UNISERIAL MODULES OF GENERALIZED POWER SERIES

R. ZHAO

Communicated by Bernhard Keller

ABSTRACT. Let R be a ring, M a right R-module and (S, \leq) a strictly ordered monoid. In this paper we will show that if (S, \leq) is a strictly ordered monoid satisfying the condition that $0 \leq s$ for all $s \in S$, then the module $[[M^{S, \leq}]]$ of generalized power series is a uniserial right $[[R^{S, \leq}]]$ -module if and only if M is a simple right R-module and S is a chain monoid.

1. Introduction

A module is said to be uniserial if any two of its submodules are comparable with respect to inclusion, i.e., any two of its cyclic submodules are comparable by set inclusion. A ring R is said to be right (respectively, left) uniserial if R_R (respectively, R) is a uniserial module. Uniserial modules are also called chain modules in some literature. Let R be a ring and R a right R-module. In [7], among others, it was proved that R[[x]] is a uniserial right R[[x]]-module if and only if R is a simple right module. In recent years, many researchers (for example, Liu [2], Varadarajan [8, 9]) have carried out an extensive study of modules of generalized power series. Motivated by these facts, in this paper, we study the uniserial condition for generalized power series modules,

MSC(2010): Primary: 16W60; Secondary: 13F25, 13C11.

Keywords: Uniserial module, chain monoid, generalized power series ring, generalized power series module

Received: 13 March 2011, Accepted: 30 May 2011.

^{© 2012} Iranian Mathematical Society.

with restriction to monoids of exponents with all nonnegative elements. Our result extends Tuganbaev's result to such modules and partially generalizes the results of [5, Theorem 4.3].

Throughout this paper, all rings are associative with identity and all modules are unitary. If R is a ring, then the group of invertible elements of R is denoted by U(R). Regarding ordered sets, monoids and ordered monoids we will be following the terminology in [6].

Let (S, \leq) be an ordered set. Recall that (S, \leq) is *artinian* if every strictly decreasing sequence of elements of S is finite, and that (S, \leq) is *narrow* if every subset of pairwise order-incomparable elements of S is finite. Let S be a commutative monoid. Unless stated otherwise, the operation of S will be denoted additively, and the neutral element by S. The following definition is due to Ribenboim (see [6]).

Assume that (S, \leq) is a strictly ordered monoid, that is, (S, \leq) is an ordered monoid satisfying the condition that if $s, s', t \in S$ and s < s', then s + t < s' + t, and R is a ring. Let $[[R^{S, \leq}]]$ be the set of all maps $f: S \longrightarrow R$ such that $\mathrm{supp}(f) = \{s \in S \mid f(s) \neq 0\}$ is artinian and narrow. With pointwise addition, $[[R^{S, \leq}]]$ is an abelian additive group. For every $s \in S$ and $f, g \in [[R^{S, \leq}]]$, let

$$X_s(f,g) = \{(u,v) \in S \times S \mid u+v = s, f(u) \neq 0, g(v) \neq 0\}.$$

It follows from [6, 4.1] that $X_s(f,g)$ is finite. This fact allows one to define the operation of convolution:

$$(fg)(s) = \sum_{(u,v)\in X_s(f,g)} f(u)g(v).$$

With this operation, and pointwise addition, $[[R^{S,\leq}]]$ becomes an associative ring, with identity element e, namely e(0) = 1, e(s) = 0 for every $0 \neq s \in S$. This is called the *ring of generalized power series* with coefficients in R and exponents in S. To any $r \in R$ and $s \in S$, we associate the maps c_r , $e_s \in [[R^{S,\leq}]]$ defined by

$$c_r(x) = \begin{cases} r, & \text{if } x = 0, \\ 0, & \text{otherwise,} \end{cases}$$
 $e_s(x) = \begin{cases} 1, & \text{if } x = s, \\ 0, & \text{otherwise.} \end{cases}$

It is clear that $r \mapsto c_r$ is a ring embedding of R into $[[R^{S,\leq}]]$, $s \mapsto e_s$, is a monoid embedding of S into the multiplicative monoid of the ring $[[R^{S,\leq}]]$, and $c_re_s=e_sc_r$.

