ‖z‖∞ < 1. This proves the lemma. �

4.2. First upper bound for θ.

Since we need to have δ
(
vf
)
≤ 1√

2
, it follows from Lemma 4.3 that it

suffices to have ∥∥∥dfxdfs1−θ

∥∥∥2
1−

∥∥∥dfxdfs1−θ

∥∥∥
∞

≤ 1.(4.3)

As we may easily verify that∥∥∥dfxdfs∥∥∥2 ≤
(∥∥∥dfx∥∥∥∥∥∥dfs∥∥∥)2 ≤ 1

4

(∥∥∥dfx∥∥∥2 +
∥∥∥dfs∥∥∥2)2

,(4.4) ∥∥∥dfxdfs∥∥∥∞ ≤ 1

2

(∥∥∥dfx∥∥∥2∞ +
∥∥∥dfs∥∥∥2∞

)
≤ 1

2

(∥∥∥dfx∥∥∥2 +
∥∥∥dfs∥∥∥2) .(4.5)
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For the moment we assume that

∥∥∥dfx∥∥∥2+∥∥∥dfs∥∥∥2
1−θ < 2. Then

∥∥∥dfxdfs1−θ

∥∥∥
∞
< 1,

whence inequality (4.3) holds if

1
4

(∥∥∥dfx∥∥∥2+∥∥∥dfs∥∥∥2
1−θ

)2

1− 1
2

∥∥∥dfx∥∥∥2+∥∥∥dfs∥∥∥2
1−θ

≤ 1.

Considering

∥∥∥dfx∥∥∥2+∥∥∥dfs∥∥∥2
1−θ as a single term, and by some elementary cal-

culation, we obtain that (4.3) holds if∥∥∥dfx∥∥∥2 +
∥∥∥dfs∥∥∥2

1− θ
≤
√

5− 1 ≈ 1.237.(4.6)

Also by Corollary 4.2 and inequality (4.5), the strict feasibility of
(
xf , sf

)
can be derived from (4.6). In other words, the inequality (4.6) implies
that after the feasibility step

(
xf , sf

)
is strictly feasible and lies in the

quadratic convergence neighborhood with respect to µ+-center of (Pν+).

4.3. The scaled search direction dfx and dfs .

One may easily check that the system (3.1)-(3.2), which defines the
search directions ∆fx and ∆fs, can be expressed in term of the scaled

search directions dfx and dfs as follows.

MS−1Xdfx − dfs = θνvs−1r0,(4.7)

dfx + dfs = (1− θ) v−1 − v,(4.8)

where X = diag(x), S = diag(s).

Lemma 4.4 (Corollary 2.3 in [2]). Let x > 0 and s > 0 be two n-
dimensional vectors, and let M ∈ Rn×n be a positive semidefinite ma-
trix. Then the solution (u, z) of the linear system

MS−1Xu− z = ã,(4.9)

u+ z = b̃,(4.10)
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satisfies the following relations:

Du = (I +DMD)−1 (a+ b) , Dz = b−Du,(4.11)

‖Du‖ ≤ ‖a+ b‖ ,(4.12)

‖Du‖2 + ‖Dz‖2 ≤ ‖b‖2 + 2 ‖a+ b‖ ‖a‖ ,(4.13)

where D =
(
S−1X

) 1
2 , b = Db̃ and a = Dã.

We are now ready to find an upper bound for
∥∥∥dfx∥∥∥2 +

∥∥∥dfs∥∥∥2. To this

end we first apply Lemma 4.4 with u = dfx, z = dfs , a = θνDvs−1r0 and
b = D

(
(1− θ) v−1 − v

)
, which implies that

∥∥∥Ddfx∥∥∥2 +
∥∥∥Ddfs∥∥∥2 ≤ ∥∥D ((1− θ) v−1 − v)∥∥2
+2
∥∥θνDvs−1r0 +D

(
(1− θ) v−1 − v

)∥∥ ∥∥θνDvs−1r0∥∥ .(4.14)

By elementary properties of norms we have

∥∥∥Ddfx∥∥∥ ≤ ‖D‖∥∥∥dfx∥∥∥ , ∥∥∥Ddfs∥∥∥ ≤ ‖D‖ ∥∥∥dfs∥∥∥ ,
and

∥∥θνDvs−1r0∥∥ ≤ ‖D‖
∥∥θνvs−1r0∥∥ ,∥∥D ((1− θ) v−1 − v)∥∥ ≤ ‖D‖
∥∥(1− θ) v−1 − v

∥∥ .
Substituting these bounds in (4.14) we obtain the following weaker con-
dition

