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FULLY IDEMPOTENT AND COIDEMPOTENT

MODULES

H. ANSARI-TOROGHY ∗ AND F. FARSHADIFAR

Communicated by Siamak Yassemi

Abstract. In this paper, the notion of fully idempotent modules
is defined and it is shown that this notion inherits most of the
essential properties of the usual notion of von Neumann’s regular
rings. Furthermore, we introduce the dual notion of fully idempo-
tent modules (that is, fully coidempotent modules) and investigate
some properties of this class of modules.

1. Introduction

Throughout this paper R will denote a commutative ring with identity
and Z will denote the ring of integers. Also for a submodule N of an
R-module M , AnnkR(N) and E(M) will denote (AnnR(N))k and the
injective hall of M, respectively.

An R-module M is said to be a multiplication module [12] if for every
submodule N of M , there exists an ideal I of R such that N = IM .
It is easy to see that M is a multiplication module if and only if N =
(N :R M)M for every submodule N of M .

An R-module M is said to be a comultiplication module if for every
submodule N of M there exists an ideal I of R such that N = (0 :M I).
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It also follows that M is a comultiplication module if and only if N =
(0 :M AnnR(N)) for every submodule N of M [5].

A submodule N of M is said to be pure if IN = N∩IM for every ideal
I of R [4]. Moreover, N is said to be copure if (N :M I) = N + (0 :M I)
for every ideal I of R [8].

Let N and K be two submodules of M . The product of N and K is
defined by (N :R M)(K :R M)M and it is denoted by NK. Also, the
coproduct of N and K is defined by (0 :M AnnR(N)AnnR(K)) and it is
denoted by C(NK) [6].

In this paper, we introduce the notions of fully idempotent, fully
coidempotent, fully pure, and fully copure modules and provide some
useful information concerning these new classes of modules.

A submodule N of M is said to be idempotent (respectively, coidem-
potent) if N = N2 (respectively, N = C(N2)). Moreover, M is said to be
fully idempotent (respectively, fully coidempotent) if every submodule of
M is idempotent (respectively, coidempotent) (Definitions 2.1, 2.4, 3.1,
and 3.2).

A module M is said to be fully pure (respectively, fully copure) if
every submodule of M is pure (respectively, copure) (Definitions 2.14
and 3.10).

In Section 2 of this paper, among other results, we prove that if M is
a multiplication and comultiplication module such that M does not have
any non-zero nilpotent submodule, then M is fully idempotent (Theorem
2.10). Also, it is shown that if M is a fully idempotent module, then
M is cosemisimple and every prime (respectively, finitely generated)
submodule of M is maximal (respectively, cyclic) (Theorems 2.12, 2.10,
and 2.19).

In Section 3, it is shown that if M is a semisimple comultiplication
module, then M is fully coidempotent (Theorem 3.8). In Theorem 3.12,
we provide some useful characterizations for copure submodules of a
comultiplication module. In Corollary 3.16, we investigate the relation
between fully idempotent (respectively, fully pure) modules with fully
coidempotent (respectively, fully copure) modules. Finally, it is proved
that if M is a finitely generated fully coidempotent module, then M is
semisimple.

We refer the reader to [4] and [20] for all concepts and basic properties
of modules not defined here.
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2. Fully idempotent modules

Below, we recall the concept of idempotent submodules which is intro-
duced and investigated by some authors (see [2, 3, 14], and [26]).

In [14], a submodule N of an R-module M is called idempotent pro-
vided N = Hom(M,N)N =

∑
{ϕ(N) : ϕ : M → N}.

In [2], a submodule N of an R-module M is called idempotent if
N = (N :R M)N .

Definition 2.1. We say that a submodule N of an R-module M is
idempotent if N = N2.

The following lemma and Example 2.3 show the relation between the
above various concepts of idempotent submodules.

Lemma 2.2. Let N be a submodule of an R-module M . Consider the
following statements.

(a) N = N2.
(b) N = (N : M)N .
(c) N = HomR(M,N)N =

∑
{ϕ(N) : ϕ : M → N}.

Then (a)⇔ (b) and (b)⇒ (c).