In [2, 8, 9], the notion of generalized power series rings was extended to modules. Let M be a right R-module and (S, \leq) a strictly ordered monoid. We denote by $[[M^{S,\leq}]]$ the set of all maps $\phi: S \longrightarrow M$ such that

 $\operatorname{supp}(\phi)$ is artinian and narrow, where $\operatorname{supp}(\phi) = \{s \in S \mid \phi(s) \neq 0\}$. With pointwise addition, $[[M^{S,\leq}]]$ is an abelian additive group. For each $s \in S$, $f \in [[R^{S,\leq}]]$ and $\phi \in [[M^{S,\leq}]]$, let

$$X_s(\phi, f) = \{(u, v) \in S \times S \mid u + v = s, \phi(u) \neq 0, f(v) \neq 0\}.$$

Then by [2, Lemma 1], $X_s(\phi, f)$ is finite. This allows one to define the scalar multiplication as follows:

$$(\phi f)(s) = \sum_{(u,v)\in X_s(\phi,f)} \phi(u)f(v).$$

With this operation and pointwise addition, $[[M^{S,\leq}]]$ becomes a right $[[R^{S,\leq}]]$ -module, which is called the *module of generalized power series* with coefficients in M and exponents in S. To any $m \in M$ and any $s \in S$, we associate the map $d_m^s \in [[M^{S,\leq}]]$ via

$$d_m^s(x) = \begin{cases} m, & \text{if } x = s, \\ 0, & \text{otherwise.} \end{cases}$$

It is clear that $m \mapsto d_m^0$ is a module embedding of M into $[[M^{S,\leq}]]$. For example, if $S = \mathbb{N} \cup \{0\}$ and \leq is the usual order, then

$$[[M^{\mathbb{N}\cup\{0\},\leq}]]_{[[R^{\mathbb{N}\cup\{0\},\leq}]]}\cong M[[x]]_{R[[x]]},$$

the right R[[x]]-module of formal power series over M. If $S = \mathbb{Z}$ and \leq is the usual order, then $[[M^{\mathbb{Z},\leq}]]_{[[R^{\mathbb{Z},\leq}]]} \cong M[[x^{-1},x]]_{R[[x^{-1},x]]}$, the Laurent series extension of M_R . If S is a commutative monoid and \leq is the trivial order, then $[[M^{S,\leq}]]_{[[R^{S,\leq}]]} \cong M[S]_{R[S]}$, the monoid extensions of S over M_R . Further examples are given in [2].

2. Main results

Recall from [4] that a strictly ordered monoid (S, \leq) is said to be a positively strictly ordered if $0 \leq s$ for all $s \in S$. Note that in this case, $(\phi f)(0) = \phi(0)f(0)$ for any $\phi \in [[M^{S,\leq}]]$ and any $f \in [[R^{S,\leq}]]$. The following result appeared in [3, Lemma 5.2].

Lemma 2.1. Let R be a ring, (S, \leq) a positively strictly ordered monoid and $f \in [[R^{S,\leq}]]$. Then $f \in U([[R^{S,\leq}]])$ if and only if $f(0) \in U(R)$.

Following [1], a monoid S is said to be a *chain* if the ideals of S are totally ordered by set inclusion, i.e., for any $s, t \in S$, either $s+S \subseteq t+S$ or $t+S \subseteq s+S$. The following result appeared in [4, Lemma 4].

Lemma 2.2. Let (S, \leq) be a positively strictly ordered monoid. If S is a chain monoid, then (S, \leq) is a totally ordered monoid.

Remark 2.3. The example of the monoid $S = (\mathbb{N}, \cdot)$ shows that the converse of Lemma 2.2 is false.

