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JORDAN DERIVATIONS ON TRIVIAL EXTENSIONS

HOGER GHAHRAMANI

Communicated by Bernhard Keller

ABSTRACT. Let A be a unital R-algebra and M be a unital A-
bimodule. It is shown that every Jordan derivation of the trivial
extension of A by M, under some conditions, is the sum of a deriva-
tion and an antiderivation.

1. Introduction

Throughout the paper R will denote a commutative ring with unity.
Let A be an algebra over R. Recall that an R-linear map A from A
into an A-bimodule M is said to be a Jordan derivation if A(ab+ ba) =
A(a)b+ aA(b) + A(b)a+ bA(a) for all a,b € A. It is called a derivation
if A(ab) = A(a)b + aA(b) for all a,b € A. Each map of the form
a — am—ma, where m € M., is a derivation which will be called an inner
deriation. Also A is called an antiderivation if A(ab) = A(b)a+ bA(a)
for all a,b € A. We shall say that an antiderivation A is improper if it
is a derivation; otherwise we shall say that A is proper. Clearly, each
derivation or antiderivation is a Jordan derivation. The converse is, in
general, not true (see [6]).

It is natural and very interesting to find some conditions under which
a Jordan derivation is a derivation. Herstein [14] proved that every Jor-
dan derivation from a 2-torsion free prime ring into itself is a derivation
and that there are no nonzero antiderivations on a prime ring. Bresar
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[8] showed that every additive Jordan derivation from a 2-torsion free
semiprime ring into itself is a derivation. Sinclair [18] proved that every
continuous linear Jordan derivation on semisimple Banach algebras is a
derivation. Zhang in [21] proved that every linear Jordan derivation on
nest algebras is an inner derivation. Lu [17] proved that every additive
Jordan derivation on reflexive algebras is a derivation which generalized
the result in [21]. Benkovi¢ [6] determined Jordan derivations on tri-
angular matrices over commutative rings and proved that every Jordan
derivation from the algebra of all upper triangular matrices into its arbi-
trary bimodule is the sum of a derivation and an antiderivation. Zhang
and Yu [23] showed that every Jordan derivation of triangular algebras
is a derivation, so every Jordan derivation from the algebra of all upper
triangular matrices into itself is a derivation.

In this note we study the Jordan derivations on trivial extensions and
generalize the Zhang and Yu’s result [23].

2. Preliminaries

Recall that a triangular algebra Tri(A, M, B) is an R-algebra of the
form

a m

Tri(A,M,B):{<O b) lae A, meM, beB}

under the usual matrix operations, where A and B are unital algebras
over R and M is a unital (A, B)-bimodule which is faithful as a left .A4-
module as well as a right B-module (see [9]). Basic examples of triangular
algebras are upper triangular matrix algebras and nest algebras [11],
[13]. Recently, there has been a growing interest in the study of special
maps on triangular algebras, such as commuting linear maps [9], Lie
derivations [10], commuting traces of bilinear maps and commutativity
preserving linear maps [7], biderivations [5], functional identities [4],
Jordan isomorphisms [19], Jordan derivations [23] and Jordan higher
derivations [20].

Let A be a unital algebra over R and M be a unital A-bimodule.
A x M as an R-module together with the algebra product defined by:

(a,m).(b,n) = (ab,an + mb) (a,be A, m,neM)

is an R-algebra with unity (1,0), which is called the trivial extension
of A by M and denoted by T'(A, M). Trivial extensions have been
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extensively studied in the algebra and analysis (see, for instance, [1], [2],
3], [12], [15], [16] and [22] ).

Let Tri(A, M, B) be a triangular algebra over R. Denote by A® B the
direct sum of A and B as R-algebra, and view M as an A @ B-bimodule
with the module actions given by

(a,b).m = am, m.(a,b) = mb, ac A, beB, meM.

Then T'ri(.A, M, B) is isomorphic to T'(A @ B, M) as an R-algebra. So
triangular algebras are examples of trivial extensions.

The following notations will be used in our paper.
Let A be an R-algebra and M be an A-bimodule, define the left anni-
hilator of M by l.annaM = {a € A: aM = {0}}. Similarly, we define
the right annihilator of M by r.annaM = {a € A: Ma = {0}}. Also
we denote the unity and zero of T(A, M) by 1 and 0, respectively.

3. Main result

The main result of the paper is the following theorem.

