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HORVITZ-THOMPSON ESTIMATOR OF POPULATION

MEAN UNDER INVERSE SAMPLING DESIGNS

M. MOHAMMADI∗ AND M. SALEHI M.

Communicated by Ahmad Reza Soltani

Abstract. Inverse sampling design is generally considered to be
an appropriate technique when the population is divided into two
subpopulations, one of which contains only a few units. Here, we de-
rive the Horvitz-Thompson estimator for the population mean un-
der inverse sampling designs, where subpopulation sizes are known.
We then introduce an alternative unbiased estimator, correspond-
ing to post-stratification approach. Both of these are not location-
invariant, but this is ignorable for alternative estimator. Using a
simulation study, we find that the Horvitz-Thompson estimator is
an efficient estimator when the mean of the off-interest subpopula-
tion is close to zero, while the alternative estimator appears to be
an efficient estimator in general.

1. Introduction

Inverse sampling design is considered to be an efficient strategy for
estimating the population parameters when only few units represent the
characteristic of interest. In many situations, the main reason of imple-
menting inverse sampling is not efficiency, in the sense of having smaller
variance. Whenever the data from a survey are intended to be used for
statistical analysis such as contingency table or logistics regression, we
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need to have at least a certain number of units from a rare subpopu-
lation in order to have a valid statistical conclusion. Inverse sampling
design has been used to estimate the population proportion (Haldane,
[6]). Salehi and Seber [9], using Murthy’s estimator [8], obtained an
unbiased estimator of the population mean under a simple inverse sam-
pling design. Christman and Lan [3] introduced three inverse sampling
designs using stopping rules based on the number of selected units in the
rare subpopulation. Salehi and Seber [10] suggested a general version of
inverse sampling.
All of the unbiased estimators for the population mean in the mentioned
literature are derived based on the assumption of unknown subpopula-
tion sizes. However, if these are known, then we may derive more efficient
estimators, similar to post-stratification approach (Cochran, [4]).

Here, we derive the Horvitz-Thompson estimator for the population
mean under inverse sampling designs when the size of subpopulations are
known. We also consider another unbiased weighted estimator based on
post-stratification idea. We will compare the precision of the proposed
estimators. The precision of both estimators depend on the coefficient
of variation of two subpopulations and the square of the off-interested
subpopulation mean. The Horvitz-Thompson estimator is sensitive to
distance of the subpopulation mean from zero, while the other estimator
is more stable.

2. Horvitz-Thompson estimator under inverse sampling
design

Here, we derive the Horvitz-Thompson estimator for the population
mean under which the size of subpopulations are known. Such a situa-
tion is more likely to occur when the subpopulations are recognized by
their domains rather than their y-values.
Suppose that a finite population U = {u1, u2, . . . , uN} of N units is
divided into two subpopulations UC and UC̄ , with the corresponding
sizes M and N −M , respectively. With any unit uk, there is an as-
sociated value of the variable of interest yk, for k = 1, 2, . . . , N . An
unbiased estimator of the population mean may be found using the
Horvitz-Thompson (HT) estimator. Let s denote the sample set and
πk = Pr(k ∈ s) be the inclusion probability of the kth unit. Hence, the
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HT estimator for the mean, say µ, is

(2.1) µ̂HT =
1

N

∑
k∈s

yk
πk
.

The variance of µ̂HT is

(2.2) Var(µ̂HT ) =
1

N2

N∑
k=1

N∑
l=1

(πkl − πkπl)
ykyl
πkπl

,

with unbiased estimate

(2.3) v(µ̂HT ) =
1

N2

∑
k∈s

∑
l∈s

(
πkl − πkπl

πkl
)
ykyl
πkπl

,

where πkl is the joint inclusion probability of the kth and the lth units,
with πkk = πk.