Lemma 2.4. Let M be a right R-module and (S, \leq) a strictly ordered monoid. Assume that $W = \{\phi \in [[M^{S, \leq}]] \mid \phi(0) = 0\}$. If (S, \leq) is positive, then W is an $[[R^{S, \leq}]]$ -submodule of $[[M^{S, \leq}]]$.

Proof. Let $\phi \in W$, $f \in [[R^{S,\leq}]]$. Then

$$(\phi f)(0) = \sum_{(u,v)\in X_0(\phi,f)} \phi(u)f(v) = \phi(0)f(0) = 0.$$

This means that $\phi f \in W$. Now it is easy to see that W is an $[[R^{S,\leq}]]$ -submodule of $[[M^{S,\leq}]]$.

Now, we are ready to prove the main result of our discussion.

Theorem 2.5. Let (S, \leq) be a positively strictly ordered monoid and M a nonzero right R-module. Then the following conditions are equivalent:

- (1) $[[M^{S,\leq}]]$ is a uniserial right $[[R^{S,\leq}]]$ -module.
- (2) M is a simple right R-module and S is a chain monoid.
- (3) For any $0 \neq \varphi \in [[M^{S,\leq}]]$, there exists an $s \in S$ such that $\varphi[[R^{S,\leq}]] = [[M^{S,\leq}]]e_s$.

Proof. (1)=>(2). First we show that S is a chain monoid. Let $s, t \in S$. For any $0 \neq m \in M$, since $[[M^{S,\leq}]]$ is a uniserial right $[[R^{S,\leq}]]$ -module, without loss of generality, we can assume $d_m^s[[R^{S,\leq}]] \subseteq d_m^t[[R^{S,\leq}]]$. Then there exists an $f \in [[R^{S,\leq}]]$ such that $d_m^s = d_m^t f$. Thus from

$$0 \neq m = d_m^s(s) = (d_m^t f)(s) = \sum_{(u,v) \in X_s(d_m^t,f)} d_m^t(u) f(v),$$

it follows that t+v=s for some $v\in S$. Consequently $s\in t+S$. Hence S is a chain monoid.

Next we show that M is a simple right R-module. Let $0 \neq m \in M$. We will show that M = mR. Set $A = d_m^0[[R^{S,\leq}]]$. Then for any $\phi \in A$, $\phi = d_m^0 f$ for some $f \in [[R^{S,\leq}]]$. Thus, for any $s \in S$, $\phi(s) = (d_m^0 f)(s) = mf(s) \in mR$. Let

$$B = \{ \phi \in [[M^{S, \leq}]] | \phi(0) = 0 \}.$$

Then B is a submodule of $[[M^{S,\leq}]]$ by Lemma 2.4 and $B\subseteq A$ since $[[M^{S,\leq}]]$ is a uniserial right $[[R^{S,\leq}]]$ -module and $0\neq m\in M$. Let $0\neq s\in$

S and $0 \neq n \in M$. Then $d_n^s \in B$, and so $d_n^s \in A$. Hence $n = d_n^s(s) \in mR$. This implies that M = mR. Hence M is a simple right R-module.

 $(2) \Longrightarrow (3)$. Since (S, \leq) is a positively strictly ordered monoid and S is a chain monoid, (S, \leq) is strictly totally ordered by Lemma 2.2. Hence, for any $0 \neq \phi \in [[M^{S,\leq}]]$, supp (ϕ) contains a minimal element, which we denote by $\pi(\phi)$.

Let φ be a nonzero element of $[M^{S,\leq}]$. Assume that $\pi(\varphi) = s_0$. We will show that $\varphi[[R^{S,\leq}]] = [[M^{S,\leq}]]e_{s_0}$.