∥∥∥dfx∥∥∥2 +
∥∥∥dfs∥∥∥2 ≤ ∥∥(1− θ) v−1 − v

∥∥2
+2
(∥∥θνvs−1r0∥∥+

∥∥(1− θ) v−1 − v
∥∥) ∥∥θνvs−1r0∥∥ .(4.15)
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In order to obtain a bound for
∥∥θνvs−1r0∥∥ we write, using ν = µ

µ0

and v =
√

xs
µ ,∥∥θνvs−1r0∥∥ = θν

∥∥vs−1 r0∥∥
= θ

√
µ

µ0

∥∥∥∥√x

s
r0
∥∥∥∥

≤ θ

√
µ

µ0

∥∥∥∥√x

s
r0
∥∥∥∥
1

=
θ

µ0

∥∥∥∥√ µ

xs
x r0

∥∥∥∥
1

≤ θ

µ0 vmin

∥∥x r0∥∥
1

≤ θ

µ0 vmin

∥∥∥(S0
)−1

r0
∥∥∥
∞

∥∥s0∥∥∞ ‖x‖1 .(4.16)

To proceed we have to specify our initial iterates
(
x0, s0

)
. We assume

that ρp and ρd are such that

‖x∗‖∞ ≤ ρp, max {‖s∗‖∞ , ρp ‖Me‖∞ , ‖q‖∞} ≤ ρd,(4.17)

for some (x∗, s∗) ∈ F∗, and as usual we start the algorithm with

x0 = ρp e, s0 = ρd e, µ0 = ρp ρd.(4.18)

For such starting points we have clearly∥∥∥(S0
)−1

r0
∥∥∥
∞
≤ 1 +

ρp
ρd
‖Me‖∞ +

1

ρd
‖q‖∞ ≤ 3.(4.19)

By substituting (4.18) and (4.19) into (4.16) we obtain

∥∥θνvs−1r0∥∥ ≤ 3 θ

ρp vmin
‖x‖1 .(4.20)

By using Lemma 3.2 and ‖v‖2 = xT s
µ we easily obtain the following

inequality ∥∥(1− θ) v−1 − v
∥∥2 ≤ 2 (1− θ) δ2 +

(
n+ δ2

)
θ2.(4.21)
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Using (4.20) and (4.21) in (4.15) we get∥∥∥dfx∥∥∥2 +
∥∥∥dfs∥∥∥2 ≤ 2 (1− θ) δ2 +

(
n+ δ2

)
θ2

+2

(
3θ

ρp vmin
‖x‖1 +

√
2 (1− θ) δ2 + (n+ δ2) θ2

)
3θ

ρp vmin
‖x‖1 .(4.22)

Recall that (x, s) is feasible for (Pν) and δ (x, s; µ) ≤ τ ; i.e., this iterate
is close to the µ-center of (Pν). Based on this information, we present
the following three lemmas to estimate an upper bound for ‖x‖1 and a
lower bound for vmin.

Lemma 4.5. Let δ = δ (v) be given by (2.6). Then

1

q (δ)
≤ vi ≤ q (δ) ,(4.23)

where

q (δ) :=

√
2

2
δ +

√
1

2
δ2 + 1.(4.24)

Proof. The proof of this lemma is exactly the same as that of Lemma
II.60 in [5]. �

Lemma 4.6 (Lemma 5.7 in [1]). Let (x, s) be feasible for the perturbed
problem (Pν) and

(
x0, s0

)
as defined in (4.18). Then for any (x∗, s∗) ∈

F∗, we have

ν
((
s0
)T
x+

(
x0
)T
s
)
≤ ν2

(
x0
)T
s0 + xT s

+ν (1− ν)
((
s0
)T
x∗ +

(
x0
)T
s∗
)
− (1− ν)

(
sTx∗ + xT s∗

)
.

Lemma 4.7 (Lemma 5.8 in [1]). Let (x, s) be feasible for the perturbed
problem (Pν) and δ (v) is defined as in (2.6) and

(
x0, s0

)
as defined in

(4.18). Then we have

‖x‖1 ≤
(

2 + q (δ)2
)
nρp,(4.25)

‖s‖1 ≤
(

2 + q (δ)2
)
nρp,(4.26)

where q (δ) as defined in (4.24).

By substituting (4.23) and (4.25) into (4.22) we obtain
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∥∥∥dfx∥∥∥2 +
∥∥∥dfs∥∥∥2 ≤ 2 (1− θ) δ2 +

(
n+ δ2

)
θ2

+2
(

3n θq (δ)
(
q (δ)2 + 2

))2
(4.27)

+6
(√

2 (1− θ) δ2 + (n+ δ2) θ2
)
n θq (δ)

(
q (δ)2 + 2

)
.