Proof. (a) ⇒ (b). We have N = (N :R M)2M ⊆ (N :R M)N ⊆ N .
Thus N = (N : M)N .

(b) ⇒ (a). We have N = (N :R M)N = (N :R M)(N :R M)N ⊆
(N :R M)2M ⊆ (N :R M)N = N . Hence N = (N :R M)2M .

(b) ⇒ (c). Let x ∈ N . Then by assumption, there exists r ∈ (N :R
M) and y ∈ N such that x = ry. Now consider the homomorphism
f : M → N defined by f(m) = rm. Then x = f(y) ∈

∑
{ϕ(N) : ϕ :

M → N} = HomR(M,N)N . Therefore, N = HomR(M,N)N because
the reverse inclusion is clear �

Example 2.3. For any prime number p, the submodule N = Zp ⊕ 0 of
the Z-module M = Zp⊕Zp is not idempotent but N = HomZ(M,N)N .

Definition 2.4. An R-module M is said to be fully idempotent if every
submodule of M is idempotent.

Example 2.5. For each prime number p, the Z-module Zp is fully idem-
potent. Moreover, E(Zp) = Zp∞ is not a fully idempotent Z-module.

Let M be an R-module. A proper submodule P of M is said to be
naturally semi-prime if for a submodule N of M , the relation N2 ⊆ P



990 Ansari-Toroghy and Farshadifar

implies that N ⊆ P (see [6]). An element x of M is said to be idempotent
if there exists t ∈ (Rx :R M) such that x = tx (see [3]).

In the following proposition, we characterize the fully idempotent R-
modules.

Proposition 2.6. Let M be an R-module. Then the following state-
ments are equivalent.

(a) M is a fully idempotent module.
(b) Every cyclic submodule of M is idempotent.
(c) Every element of M is idempotent.
(d) Every proper submodule of M is naturally semi-prime.
(e) For all submodules N and K of M , we have N ∩K = NK.

Proof. (a)⇒ (b), (b)⇒ (c), and (a)⇒ (d) . These are clear.
(c) ⇒ (a). Let N be a submodule of M and x ∈ N . Then by

hypothesis, there exists t ∈ (Rx :R M) such that x = tx. It follows that
Rx = (Rx :R M)2M . Thus N ⊆ N2. Since the reverse inclusion is clear,
N is idempotent.

(d) ⇒ (a). Suppose that N is a proper submodule of M . Since N2

is naturally semi-prime, N2 ⊆ N2 implies N ⊆ N2. Hence M is fully
idempotent because the reverse inclusion is clear.

(a)⇒ (e). Let N and K be two submodules of M . Then

N ∩K = (N ∩K :R M)2M ⊆ (N :R M)(K :R M)M = NK,

as required.
(e) ⇒ (a). For a submodule N of M , we have N = N ∩N = NN =

N2. �

Proposition 2.7. Let M be a fully idempotent R-module.

(a) M is a multiplication module.
(b) Every submodule and every homomorphic image of M is fully

idempotent.
(c) If M is a finitely generated faithful R-module, then R is a von

Neumann regular ring.
(d) If S is a multiplicatively closed subset of R, then S−1M is a fully

idempotent S−1R-module.
(e) M is co-Hopfian.

Proof. The statements (a) and (d) are straightforward.
(b) It it is easy to see that every homomorphic image of M is fully

idempotent. Now suppose that N is a submodule of M and K is a
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submodule of N . By part (a), M is a multiplication R-module. Hence
K = (K :R M)2M implies that K = (K :R M)3M . Thus

K = (K :R M)3M ⊆ (K :R N)2(N :R M)M ⊆ (K :R N)2N.

Therefore, K = (K :R N)2N . Thus N is fully idempotent.
(c) This follows from [16, 3.1] and part (a).
(e) Let f : M → M be a monomorphism and x ∈ M . Since M

is fully idempotent, f(x) = tf(x) for some t ∈ (f(x)R :R M). Hence
tx = f(x)r for some r ∈ R. Therefore, f(x) = f(tx) = f(f(x)r). Since
f is monomorphism, it follows that x = f(xr), as desired. �

The following example shows that the converse of part (a) of the above
proposition is not true in general.