2.1. Simple inverse sampling design. In Simple Inverse Sampling
(SIS) design, units are selected one by one without replacement and
equal probabilities until a predetermined number, say r, of UC̄ is ob-
served. Let ns be the random size of s, sC be the the sample set from
UC , and sC̄ = s − sC . In this manner, sC is equivalent to a simple
random sample from UC , while sC̄ conditionally on its size is a simple
random sample from UC̄ .
To find the HT estimator under SIS design we need to obtain the first
and second order inclusion probabilities. It can be shown that (see Ap-
pendix A):

(2.4) πk =

{
r
M , if k ∈ UC ,
r

M+1 , if k ∈ UC̄ .

The joint inclusion probabilities for the distinct units k and l are given
by

(2.5) πkl =


r(r−1)
M(M−1) , if (k, l) ∈ UC

r(r+1)
(M+1)(M+2) , if (k, l) ∈ UC̄

r2

M(M+1) , if k ∈ UC , l ∈ UC̄ .
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Hence, the Horvitz-Thompson estimator is found to be

(2.6) µ̂HT =
1

Nr

M ∑
k∈sC

yk + (M + 1)
∑
k∈sC̄

yk

 .

By substituting (2.4) and (2.5) into (2.2), and by some algebraic opera-
tions, we obtain the variance of µ̂HT to be

Var(µ̂HT ) = (
M

N
)2(

M − r
M − 1

)
σ2
C

r
+

(M − r + 1)(N −M)

N2(M + 2)r
(2.7) [

(N + 1)ȳ2
UC̄

+ (M + 1)σ2
C̄

]
,

where σ2
C̄

= (N −M)−1
∑

k∈UC̄
(yk− ȳUC̄

)2, ȳUC̄
= (N −M)−1

∑
k∈UC̄

yk

and σ2
C = 1

M

∑
k∈UC

(yk− ȳUC
)2, with ȳUC

= 1
M

∑
k∈UC

yk. The equation

(2.7) indicates that for the fixed subpopulation variances σ2
C and σ2

C̄
,

µ̂HT has the maximum efficiency when the mean of y-values in the UC̄
are zero. An unbiased estimator of Var(µ̂HT ) is obtained using equation
(2.3) as:

v(µ̂HT ) = (
M

N
)2(1− r

M
)
s2
C

r
+

(M + 1)(M − r + 1)

N2r(r + 1)∑
k∈sC̄

y2
k +

1

r

∑
k∈sC̄

yk

2 ,
where

s2
C =

1

r − 1

∑
k∈sC

(yk − ȳsC )2 ; ȳsC =
1

r

∑
k∈sC

yk.

2.2. Other inverse sampling designs. Some other versions of inverse
sampling including variable stopping rules and general inverse sampling
methods are considered here. Christman and Lan [3] defined an inverse
sampling procedure as follows.
First, a simple random sample of fixed size n0 is selected. If at least
r units from UC are selected, then the sampling procedure is stopped.
Otherwise, the sampling is continued until r units in UC are selected.
Salehi and Seber [10] suggested a general inverse sampling (GIS) design
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which is useful to have control on the total sample size. In their pro-
cedure, a simple random sample of size n0 is selected. If the selected
sample contains at least r units in UC , then the sampling is stopped.
Otherwise, the sampling is continued sequentially until either exactly r
units from UC are selected or the sample size reaches a predetermined
value of n1. In the particular case of n1 = N −M + r, GIS reduces to
the procedure of variable stopping rules.
To derive the Horvitz-Thompson estimator and its variance under above
designs, we need to find the first and second order inclusion probabilities.
Unfortunately, these have not simple forms, specially for general inverse
sampling design. However, we present them for the variable stopping
rules design in Appendix B.