Theorem 3.1. Let A be a unital algebra over the 2-torsion free com-
mutative ring R and M be a unital A-bimodule. Suppose that E is a
non-trivial idempotent element in A and E'=1-E such that

EAE'AE = {0}, E'AEAE = {0},

E(l.annaM)E = {0}, E'(r.annsM)E" = {0},
and EME" = M for all M € M. LetU = T(A,LM) and A : U — U
be a Jordan derivation and let P = (F,0) and Q = (E’,0). Then there
exists a derivation 0 : U — U and an antiderivation J : U — U such
that A =6+ J, J(PXP)=0 and J(QXQ)=0 for any X € U. Moreover,
0 and J are uniquely determined.

To prove the theorem we need some lemmas. We consider the condi-
tions of this theorem in the lemmas. Note that, P and () are idempotents
of U such that P+ () =1 and PQ = 0.

We will show that the Jordan derivation A is a sum of an antideriva-
tion J (see Lemma 3.3), an inner derivation / (see Lemma 3.5) and a
derivation D (see Lemma 3.8).

Lemma 3.2. For every X,Y € U, we have
PXQYP=0 and QXPY(Q =0.
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Proof. For all M € M, since EME' = M, we have
EME =0, EME=0, E'ME =0,
EM =M, ME =M, ME=0, EM=0.

Let X = (A,M)andY = (B,N). So PXQYP = (EAE'BE, EAE'N E+
EME' BE)=0as ECE =0 for all C € M and EAE'AFE = {0}. Sim-
ilarly, QX PYQ = 0. O

Lemma 3.3. The mapping J : U — U defined by
J(X) = PA(QXP)Q + QA(PXQ)P
is an antiderivation. Also J(PXP)=0 and J(QXQ)=0 for all X € U.

Proof. Clearly, J is an R-linear map. Since A is a Jordan derivation,
for all X,Y € U we have

A(QXPYP) = A(QXPPYP)
= A(QXPPYP+ PYPQXP)
(3.1) = A(QXP)PYP+ QXPA(PYP)
+PYPA(QXP)+ A(PYP)QXP.

Similarly

AQXQYP) = A(QXQ)QYP+QXQA(QYP)
(3.2) +QYPA(QXQ)+ A(QYP)QXQ.

A(PXPYQ) = A(PXP)PYQ+ PXPA(PYQ)
(3.3) +PYQA(PXP)+ A(PYQ)PXP.

A(PXQYQ) = A(PXQ)QYQ+ PXQAQYQ)
(3.4) +QYQA(PXQ)+ A(QYQ)PXQ.
Thus,

PA(QXPYP)Q = PYPA(QXP)Q,
A(QXQYP)Q = PA(QY P)QXQ;

A(PXPYQ)P = QA(PYQ)PXP;

A(PXQYQ)P = QYQA(PXQ)P.

T

O O
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From these relations and Lemma 3.2 we arrive at
J(XY) = PAQXYP)Q+ QA(PXYQ)P
= PA(QXPYP)Q+ PA(QXQYP)Q
+QA(PXPYQ)P + QA(PXQY Q)P
= PYPA(QXP)Q + PA(QYP)QXQ
+QA(PYQ)PXP + QYQA(PXQ)P
= YPA(QXP)Q+ PA(QYP)QX
+QA(PYQ)PX + YQA(PXQ)P
= YJX)+JY)X.
So J is an antiderivation . By the definition of J it is clear that

J(PXP) = 0 and J(QXQ) = 0 for all X € U. The proof is now
complete. O

Lemma 3.4. If J: U — U is an improper antiderivation, J(PXP) =0
and J(QXQ) =0 for all X €U, then J = 0.

Proof. First, observe that J(P) = J(PPP) = 0. Similarly, we have
J(Q) = 0. Then, since J is a derivation and an antiderivation, we have

J(PXQ) = PJ(XQ)+ J(P)XQ = PJ(XQ)
=P(QJ(X)+J(Q)X)=0.
Similarly, J(QXP) = 0. So
J(X)=J(PXP)+ J(PXQ)+ J(QXP)+ J(QXQ) =0
for all X e U. O

Lemma 3.5. Let T = PA(P)Q — QA(P)P and the mapping I : U — U
be defined by

I(X)=PA(PXP+QXQ)Q+ QA(PXP+ QXQ)P.
Then for every X € U we have
I(X)=XT-TX.
Proof. A1'Y € U satisfy

0 = A((PYP)(QYQ)+ (QYQ)(PYP))
(3.5) = PYPA(QYQ)+ A(PYP)QYQ
+QYQA(PYP) + A(QYQ)PYP.
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From this, for every Y € U, we obtain

(3.6) PYPA(QYQ)Q + PA(PYP)QYQ =0
and
(3.7) QYQA(PYP)P + QA(QYQ)PYP = 0.

For any X € U replace Y by X + P in (3.6). This gives
PXPA(QXQ)Q+PA(QXQ)Q+PA(PXP)QXQ+PA(P)QXQ =0.