First we show that there exists a $\varphi' \in [[M^{S,\leq}]]$ such that $\varphi = \varphi' e_{s_0}$. Since (S, \leq) is a strictly totally ordered monoid, it is easy to see that for the element $\varphi': S \longrightarrow M$ defined via $\varphi'(s) = \varphi(s+s_0)$, we have $\varphi' \in [[M^{S,\leq}]].$

Let $s_0 \leq s$. Since (S, \leq) is a positively ordered chain monoid, there exists $s' \in S$ such that $s = s_0 + s'$. Otherwise, $s_0 = s + v$ for some $0 \neq v \in S$ and we get $s+v=s_0 \leq s$. Since 0 < v we get a contradiction. Hence

$$\varphi(s) = \varphi(s_0 + s') = \varphi'(s') = \varphi'(s')e_{s_0}(s_0)$$

$$= \sum_{(u,v)\in X_{s'+s_0}(\varphi',e_{s_0})} \varphi'(u)e_{s_0}(v) = (\varphi'e_{s_0})(s'+s_0) = (\varphi'e_{s_0})(s).$$

This means that $\varphi = \varphi' e_{s_0}$. Next we show that $\varphi[[R^{S,\leq}]] = [[M^{S,\leq}]] e_{s_0}$. Let $m_0 = \varphi'(0)$. Since Mis a simple right R-module, $M = m_0 R$. Thus $[[M^{S,\leq}]] = [[(m_0 R)^{S,\leq}]] =$ $d_{m_0}^0[[R^{S,\leq}]]$, and, for any $s \in \text{supp}(\varphi')$, there exists an $r_s \in R$ such that $\varphi'(s) = m_0 r_s$. Define $f: S \longrightarrow R$ via:

$$f(s) = \begin{cases} 1, & s = 0, \\ r_s, & 0 \neq s \in \text{supp}(\varphi'), \\ 0, & s \notin \text{supp}(\varphi'). \end{cases}$$

Clearly $f \in [[R^{S,\leq}]]$. For any $s \in S$,

$$\varphi'(s) = m_0 r_s = m_0 f(s) = \sum_{(u,v) \in X_s(d^0_{m_0},f)} d^0_{m_0}(u) f(v) = (d^0_{m_0} f)(s).$$

Thus $d_{m_0}^0 f = \varphi'$. Since f(0) = 1, by Lemma 2.1, $f \in U([[R^{S, \leq}]])$. Hence $[[M^{S,\leq}]]e_{s_0} = d_{m_0}^0[[R^{S,\leq}]]e_{s_0} = d_{m_0}^0f[[R^{S,\leq}]]e_{s_0}$ $= d^0_{m_0} f e_{s_0}[[R^{S,\leq}]] = \varphi' e_{s_0}[[R^{S,\leq}]]$ $= \varphi[[R^{S,\leq}]].$

(3) \Longrightarrow (1). First we show that S is a chain monoid. Let $u \neq v \in S$. Fix any $0 \neq m \in M$. Then $0 \neq d_m^u + d_m^v \in [[M^{S, \leq}]]$. By (3), there exists an $s \in S$ such that

$$d_m^u + d_m^v = \phi e_s$$
 and $d_m^s = (d_m^u + d_m^v)f$

for some $\phi \in [[M^{S,\leq}]]$ and some $f \in [[R^{S,\leq}]]$. From $0 \neq m = (d_m^u + d_m^v)(v) = (\phi e_s)(v)$ it follows that $v \in \text{supp}(\phi e_s) \subseteq s + S$ and a similar argument shows that $u \in s + S$. On the other hand,

$$0 \neq m = d_m^s(s) = [(d_m^u + d_m^v)f](s) = (d_m^u f)(s) + (d_m^v f)(s),$$

and thus $(d_m^u f)(s) \neq 0$ or $(d_m^v f)(s) \neq 0$. In the first case, we obtain $s \in u + S$ and so $v \in u + S$ follows. Similarly, in the second case we have $u \in v + S$. Hence S is a chain monoid.