2.3. Alternative estimator. Doss et al. [5] introduced an unbiased
estimator for the population mean based on post-stratification under
simple random sample. Following their approach, the estimator under
general inverse sampling design is giving by

(2.8) µ̂alt =
M

N
uC,n1 ȳsC +

N −M
N

uC̄,n0
ȳsC̄ ,

where

uC,n1 =
I(nsC > 0)

1− pC
and uC̄,n0

=
I(nsC̄ > 0)

1− pC̄
,

with pC =
(
N−M
n1

)
/
(
N
n1

)
, pC̄ =

(
M
n0

)
/
(
N
n0

)
, and I(.) denoting the indicator

function, which has value of 1 if condition (.) holds, and zero otherwise.
Let p∗. = p./(1− p.). Hence, the variance of µ̂alt is
(2.9)

Var(µ̂alt) =

(
M

N

)2

(1 + p∗C)2

∑
x≥1

Pr(nsC = x)

x
− 1

M(1 + p∗C)

S2
C+

(
N −M
N

)2

(1+p∗C̄)2

∑
x≥1

Pr(nsC̄ = x)

x
− 1

(N −M)(1 + p∗
C̄

)

S2
C̄+

(
M

N

)2

p∗C ȳ
2
UC

+

(
N −M
N

)2

p∗C̄ ȳ
2
UC̄
− 2

M(N −M)

N2
p∗Cp

∗
C̄ ȳUC

ȳUC̄
,

where nsC and nsC̄ are the sample sizes of sC and sC̄ , respectively, and

S2
C = M/σ2

C/(M − 1), S2
C̄

= (N −M)σ2
C̄
/(N −M − 1).
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The formulas for the variances of the two estimators µ̂HT and µ̂alt do not
allow analytical comparison of their efficiencies, and for this purpose we
only provide the results of a small simulation study in the next section.
However, some simplifications are obtained in the case of SIS, where we
have p∗C = 0, and Pr(nsC = r) = 1.
A serious drawback for the unbiased estimators µ̂HT and µ̂alt is that
their variances depend on the origin of the y-values for units in the pop-
ulation subgroups UC̄ . In the case of SIS, if the mean of y-values in
UC̄ is zero, then this problem will be removed. However, this problem
is ignorable for µ̂alt in the ordinary rare populations, since p∗C and p∗

C̄
are close to zero. For example, if N = 400, M = 20 and r = 5, then
under simple inverse sampling design, p∗C = 0 and the value of p∗

C̄
is

less than 1.87 × 10−7. In this case, µ̂alt converges to the customary
post-stratification estimator (see, Chang et al. ([1, 2])). In other cases,
to eliminate the dependence of the variance of mentioned estimators on
the origin of the y-values, we can use the ratio estimator suggested by
Doss et al. [5]. However, our simulation shows that, in this case, µ̂alt is
more efficient than µ̂HT and no improvement is provided using the ratio
estimator based on µ̂alt.

3. Simulation study

In this section, we conduct a small simulation study to investigate the
efficiency of the derived unbiased estimators of the mean under inverse
sampling designs, µ̂HT and µ̂alt. We compare the variances of these with
the corresponding estimator proposed by Doss et al. [5] under inverse
sampling design with post-stratification approach. Define µ̂y.pst as

(3.1) µ̂y.pst =
M

N
uC,nȳsC +

N −M
N

uC̄,nȳsC̄ .

Hence, the ratio estimator of the population mean under simple random
sampling is of the form

(3.2) µ̃pst =
µ̂y.pst
µ̂1.pst

.

The variance of µ̃pst does not have an explicit form to allow for the
analytic comparison of the inverse sampling estimators. However, we
give a relative efficiency of µ̃pst via a small simulation study. To have a
fair comparison, we fix the expected sample size of inverse sampling for
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the simple random sampling design, to be E(ns) = (N+1)r/(M+1). In
the case of variable stopping rules, we will compare the results with the
corresponding post-stratified estimator based on simple random sample
with size E(ns). It can be shown that

E(ns) = n0 +
N + 1

M + 1

r−1∑
r0=0

(
N−M
n0−r0

)(
M+1
r0

)(
N+1
n0

) (r − r0).