Example 2.8. Z4 is a multiplication Z-module which is not fully idem-
potent.

Let M be an R-module and let N be a submodule of M . The following
example shows that if N and M/N are fully idempotent modules, then
M is not necessarily a fully idempotent module.

Example 2.9. Consider the Z-module M = Z/4Z and set N = 2Z/4Z.
Then N and M/N are fully idempotent Z-modules, while M is not fully
idempotent.

Let M be an R-module. A submodule N of M is said to be nilpotent
if there exists a positive integer k such that Nk = 0, where Nk means
the product of N , k times (see [6]).

A proper submodule N of M is said to be prime if for any r ∈ R and
any m ∈M with rm ∈ N , we have m ∈ N or r ∈ (N :R M).

Theorem 2.10. Let M be an R-module. Then the following hold.

(a) If M is a multiplication and comultiplication module such that
M does not have any non-zero nilpotent submodule, then M is
fully idempotent.

(b) If M is a fully idempotent module, then every element of M with
zero annihilator generates M .

(c) If M is a fully idempotent module, then every prime submodule
of M is maximal.

Proof. (a) Let N be a submodule of M with N2 6= N . Then there
exists x ∈ N such that x 6∈ N2. Since M is a comultiplication module,
AnnR(N2)x 6= 0. Thus there exists a ∈ AnnR(N2) such that ax 6= 0.
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We show that (Rax)2 = 0. Let y ∈ (Rax)2. Then there exist r, s ∈
(Rax :R M) and m ∈ M such that y = rsm. But sm ∈ Rax implies
that sm = tax for some t ∈ R. Therefore, y = rtax = artx. As M is
a multiplication module, rtx ∈ N2. Thus, y = 0. Hence (Rax)2 = 0.
Now by hypothesis, Rax = 0. This implies that ax = 0, which is a
contradiction.

(b) Let x be an element of M with AnnR(x) = 0. Since M is fully
idempotent, there exists t ∈ (Rx :R M) such that x = tx. This in turn
implies that t = 1. Hence (Rx :R M) = R. Therefore, Rx = M as
required.

(c) Let P be a prime submodule of M and let x ∈ M \ P . Since
M is fully idempotent, there exists t ∈ (Rx :R M) such that x = tx.
Thus (1 − t) ∈ (P :R M) because P is a prime submodule. Therefore,
R = (Rx :R M) + (P :R M). This implies that M = Rx+P because by
Proposition 2.7 (a), M is a multiplication R-module. It follows that, P
is a maximal submodule of M . �

Remark 2.11. By Theorem 2.15, every multiplication von Neumann
regular module is fully idempotent. Hence part (c) of the above theorem
extends [3, Prop. 10].

It is known (see [4, 18.23]) that a commutative ring R is cosemisimple
if and only if R is a von Neumann regular ring. The following result is
a generalization of this fact.

Theorem 2.12. Let M be a fully idempotent R-module. Then M is a
cosemisimple module. The converse holds when M is a multiplication
R-module.

Proof. Let N be a submodule of M and x ∈M \N . Since M is a fully
idempotent module, there exist t ∈ (Rx :R M) such that x = tx. Set

Ω = {H ≤M | N ≤ H,x 6∈ H}.

Since N ∈ Ω, we have Ω 6= φ. By Zorn’s Lemma, Ω has a maximal
member, say K. We show that K is a prime submodule of M . Suppose
that sm ∈ K, where s ∈ R and m ∈M such that m 6∈ K and s 6∈ (K :R
M). Since K is a maximal element of Ω, we have x ∈ Rm + K and
x ∈ sM + K. Hence x = am + y and x = sm′ + y′, where y, y′ ∈ K,
a ∈ R and m′ ∈M . Thus x = tx = t(sm′ + y′) = tsm′ + ty′. Now since
tm′ ∈ Rx, we have tm′ = bx for some b ∈ R. So