Secondly, we show that $[[M^{S,\leq}]]$ is a uniserial right $[[R^{S,\leq}]]$ -module. Let $0 \neq \varphi, \psi \in [[M^{S,\leq}]]$. By (3), there exist $s,t \in S$ such that $\varphi[[R^{S,\leq}]] = [[M^{S,\leq}]]e_s, \ \psi[[R^{S,\leq}]] = [[M^{S,\leq}]]e_t$. Since S is a chain, $s \in t+S$ or $t \in s+S$. Assume that $s = t+u, u \in S$. Then

$$\varphi[[R^{S,\leq}]] = [[M^{S,\leq}]]e_s = [[M^{S,\leq}]]e_ue_t \leq [[M^{S,\leq}]]e_t = \psi[[R^{S,\leq}]].$$

Hence, $[[M^{S,\leq}]]$ is a uniserial right $[[R^{S,\leq}]]$ -module.

Let M be a right R-module. Recall that M is a serial module if M is a direct sum of uniserial modules. A ring R is called a right (respectively, left) serial ring, if R_R (respectively, R) is a serial module. A ring R is called a serial ring, if R is both a right and a left serial ring.

Lemma 2.6. Let M be a right R-module, (S, \leq) a positively strictly ordered monoid and S a chain monoid. If M is a semisimple artinian module, then $[[M^{S,\leq}]]$ is a serial right $[[R^{S,\leq}]]$ -module.

Proof. Assume that $M=M_1\oplus M_2\oplus \cdots \oplus M_n$, where M_i is a simple right R-module, $i=1,2,\ldots,n,\ n\in\mathbb{N}$. Then $[[M^{S,\leq}]]\cong [[M_1^{S,\leq}]]\oplus [[M_2^{S,\leq}]]\oplus \cdots \oplus [[M_n^{S,\leq}]]$. By Theorem 2.5, $[[M_i^{S,\leq}]]$ is a uniserial right $[[R^{S,\leq}]]$ -module. Therefore, $[[M^{S,\leq}]]$ is a serial right $[[R^{S,\leq}]]$ -module. \square

Lemma 2.7. Let R be a ring and (S, \leq) a strictly totally ordered monoid. Then R is a semiprime ring if and only if $[[R^{S,\leq}]]$ is a semiprime ring.

Proof. ⇒) Assume the contrary. Then there exists a nonzero $f \in [[R^{S,\leq}]]$ such that $([[R^{S,\leq}]]f[[R^{S,\leq}]])^2 = 0$. Thus $f[[R^{S,\leq}]]f = 0$. Let $\pi(f) = s_0$. Then $f(s_0)Rf(s_0) = 0$. Set $I = Rf(s_0)R$. Then I is a nonzero ideal of R and $I^2 = 0$, which is contradict to the fact that R is a semiprime ring.

 \iff Let I be an ideal of ring R with $I^2 = 0$. Then $[[I^{S,\leq}]]$ is an ideal of the ring $[[R^{S,\leq}]]$. For any $f,g \in [[I^{S,\leq}]]$ and any $s \in S$,

$$(fg)(s) = \sum_{(u,v) \in X_s(f,g)} f(u)g(v) = 0.$$

Thus fg=0, which implies that $[[I^{S,\leq}]]^2=0$. Hence $[[I^{S,\leq}]]=0$ since $[[R^{S,\leq}]]$ is a semiprime ring. Consequently, I=0, and so R is a semiprime ring.

Theorem 2.8. Let R be a ring, (S, \leq) a positively strictly ordered monoid and S a chain monoid. Then the following are equivalent:

- (1) R is a semisimple artinian ring,
- (2) $[R^{S,\leq}]$ is a right serial ring,
- (3) $[R^{S,\leq}]$ is a serial semiprime ring.

Proof. $(3) \Longrightarrow (2)$ is obvious.