We consider two methods of SIS and the variable stopping rules. We con-
sider three underlying models to generate the finite population. These
are:

• Model 1 : FC̄ ∼ DG(0) ; FC ∼ Exp(10, 0.05),
• Model 2 : FC̄ ∼ N(0, 3) ; FC ∼ N(40, 8),
• Model 3 : FC̄ ∼ (|N(0, 3)|) ; FC ∼ Exp(10, 0.05),

where DG and Exp are abbreviation of the degenerated and exponential
distributions, respectively, and |N(., .)| is absolute value of the normal
distribution.
The population size is N = 400. For each model, we consider two types
of populations: rare with M = 20 and common with M = 40. Also, we
consider three values for r as r = 3, 4, 5. In the case of variable stopping
rules, we use two cases n0 = E(ns)/3, 2E(ns)/3. The results are shown
for SIS in Table 1, and for variable stopping rules in tables 2 and 3.
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Table 1. Mean square error of population mean estimators under two simple
inverse and simple random sampling designs, with subpopulation size M .

Population Model r µ̂HT µ̂alt µ̃pst

Common 1

2

3

3
4
5

3
4
5

3
4
5

0.802 0.802 1.873
0.588 0.588 1.204
0.453 0.453 0.839

0.497 0.678 2.436
0.374 0.461 1.290
0.293 0.338 0.733

2.435 0.978 1.715
1.797 0.694 1.192
1.393 0.535 0.892

Rare 1

2

3

3
4
5

3
4
5

3
4
5

0.221 0.221 0.477
0.161 0.161 0.322
0.119 0.119 0.225

0.226 0.312 0.784
0.154 0.194 0.416
0.116 0.137 0.243

1.958 0.288 0.560
1.368 0.194 0.370
0.993 0.144 0.255
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Table 2. Mean square error of population mean estimators µ̂HT and µ̂alt

under variable stopping rules with n0 = E(ns)
3 and post-stratification

estimator µ̃pst under simple random sampling design, with subgroup size M .

Population Model r µ̂HT µ̂alt µ̃pst

Common 1

2

3

3
4
5

3
4
5

3
4
5

0.818 0.806 1.831
0.572 0.580 1.218
0.457 0.450 0.832

0.542 0.649 2.305
0.376 0.447 1.216
0.298 0.336 0.725

2.394 0.955 1.669
1.816 0.687 1.179
1.464 0.532 0.864

Rare 1

2

3

3
4
5

3
4
5

3
4
5

0.218 0.213 0.455
0.130 0.127 0.305
0.098 0.098 0.209

0.225 0.275 0.702
0.164 0.188 0.389
0.119 0.135 0.220

1.809 0.272 0.549
1.468 0.197 0.360
1.115 0.144 0.242
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Table 3. Mean square error of population mean estimators µ̂HT and µ̂alt under

variable stopping rules with n0 = 2E(ns)
3 and post-stratification estimator µ̃pst

under simple random sampling design, with subpopulation size M .

Population Model r µ̂HT µ̂alt µ̃pst

Common 1

2

3

3
4
5

3
4
5

3
4
5

0.972 0.774 1.535
0.666 0.560 1.028
0.516 0.439 0.709

0.882 0.536 1.614
0.579 0.402 0.876
0.414 0.305 0.512

1.849 0.893 1.506
1.468 0.664 1.064
1.143 0.520 0.754

Rare 1

2

3

3
4
5

3
4
5

3
4
5

0.256 0.210 0.393
0.166 0.136 0.261
0.125 0.105 0.185

0.296 0.232 0.516
0.196 0.163 0.283
0.142 0.123 0.174

1.240 0.250 0.461
1.003 0.182 0.304
0.800 0.134 0.210

4. Conclusion

We derived several estimators for the population mean using inverse
sampling deign under the condition that the population groups (UC , UC̄)
have known sizes (M,N −M). Our simulation study showed that when
M is known, we can achieve more efficient estimates of the popula-
tion mean with inverse sampling designs as opposed to simple random
sampling design using post-stratified estimator. In the case of variable
stopping rules, we obtained similar results for simple inverse sampling
design if n0 is chosen as E(ns)/3.