x = sbx+ ty′ = sb(am+ y) + ty′ = sbam+ sby + ty′ ∈ K.
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This contradiction shows that K is a prime submodule of M . Now
by Theorem 2.10 (c), K is a maximal submodule of M . This in turn
implies that N is an intersection of maximal submodules, as desired.
Conversely, suppose that N is a submodule of M and N 6⊆ N2. Hence
there exists x ∈ N such that x 6∈ N2. Since M is cosemisimple, there
exists a maximal submodule K of M such that N2 ⊆ K and x 6∈ K.
Thus Rx+K = M so that N +K = M . Therefore, N(N +K) = NM .
Now since M is a multiplication module, by [6, 3.6], N2 + NK = N .
Hence N ⊆ K +NK = K, which is a contradiction. Thus N ⊆ N2, as
required. �

An R-module M is said to be von Neumann regular if every cyclic
submodule of M is a direct summand of M (see [19]).

Though the proofs of parts (a), (b), and (c) of the following proposi-
tion can be deduced from [3], however, we prefer to provide their direct
proofs.

Proposition 2.13. Let M be an R-module. Then the following hold.

(a) If M is a fully idempotent module, then M is a von Neumann
regular module.

(b) If M is a multiplication von Neumann regular module, then M
is fully idempotent.

(c) If M is a fully idempotent R-module, then M is a locally simple
module.

(d) If M is a locally simple multiplication module, then M is a fully
idempotent module.

Proof. (a) Let x ∈M . SinceM is a fully idempotent module, there exists
t ∈ (Rx :R M) such that x = tx. We claim that M = Rx + (1 − t)M
(d.s.). Let m ∈M . Since tm ∈ Rx, we have m = (1− t)m+ tm ∈ (1−
t)M+Rx. Now assume that y ∈ Rx∩(1−t)M . Then y = sx = (1−t)m,
where s ∈ R and m ∈ M . Since tm ∈ Rx, there exists u ∈ R such that
tm = ux. Hence sx+ ux = m so that (s+ u)x = m. This implies that
y = (1− t)(s+ u)x = (s+ u)0 = 0, as required.

(b) By Proposition 2.6, it is enough to show that every cyclic sub-
module of M is idempotent. Let x ∈ M . By hypothesis, M = Rx + K
(d.s.), where K is a submodule of M . Thus

(Rx :R M)M = (Rx :R M)Rx+ (Rx :R M)K.

Since (Rx :R M)K = 0 and M is a multiplication module, Rx = (Rx :R
M)2M .
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(c) Let M be a fully idempotent R-module. Since MP is a fully
idempotent RP -module for every prime ideal P of R by Proposition 2.7
(d), we may assume that R is a local ring. Hence by [16, 2.5], M contains
exactly one maximal submodule. It turn out by Theorem 2.12, that this
maximal submodule is zero. Therefore, M is locally simple.

(d) Let M be a multiplication locally simple R-module and let N be
a submodule of M . Since MP is simple for each prime ideal P of R and
M is a multiplication R-module, we have (N2)P = NP . This implies
that N = N2 and the proof is completed. �

LetM be anR-module. A submoduleN ofM is said to be Cohen-pure
if for every R-module F , the natural homomorphism F⊗N −→ F⊗M is
injective (see [15]). M is said to be Fieldhouse regular if every submodule
of M is Cohen-pure (see [17]).

Definition 2.14. We say that an R-module M is fully pure if every
submodule of M is pure.

Theorem 2.15. Let M be an R-module. Then

M is fully idempotent ⇒M is von Neumann regular ⇒

M is Fieldhouse regular ⇒M is fully pure.

These concepts are equivalent if M is a multiplication module.

Proof. The first implication is proved in Proposition 2.13. The second
and third implications follow respectively from [11, p. 244] and [20,
p. 157]. Now suppose that M is a multiplication R-module. It is
straightforward to see that every pure submodule of M is idempotent.

�

Example 2.16. Set M = Z2 ⊕ Z2. Then M as a Z-module is von
Neumann regular but it is not fully idempotent.

An R-module M is said to be a weak multiplication module if M does
not have any prime submodule or for every prime submodule N of M
there exists an ideal I of R such that N = IM (see [1]).