- $(1)\Longrightarrow(3)$. Note that semisimple artinian rings are semiprime rings. Thus by Lemma 2.2 and Lemma 2.7, $[[R^{S,\leq}]]$ is a semiprime ring. On the other hand, by Lemma 2.6 and its left version, $[[R^{S,\leq}]]$ is a serial ring.
- $(2)\Longrightarrow(1)$. Since right serial rings are right finite-dimensional semiperfect rings, $[[R^{S,\leq}]]$ is a right finite-dimensional semiperfect ring. Thus R, as a quotient ring of $[[R^{S,\leq}]]$, is a right finite-dimensional semiperfect ring. Hence, there exists a complete set $\{e_1,e_2,\ldots,e_n\}$ of pairwise orthogonal primitive idempotents in R such that $R=e_1R+e_2R+\cdots+e_nR$. Thus

$$[[R^{S,\leq}]] \cong [[(e_1R)^{S,\leq}]] \oplus [[(e_2R)^{S,\leq}]] \oplus \cdots \oplus [[(e_nR)^{S,\leq}]]$$
$$= c_{e_1}[[R^{S,\leq}]] \oplus c_{e_2}[[R^{S,\leq}]] \oplus \cdots \oplus c_{e_n}[[R^{S,\leq}]],$$

and c_{e_i} is a primitive idempotent of $[[R^{S,\leq}]]$, for all $i=1,2,\ldots,n$. In fact, if there exist $f^2=f$, $g^2=g\in[[R^{S,\leq}]]$ such that $c_{e_i}=f+g$, then $e_i=c_{e_i}(0)=f(0)+g(0)$, and $f(0)^2=f(0)$, $g(0)^2=g(0)$. Since e_i is primitive, either f(0)=0 or g(0)=0. If f(0)=0, then f=0. In fact, if $f\neq 0$, then supp(f) is a nonempty set. Set $\pi(f)=s$. Since (S,\leq) is a positively strictly ordered monoid, $X_s(f,f)=\{(0,s),(s,0)\}$. Thus

$$0 \neq f(s) = f^{2}(s) = \sum_{(u,v) \in X_{s}(f,f)} f(u)f(v) = 0,$$

which is a contradiction. Hence $c_{e_i}[[R^{S,\leq}]]$ is a uniserial right $[[R^{S,\leq}]]$ -module, $i=1,2,\ldots,n$. Thus, by Theorem 2.5, each e_iR is a simple right R-module. Therefore, R is a semisimple artinian ring.

Acknowledgments

The author wishes to thank the referee for his/her valuable suggestions. This research is supported by the National Natural Science Foundation of China (10961021) and the Project on Science and Technique, Gansu Province (1010RJZA025).

References

- M. Ferrero, R. Mazurek and A. Sant'Ana, On right chain semigroups, J. Algebra 292 (2005) 574–584.
- [2] Z. Liu, A note on Hopfian modules, Comm. Algebra 28 (2000), no. 6, 3031–3040.
- [3] Z. Liu, Special properties of rings of generalized power series, *Comm. Algebra* **32** (2004), no. 8, 3215–3226.
- [4] R. Mazurek and M. Ziembowski, On Bezout and distributive generalized power series rings, J. Algebra 306 (2006), no. 2, 397–411.
- [5] R. Mazurek and M. Ziembowski, Uniserial rings of skew generalized power series, J. Algebra 318 (2007), no. 2, 737–764.
- [6] P. Ribenboim, Semisimple rings and von Neumann regular rings of generalized power series, *J. Algebra* **198** (1997), no. 2, 327–338.
- [7] A. A. Tuganbaev, Polynomial and series rings and principal ideals, J. Math. Sci. 114 (2003), no. 2, 1204–1226.
- [8] K. Varadarajan, Noetherian generalized power series rings and modules, *Comm. Algebra* **29** (2001), no. 1, 245–251.
- [9] K. Varadarajan, Generalized power series modules, Comm. Algebra 29 (2001), no. 3, 1281–1294.

Renyu Zhao

College of Economics and Management, Northwest Normal University, 730070, Lanzhou, Gansu, People's Republic of China

Email: renyuzhao026@gmail.com