For model 1 representing a population with yk = 0 for any unit in
the off-interested subpopulation UC̄ , µ̂HT and µ̂alt are equivalent under
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simple random sampling design. The efficiency of µ̂HT and/or µ̂alt is
almost twice that of µ̂pst.

If ȳUC̄
= 0, S2

C̄
> 0, model 2, then µ̂HT is even more efficient than

µ̂alt, when n0 is not greater than E(ns)/3. As n0 increases, the pre-
cision of µ̂HT improves over µ̂alt. Contrary to other estimators, when
ȳUC̄

= 0 (model 1 and model 2), the precision of µ̂HT decreases as the
initial sample size n0 increases from E(ns)/3 to 2E(ns)/3. For model 3,
having a population with small y-values in the UC̄ for which µ̂HT is very
sensitive to distance of the mean from zero in UC̄ , we may even get less
efficiency than µ̃pst. In the case of variable stopping rules, the estimator
µ̂alt has a better behavior than the others.

Appendix A: Derivations of πk and πkl under simple inverse
sampling

If inverse sampling is without replacement until r units in UC are ob-
served, then sub-sample sC is a simple random sample from UC , and so
for any (k 6= l) ∈ UC , πk = r/M and πkl = r(r − 1)/M(M − 1), (see
Särndal et al. [11]). On the other hand, the sub-sample sC̄ condition on
its size ns−r is a simple random sample from UC̄ . The total sample size
ns is a negative hypergeometric random variable (Johnson, et al. [7])
with the probability function

Pr(ns = n) =

(
N−n
M−r

)(
n−1
r−1

)(
N
M

) , n = r, . . . , N −M + r,

and mathematical expectation and variance respectively given by

E(ns) =
r(N + 1)

M + 1
, Var(ns) = r

(N + 1)(N −M)(M − r + 1)

(M + 1)2(M + 2)
.

Hence, for any k ∈ UC̄ , we have

πk = E(I(k)) = Ens [E(I(k))|ns] = Ens

[
ns − r
N −M

]

=
1

N −M

(
r(N + 1)

M + 1
− r
)

=
r

M + 1
.

To find the second-order inclusion probabilities, we again use the con-
ditional property of mathematical expectation. For (k 6= l) ∈ UC̄ , we
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have

πkl = E(I(k)I(l)) = Ens [E(I(k)I(l))|ns]

= Ens

[
(ns − r)(ns − r − 1)

(N −M)(N −M − 1)

]

=

(
r2(N−M)2

(M+1)2 + r(N+1)(N−M)(M−r+1)
(M+1)2(M+2)

− r(N−M)
M+1

)
(N −M)(N −M − 1)

.

Some algebraic simplifications yield:

πkl =
r(r + 1)

(M + 1)(M + 2)
.

Finally, for any k ∈ UC and l ∈ UC̄ , we have

πkl = E(I(k)I(l)) = Ens [E(I(k)I(l))|ns]
= E(I(k))Ens [I(l)|ns]

=
r2

M(M + 1)
.

Appendix B: Derivations of πk and πkl in the case of variable
stopping rules

For variable stopping rules, let Ak and Bk be the events of selecting
unit k in the initial sample of size n0 (the first stage), and in the sequen-
tial sampling process (the second stage), respectively. So, we have

πk = P (Ak) + P (Ack)P (Bk|Ack),

where Ac denotes the complementary of A. It can be shown that

πk =
n0

N
+
(

1− n0

N

) r−1∑
r0=0

P (Sr0 |Ack)P (Bk|Sr0 , Ack),

where Sr0 is the event that r0 units in UC are selected in the first stage
of sampling. Hence,

(B.1) P (Sr0 |Ack) =


(N−M
n0−r0

)(M−1
r0

)

(N−1
n0

)
, if k ∈ UC

(N−M−1
n0−r0

)(Mr0
)

(N−1
n0

)
, if k ∈ UC̄ .
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Using the equation (2.4), we have

(B.2) P (Bk|Sr0 , Ack) =


r−r0
M−r0 , if k ∈ UC

r−r0
M−r0+1 , if k ∈ UC̄ .