Theorem 2.17. Let M be an R-module. Then we have the following.

(a) If every prime submodule of M is idempotent, then M is a weak
multiplication module.

(b) Every prime submodule of M is idempotent if and only if every
prime submodule of the RP -module MP is idempotent for every
prime (or maximal) ideal P of R.
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(c) If every prime submodule of M is idempotent and M is Noether-
ian, then M is a fully idempotent module.

Proof. (a) Let P be a prime submodule of M . By assumption, P =
(P :R M)2M ⊆ (P :R M)M , as requited.

(b) Let N be a prime submodule of MP , where P is a prime ideal of
R. By [21, Proposition 1], we know that N ∩M is a prime submodule
of M . Hence N ∩M = (N ∩M :R M)2M . Therefore, N = (N ∩M)P =
(N ∩M :R M)2

PMP . Conversely, let N be a prime submodule of M .
It is enough to show that ((N/(N :R M)2M)P = 0 for every maximal
ideal P of R. If (N :R M) ⊆ P , then by [21, Proposition 1], NP is a
prime submodule. Thus NP = (NP :RP

MP )2MP , and by [21, Corollary
1], (NP :RP

MP ) = (N :R M)P . Hence

(N/(N :R M)2M)P ∼= NP /(N :R M)2
PMP = NP /(NP :RP

MP )2MP = 0.

If (N :R M) 6⊆ P , then clearly NP = MP and (N :R M)P = RP .
Therefore,

(N/(N :R M)2M)P ∼= MP /MP = 0.

(c) Suppose that M is Noetherian and every prime submodule of
M is idempotent. By part (a), M is a weak multiplication R-module.
Thus by [10, 2.7], M is a multiplication R-module. We claim that M
is locally simple. Then the result follows from Proposition 2.13 (d). To
see this, assume that (R,m) is a local ring. By [16, 2.5], mM is the
only maximal submodule of M . By assumptions, mM = m2M . As M
is Noetherian, mM is finitely generated. Thus by Nakayama’ Lemma,
mM = 0. Therefore, M is a simple R-module, as desired. �

The following example shows that in part (c) of the above theorem,
the condition M is Noetherian can not be omitted.

Example 2.18. The only prime submodule of Q as a Z-module is (0)
and Q is clearly idempotent. But Q as a Z-module is not fully idempo-
tent.

Let M be an R-module. If N is a submodule of M , then cl(N) denotes
the set of all maximal submodules of M that contain N . M is called a
spectral module if cl(K) ∪ cl(N) = cl(K ∪ N) for every submodules K
and N of M . If M is a spectral module, then the set Max(M) of all
maximal submodules of M becomes a topological space by taking sets
{cl(N) : N is a submodule of M} as closed sets (see [25]).
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We recall that an element m of M is said to be singular if AnnR(m)
is a large submodule of R. Moreover, M is said to be a nonsingular
module if M has no non-zero singular element (see [20]).

Theorem 2.19. Let M be a fully idempotent R-module. Then we have
the following.

(a) M is spectral.
(b) Every finitely generated submodule of M is cyclic.
(c) If M is faithful, then E(R) ∼= E(M).

Proof. (a) By Proposition 2.13 (a) and [25, 2.32], it is enough to show
that M is a distributive R-module. To see this, let N , K, and H be
submodules of M . By Proposition 2.7 (a), M is a multiplication module.
So by using [16, 1.7], we have

(N∩K)+(N∩H) = ((N :R M)∩(K :R M))M+((N :R M)∩(H :R M))M

⊇ ((K :R M) + (H :R M))N.

This implies that

(N ∩K) + (N ∩H) = ((K :R M) + (H :R M))M ∩N = (K +H) ∩N

because by Theorem 2.15, every submodule of M is pure.
(b) This follows from part (a) and [22, 11.13].
(c) First we show that M is a nonsingular R-module. Let x be a

non-zero element of M such that AnnR(x) is a large ideal of R. Since
M is fully idempotent, there exists t ∈ (Rx :R M) such that x = tx.
As AnnR(x) is a large ideal of R, we have Rt ∩ AnnR(x) 6= 0. Thus
there exists r ∈ R such that 0 6= rt ∈ AnnR(x). Hence rtx = 0 so
that rx = 0. This implies that rt ∈ AnnR(M), which is a contradiction
because M is faithful. Therefore, M is a nonsingular R-module. Now
the result follows from [24, 1.4] because M is a multiplication R-module
by Proposition 2.7 (a). �

3. Fully coidempotent modules

Definition 3.1. We say that a submodule N of an R-module M is
coidempotent if N = C(N2).