Hence, replacing X by QX@Q in the previous equation, we get that
PA(QXQ)Q + PA(P)QXQ = 0 for any X € Y. If X = @ in this
relation, then PA(Q)Q + PA(P)Q = 0.

Now, for any X € U replace Y by PXP + @ in (3.6) we obtain

PXPA(Q)Q + PA(PXP)Q = 0.

According to these relations we have —PX PA(P)Q+ PA(PXP)Q = 0.
Similarly, we can obtain from relation (3.7) that

QA(QXQ)P+QXQA(P)P =0 and —QA(P)PXP+QA(PXP)P =0
for all X € U. These relations and Lemma 3.2 imply
I(X)=PA(PXP)Q + PA(QRXQ)Q + QA(PXP)P + QA(QXQ)P
= PXPA(P)Q — PA(P)QXQ + QA(P)PXP — QXQA(P)P
= XPA(P)Q — PA(P)QX + QA(P)PX — XQA(P)P
=XT-TX.

Lemma 3.6. Let X € U. Then
(a) If PXPZQ=0 for all Z € U, then PXP=0;
(b) If PZQXQ=0 for all Z € U, then QXQ=0.

Proof. (a) Write X = (A,N). Let M € M, and set Z = (0, M). We
have EME = M by assumption and EN = N for all N € M from the
proof of Lemma 3.2. Hence,

ENE =0 and 0=PXPZQ = (0, EAEME/) = (0,AM),
so A € l.annygM. Hence, by assumptions we obtain FAE = 0, therefore
PXP = (EAE,ENFE) = 0.
Similarly, we can show that (b) holds. O
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Lemma 3.7. For every X € U we have

PAQXQ)P =0, QA(PXP)Q =0, PA(PXQ)P =0,
QA(PXQ)Q =0, PA(QXP)P =0, QA(QXP)Q =0.
Proof. Using (3.5) we see that for all Y € U, we have
PYPA(QYQ)P + PA(QYQ)PYP = 0.

For any X € U replace Y by QXQ + P, so PA(QXQ)P = 0. Similarly,
replacing Y by PX P+@ in (3.5), and multiplying the resulting equation
by @ both on the left and on the right, yields QA(PXP)Q = 0, for all
Xel.

If we multiply (3.1) by P and replace Y by P, we obtain PA(QXP)P =
0 for all X € U, since Lemma 3.2 holds. Similarly, multiplying (3.1) by
@ and replacing Y by P, we get QA(QXP)Q =0 for all X € U.

As above, from (3.4) and Lemma 3.2, we have PA(PXQ)P = 0 and
QA(PXQ)Q =0, for all X € U. O

Lemma 3.8. The mapping D : U — U defined by D(X) = PA(PXP)P+
PA(PXQ)Q + QA(QXP)P + QA(QXQ)Q is a derivation.

Proof. D is an R-linear map. From (3.3) and Lemma 3.7 it follows
immediately that

PA(PXPYQ)Q = PXPA(PYQ)Q + PA(PXP)PYQ
for all X,Y € U. So for every X,Y, Z € U we have
PA(PXPYPZQ)Q = PXPYPA(PZQ)Q + PA(PXPYP)PZQ.
On the other hand,
PA(PXPYPZQ)Q) = PXPYPA(PZQ)Q
+PXPA(PYP)PZQ+ PA(PXP)PYPZQ.
By comparing the two expressions for PA(PXPY PZQ)Q, we arrive at
P(A(PXPYP)—- A(PXP)PY — XPA(PYP))PZQ =0
for any Z € U. Therefore, by Lemma 3.6, we have
PA(PXPYP)P = PA(PXP)PYP+ PXPA(PYP))P.
Similarly, from (3.4) we get
PA(PXQYQ)Q = PA(PXQ)QYQ + PXQA(QYQ)Q
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and

QA(QXQYQ)Q = QA(QXQ)QYQ + QXQA(QYQ)Q

forall X,Y € U.
Similarly, we can obtain from (3.1), (3.2) and Lemma 3.6 that

QA(QXPYP)P = QA(QXP)PYP + QXPA(PYP)P
and
QA(QXQYP)P = QXQA(QYP)P + QA(QXQ)QY P

for all X,Y e U.
These relations with Lemma 3.2 gives us that D(XY) = XD(Y) +
D(X)Y forall X,Y € U. That is, D is a derivation from ¢/ into itself. [

Proof of Theorem 3.1. For any X € U we have
X=PXP+PXQ+QXP+QXQ

so, by Lemmas 3.3, 3.5, 3.7 and 3.8 it follows immediately that A(X) =
J(X)+ I(X)+ D(X) for all X € U where § = D + I is a derivation
and J is an antiderivation from ¢/ into itself such that J(PXP) = 0 and
J(QXQ) =0 for any X € U.