Upon substituting (B.1) and (B.2) into πk, we get

πk =


n0
N + PM (r − r0), if k ∈ UC

n0
N + PM+1(r − r0), if k ∈ UC̄ ,

where

Pα(β) =
1

α

r−1∑
r0=0

(
N−α
n0−r0

)(
α
r0

)(
N
n0

) β.

The second order inclusion probability for distinct units k and l is

πkl = P (Ak ∩Al) + P (Ak ∩Bl) + P (Bk ∩Al) + P (Bk ∩Bl).
The first term of the above probability is n0(n0 − 1)/N(N − 1), for any
(k 6= l) = 1, 2, . . . , N , and P (Ak ∩Bl) = P (Bk ∩Al), for any pair (k 6= l)
in the same subpopulation. Again, using the conditional probability, we
find

P (Ak ∩Bl) = P (Ak ∩Acl )P (Bl|Ak ∩Acl )

=
n0(N − n0)

N(N − 1)

r−1∑
r0=0

P (Sr0 |Ak ∩Acl )P (Bl|Sr0 , Ak ∩Acl ).

Using the equations (B.1) and (B.2) we get
(B.3) P (Sr0 |Ak ∩Acl )P (Bl|Sr0 , Ak ∩Acl ) =

(N−M
n0−r0

)(M−2
r0−1)

(N−2
n0−1)

( r−r0
M−r0 ), if (k 6= l) ∈ UC

(N−M−1
n0−r0

)(M−1
r0−1)

(N−2
n0−1)

( r−r0
M−r0+1), if k ∈ UC , l ∈ UC̄

(N−M−1
n0−r0−1)(

M−1
r0

)

(N−2
n0−1)

( r−r0
M−r0 ), if k ∈ UC̄ , l ∈ UC

(N−M−2
n0−r0−1)(

M
r0

)

(N−2
n0−1)

( r−r0
M−r0+1), if (k 6= l) ∈ UC̄ .
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On the other hand,

P (Bk ∩Bl) = P (Ack ∩Acl )P (Bk ∩Bl|Ack ∩Acl )

=
(N − n0)(N − n0 − 1)

N(N − 1)

r−1∑
r0=0

P (Sr0 |Ack ∩Acl )P (Bk ∩Bl|Sr0 , Ack ∩Acl ),

which results in

(B.4) P (Sr0 |Ak ∩Acl )P (Bk ∩Bl|Sr0 , Ak ∩Acl ) =

(N−M
n0−r0

)(M−2
r0

)

(N−2
n0

)
(r−r0)(r−r0−1)

(M−r0)(M−r0−1) , if (k 6= l) ∈ UC

(N−M−1
n0−r0

)(M−1
r0

)

(N−2
n0

)
(r−r0)2

(M−r0)(M−r0+1) , if k ∈ UC , l ∈ UC̄

(N−M−2
n0−r0

)(Mr0
)

(N−2
n0

)
(r−r0)(r−r0+1)

(M−r0+1)(M−r0+2) , if (k 6= l) ∈ UC̄ .

Substituting (B.3) and (b.4) in πkl, we find after some simplifications,

πkl =



n0(n0−1)
N(N−1) + PM ((r−r0)(r+r0−1))

M−1 , if (k 6= l) ∈ UC

n0(n0−1)
N(N−1) + PM ((n0−r0)(r−r0))

N−M + PM+1(r(r−r0))
M , if k ∈ UC , l ∈ UC̄

n0(n0−1)
N(N−1) +2PM+1((n0−r0)(r−r0))

N−M−1 + PM+1((r−r0)(r−r0+1))
M , if (k 6= l)∈UC̄ .
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