Definition 3.2. An R-module M is said to be fully coidempotent if
every submodule of M is coidempotent.
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Example 3.3. For each prime number p, the Z-module Zp is fully
coidempotent. Moreover, E(ZP ) = Zp∞ is not a fully coidempotent
Z-module.

Let M be an R-module. A submodule N of M is said to be completely
irreducible if N =

⋂
i∈I Ni, where {Ni}i∈I is a family of R-submodules of

M , then N = Ni for some i ∈ I. It is easy to see that every submodule
of M is an intersection of completely irreducible submodules of M (see
[18]).

A non-zero submodule S of M is said to be naturally semi-coprime if
for a submodule N of M , the relation S ⊆ C(N2) implies that S ⊆ N
(see [6]).

In the following proposition, we characterize the fully coidempotent
R-modules.

Proposition 3.4. Let M be an R-module. Then the following state-
ments are equivalent.

(a) M is a fully coidempotent module.
(b) Every completely irreducible submodule of M is coidempotent.
(c) Every non-zero submodule of M is naturally semi-coprime.
(d) For all submodules N and K of M , we have N +K = C(NK).

Proof. (a)⇒ (b) and (a)⇒ (c). These are clear.
(b)⇒ (a). Suppose that N is a submodule of M and L is a completely

irreducible submodule of M such that N ⊆ L. Then C(N2) ⊆ C(L2) =
L. This implies that C(N2) ⊆ N . Hence C(N2) = N because the
reverse inclusion is clear.

(c)⇒ (a). Suppose that N is a submodule of M . Then by hypothesis,
C(N2) ⊆ C(N2) implies that C(N2) ⊆ N , as required.

(a)⇒ (d). Let N and K be two submodules of M . Then

N+K = (0 :M Ann2
R(N+K)) ⊇ (0 :M AnnR(N)AnnR(K)) = C(NK).

Thus N +K = C(NK) because the reverse inclusion is clear.
(d) ⇒ (a). For a submodule N of M , we have N = N + N =

C(N2). �

Proposition 3.5. Let M be a fully coidempotent R-module.

(a) M is a comultiplication module.
(b) Every submodule and every homomorphic image of M is fully

coidempotent.
(c) If M is a finitely generated module, then M is a multiplication

module.
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(d) If R is a Noetherian ring and M is an injective R-module, then
every submodule of M is also an injective R-module.

Proof. (a) This is clear.
(b) It is easy to see that every submodule of M is fully coidempotent.

Now let N be a submodule of M and let K/N be a submodule of M/N .
By part (a), M is a comultiplication R-module. Hence K = (0 :M
Ann2

R(K)) implies that K = (0 :M Ann3(K)). Thus

(0 :M/N Ann2(K/N)) = (0 :M AnnR(N)Ann2
R(K/N))/N

⊆ (0 :M Ann3
R(K))/N = K/N.

Therefore, K/N = (0 :M/N Ann2
R(K/N)).

(c) Let N be a submodule of M . Since M is fully coidempotent,
N = C(N2). Thus (0 :M/N AnnR(N)) = 0. By part (a) and (b), M/N
is a comultiplication R-module. Now since M/N is finitely generated,
R = AnnR(N) + (N :R M) by [7, 3.5]. This implies that N = (N :R
M)M , as required.

(d) Set I = AnnR(N). Since M is fully coidempotent, N = (0 :M I2).
Thus ΓI(M) = N , where ΓI(M) = ∪n∈N(0 :M In). But since M is an
injective R-module, ΓI(M) is an injective R-module by [13, 2.1.4]. �

The following example shows that the converse of part (a) of the above
proposition is not true in general.