Let 6 : U — U be a derivation and J' : U — U be an antideriva-
tion such that A = ¢ +J', J(PXP) = 0 and J (QXQ) = 0 for any
X el Sod+J =204 +J and hence § —8§ = J — J. Therefore,
J — J' is an improper antiderivation such that (J —.J)(PXP) = 0 and
(J—J)QXQ) = 0. Thus, by Lemma 3.4, we have J = J and hence § =
8'. So we have that & and J are uniquely determined. The proof of The-
orem 3.1 is thus complete. O

Note that if J # 0, then J is a proper antiderivation (by Lemma 3.4).

Remark 3.9. By the above lemmas and the proof of Theorem 3.1, one
observes that if A : U4 — U is a Jordan derivation, then the following
are equivalent.

(a) A is a derivation.
(b) PA(QXP)Q =0 and QA(PXQ)P =0 for all X € U.
(¢) A(PUQ) C PUQ and A(QUP) C QUP.

We have the following corollary, which was proved by a different
method in [23].
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Corollary 3.10. Let A, B be unital algebras over the 2-torsion free
commutative ring R, M be a unital (A, B)-bimodule that is faithful as a
left A-module and also as a right B-module. Let T = Tri(A, M, B) be
the triangular algebra. Then every Jordan derivation from T into itself
1 a derivation.

Proof. Let A @ B be the direct sum of A and B as R-algebras and
E = (1,0). Consider T(A & B, M) as defined in introduction. So this
trivial extension satisfies all the requirements in Theorem 3.1 and there-
fore any Jordan derivation on it satisfies condition (b) of Remark 3.9.
Therefore, every Jordan derivation on T(A & B, M) is a derivation. By
the isomorphism given in the introduction we have the result. U

Remark 3.11. Let 7 = Tri(A, M, B) be a triangular algebra satisfying
1 0
0 0
tent of 7 and Q = 1 — P. Suppose that N is a unital 7-bimodule such
that QNP = {0} and, let for N € N, the condition PNPTQ = {0}
implies PN P = 0 and the condition PTQNQ = {0} implies QNQ = 0.
Then (P,0) and (Q,0) are idempotents of T'(7, ') such that
(Q.0)T(T,N)(P,0) ={(0,0)}.

Let (S,N) € T(T,N) such that

(P,0)(S, N)(P,0)T(T,N)(Q,0) = {(0,0)}.
So for each S' € T we have (P,0)(S, N)(P,0)(S",0)(Q,0) = (0,0) and
hence (PSPS'Q,PNPS Q) = (0,0). Therefore, PSPTQ = {0} and
PNPTQ = {0}. By assumption, we have PSP =0 and PNP = 0. So
(P,0)(S, N)(P,0) = 0. Similarly, if (P,0)T(T, A')(Q,0)(S, N)(Q,0) =
{(0,0)}, then (Q,0)(S, N)(Q,0) = 0. Therefore

 ((POT(T,N)(P,0) (P,0)T(T,N)(Q.0)
T(T.N) = ( 0 (Q,0>T<T,N><Q,0>> '

Thus, T(T,N) is a triangular algebra. So by Corollary 3.10 every Jordan
derivation from T'(7,/N) into itself is a derivation.

the conditions of Corollary 3.10, P = be the standard idempo-

Let A be a unital algebra over R and M be a unital A-bimodule.
An R-linear map 6 from A into M is a Jordan derivation (derivation)
if and only if the R-linear map A : T(A,M) — T(A, M), given by
A(A, M) = (0,06(A)), is a Jordan derivation (derivation). From this
result and Remark 3.11, we have the next corollary which is a general-
ization of Corollary 3.10.
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Corollary 3.12. Let T = Tri(A, M, B) be a triangular algebra satis-
fying the conditions of Corollary 3.10 and N be a unital T -bimodule as
in the Remark 3.11. Then every Jordan derivation from T into N is a
derivation.

We now provide an example of trivial extension which satisfies condi-
tions of Theorem 3.1, but is not a triangular algebra.

Example 3.13. Let R be a 2-torsion free commutative ring with unity
and A be the R-algebra of 2 x 2 lower triangular matrices over R. We
make R into an A-bimodule by defining RA = RAss and AR = A1 R
forall R e R, A e A Let E = Ei;. Then the conditions of The-
orem 3.1 hold for T(A,R) but this trivial extension is not a trian-
gular algebra because the map A : T(A,R) — T(A,R) defined by
A(A,R) = (RE21,A21) is a proper antiderivation, while by the above
corollary, triangular algebras have no nonzero proper antiderivations.
(We denote E;; for the matrix units, for all i, j.)
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