4.4. Value for θ. We have found that δ
(
vf
)
≤ 1√

2
holds if the inequal-

ity (4.6) is satisfied. Then by (4.27), inequality (4.6) holds if

2 (1− θ) δ2 +
(
n+ δ2

)
θ2 + 2

(
3n θq (δ)

(
q (δ)2 + 2

))2
+6
(√

2 (1− θ) δ2 + (n+ δ2) θ2
)
n θq (δ)

(
q (δ)2 + 2

)
≤ 1.237 (1− θ) .

Obviously, the left-hand side of the above inequality is increasing in

δ, due to the definition q (δ) :=
√
2
2 δ +

√
1
2δ

2 + 1. Using this one may

easily verify that the above inequality is satisfied if

τ =
1

8
, θ =

1

14n
.(4.28)

Then, according to (3.6), with τ as given, after the feasibility step
at most 3 centering steps suffices to get iterates (x+, s+) that satisfy
δ (x+, s+; µ+) ≤ τ .

4.5. Complexity analysis. In the previous sections we have found that
if at the start of an iteration the iterates satisfy δ (x, s; µ) ≤ τ , with τ
as defined in (4.28), then after the feasibility step, with θ as defined in
(4.28), the iterates satisfy δ

(
xf , sf ; µ

)
≤ 1√

2
.

According to (3.6), at most 3 centering steps then suffice to get iterates
(x+, y+, s+) that satisfy δ (x+, s+; µ+) ≤ τ again. So each main iter-
ation consists of at most 4 so-called inner iterations, in each iteration
we need to compute a search direction (for either a feasibility step or a
centering step).

usually one measures the complexity of an IPM by inner iterations as
many times as needed. In each main iteration both the values of nµ and
the norm of the residual are reduced by the factor 1 − θ. Hence, the
total number of the main iterations is bounded above by

1

θ
log

max
{(
x0
)T
s0,
∥∥r0∥∥}

ε
.
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Due to (4.28) we may take

θ =
1

14n
.

Hence the total number of inner iterations is bounded above by

56n log
max

{(
x0
)T
s0,
∥∥r0∥∥}

ε
.

Thus we may state without any more proof the main result of the paper.

Theorem 4.8. If (P ) has optimal solution (x∗, s∗) ∈ F∗ such that
‖x∗‖∞ ≤ ρp and ‖s∗‖∞ ≤ ρd, then after at most

56n log
max

{(
x0
)T
s0,
∥∥r0∥∥}

ε
,

iterations the algorithm finds an ε-solution of LCP.

Remark 4.9. The above iteration bound is derived under the assump-
tion that there exists an optimal solution with (x∗, s∗) ∈ F∗ such that
‖x∗‖∞ ≤ ρp and ‖s∗‖∞ ≤ ρd. One might ask what happens if this is not
satisfied. In that case, during the course of the algorithm it may happen
that after some main steps the proximity measure δ (after the feasibility
step) exceeds 1√

2
, because otherwise there is no reason why the algorithm

would not generate an ε-solution. So if this happens, either (P ) does
not have optimal solution in F∗ or the values of ρp and ρd have been too
small. In the latter case one might run the algorithm once more with
some larger ρp and ρd.

5. Numerical results

In this section we present some numerical results. We consider the
following examples:

Example 5.1. [6]

M =


2 1 1 1
1 2 0 1
1 0 1 2
−1 −1 −2 0

 , q =


−8
−6
−4
3

 .
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Example 5.2. [3]

M =



1 0 −0.5 0 1 3 0
0 0.5 0 0 2 1 −1
−0.5 0 1 0.5 1 2 −4

0 0 0.5 0.5 1 −1 0
−1 −2 −1 −1 0 0 0
−3 −1 −2 1 0 0 0
0 1 4 0 0 0 0


, q =



−1
−3
1
−1
5
4
−1.5


.

We solve examples 5.1 and 5.2 by using both the short updating al-
gorithm [1] and the algorithm in Figure 1. For both algorithms, the
initialization parameters ρp and ρd are assumed as described in Section
2, and the accuracy parameter ε is set to 10−4. Table 1 shows the num-
ber of iterations to obtain ε-solutions for the above two examples with
the short updating algorithm and the algorithm in Figure 1. From the
table we see that the algorithm in Figure 1 reduced the number of iter-
ations. Since for both algorithms the work in every iteration is almost
the same, this is really a huge reduction.

Examples Algorithm in [1] Algorithm in Figure 1

Ex.5.1 138 51

Ex.5.2 180 86

Table 1. The number of iterations for examples 5.1 and 5.2

6. Concluding remarks

We presented a new IIPM for LCP; each main iteration consists of
a feasibility step and three centering steps. Our new feasibility step
is more natural, as it targets at the µ+-center, which results a better
iteration bound in compare with [1]. The ideas underlying this article
can be used to extend the algorithm to second-order cone optimization
and also to the symmetric cone optimization.
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