Example 3.6. Z4 is a comultiplication Z-module which is not fully
coidempotent.

Let M be an R-module and let N be a submodule of M . The following
example shows that if N and M/N are fully coidempotent modules, then
M is not necessarily a fully coidempotent module.

Example 3.7. Consider the Z-module M = Z/4Z and set N = 2Z/4Z.
Then N and M/N are fully coidempotent Z-modules, while M is not
fully coidempotent.

Theorem 3.8. Let M be an R-module. Then we have the following.

(a) If M is a Noetherian fully idempotent module, then M is a fully
coidempotent module.

(c) If R is a von Neumann regular ring and M is a comultiplication
R-module, then M is a fully coidempotent R-module.

(b) If M is a comultiplication module such that every completely
irreducible submodule of M is a direct summand of M , then M
is a fully coidempotent module.
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(d) If M is a semisimple comultiplication module, then M is a fully
coidempotent module.

Proof. (a) Let N be a submodule of M . Then since M is fully idem-
potent, N = (N :R M)N . As N is finitely generated by Nakayama’
Lemma, R = (N :R M) +AnnR(N). Hence

(0 :M AnnR(N)) = (N :R M)(0 :M AnnR(N)).

Thus (0 :M AnnR(N)) ⊆ N . This implies that M is a comultiplication
R-module. Since M is Noetherian, M is a semisimple R-module by
Theorem 2.19 (b) and Proposition 2.13. Therefore, the result follows
from part (a).

(b) This is clear.
(c) By Proposition 3.4, it is enough to show that every completely

irreducible submodule of M is coidempotent. Let L be a completely
irreducible submodule of M . By hypothesis, M = L + K (d.s.), where
K is a submodule of M . Thus

(L :M AnnR(L)) = (L :L AnnR(L)) + (L :K AnnR(L))

= L+ (0 :K AnnR(L)).

Since M is a comultiplication R-module, it follows that L = (0 :M
Ann2

R(L)), as desired.
(d) This follows from part (c). �

A non-zero submodule N of an R-module M is said to be second if
for each a ∈ R, the homomorphism N

a→ N is either surjective or zero
(see [27]).

Theorem 3.9. Let M be a fully coidempotent R-module. Then the
following hold.

(a) M is Hopfian.
(b) If R is a domain and M is a faithful R-module, then M is simple.
(c) Every second submodule of M is a minimal submodule of M .

Proof. (a) Let f : M → M be an epimorphism. Then by assumption
and Proposition 3.5 (a), Ker(f) = (0 :M I) = (0 :M I2), where I =
AnnR(ker(f)). If y ∈ Ker(f), then y ∈ (0 :f(M) I) because f is an
epimorphism. Thus y = f(x) for some x ∈ M and f(x)I = 0. Hence
xI2 = 0. It follows that xI = 0. Therefore, y = 0, as required.

(b) By [9, 3.3], every non-zero endomorphism of M is an epimorphism.
Thus by part (a) every non-zero endomorphism of M is an isomorphism.
Now let 0 6= x ∈ M and a ∈ AnnR(x). Then ax = 0. Therefore, a = 0.
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Hence AnnR(x) = 0. Thus as M is a comultiplication R-module, we
have Rx = M , as desired.

(c) Let S be a second submodule of M and let K be a submodule of
S. If AnnR(K) ⊆ AnnR(S), then S ⊆ K because M is a comultiplica-
tion R-module by Proposition 3.5 (a). If AnnR(K) 6⊆ AnnR(S), then
there exists r ∈ AnnR(K) \ AnnR(S). Since S is second, rS = S. By
Proposition 3.5 (b), S is fully coidempotent. Hence by part (a), S is
Hopfian. It follows that the epimorphism r : S → S is an isomorphism.
Hence rK = 0 implies that K = 0, as required. �

Definition 3.10. We say that an R-module M is fully copure if every
submodule of M is copure.

Lemma 3.11. Let M be a semisimple R-module. Then M is fully
copure.

Proof. Let N be a submodule of M . Then there exists a submodule K
of M such that M = K +N (d.s.). Now for every ideal I of R,

(N :M I) = (N :K I) + (N :N I) = (0 :K I) +N ⊆ (0 :M I) +N.

This completes the proof because the reverse inclusion is clear. �

Theorem 3.12. Let M be a comultiplication R-module and let N be a
submodule of M . Then the following statements are equivalent.

(a) N is a copure submodule of M .
(b) M/N is a comultiplication R-module and N is a coidempotent

submodule of M .
(c) M/N is a comultiplication R-module and K = (N :M AnnR(K)),

where K is a submodule of M with N ⊆ K.
(d) M/N is a comultiplication R-module and (N :M AnnR(K)) =

(N :M (N :R K)), where K is a submodule of M .

Proof. (a) ⇒ (b). Let K/N be a submodule of M/N . Then since N is
copure,

(0 :M/N AnnR(K/N)) = (N + (0 :M AnnR(K/N)))/N ⊆

(N + (0 :M AnnR(K))/N = (N +K)/N = K/N.

This implies that M/N is a comultiplication R-module. Now as N is
copure,

(N :M AnnR(N)) = N + (0 :M AnnR(N)).

Thus (0 :M Ann2
R(N)) = N , and hence N is coidempotent.
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(b) ⇒ (c). Let K be a submodule of M with N ⊆ K. Since M/N
is a comultiplication R-module, we have K/N = (0 :M/N AnnR(K/N)).
Thus as N is coidempotent,

K/N = (N :M AnnR(K/N))/N = (N :M AnnR(N)AnnR(K/N))/N

⊇ (N :M AnnR(K))/N.

It follows that (N :M AnnR(K)) = K because the reverse inclusion is
clear.

(c)⇒ (a). Let I be an ideal of R. Since N ⊆ (0 :M I) +N , we have

N+(0 :M I) = (N :M AnnR(N+(0 :M I)) = (N+(0 :M I) :M AnnR(N))

⊇ ((0 :M I) :M AnnR(N)) = (N :M I).

This implies that N is a copure submodule of M .
(b)⇒ (d). Let K be a submodule of M . Since N is coidempotent,

(N :M (N :R K)) = ((N :M AnnR(N)) :M (N :R K)) =

(N :M AnnR(N)(N :R K)) ⊇ (N :M AnnR(K)).

This implies that (N :M AnnR(K)) = (N :M (N :R K)) because the
reverse inclusion is clear.

(d)⇒ (b). Take K = N . �

Corollary 3.13. Let M be an R-module. Then we have the following.

(a) If M is a fully coidempotent module, then M is fully copure.
(b) If M is a comultiplication fully copure module, then M is fully

coidempotent.

Proof. (a) By Proposition 3.5 (b) and (a), every homomorphic image of
M is a comultiplication R-module. Now the result follows from Theorem
3.12 (b)⇒ (a).

(b) This follows from Theorem 3.12 (a)⇒ (b). �

The following example shows that in part (b) of the above corollary,
the condition M is a comultiplication module can not be omitted.

Example 3.14. Set M = Z2 ⊕ Z2. Then M as a Z-module is fully
copure, while M is not fully coidempotent.

Proposition 3.15. Let M be an R-module and let N be a submodule
of M .

(a) If M is a multiplication module and N is a copure submodule of
M , then N is idempotent.
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(b) If M is a comultiplication module and N is a pure submodule of
M , then N is coidempotent.

Proof. (a) Suppose that M is a multiplication module and N is a copure
submodule of M . Then we have (N :M (N :R M)) = N + (0 :M (N :R
M)). This in turn implies that M = N + (0 :M (N :R M)). It follows
that (N :R M)M = (N :R M)N . Hence as M is a multiplication
module, we have N = (N :R M)2M .

(b) Suppose that M is a comultiplication module and N is a pure
submodule of M . Then we have AnnR(N)N = N ∩AnnR(N)M . Hence

N = (0 :M AnnR(N)) = (N ∩AnnR(N)M :M AnnR(N)) =

(N :M Ann(N)) = (0 :M Ann2(N)).

�

Corollary 3.16. Let M be an R-module. Then we have the following.

(a) If M is a multiplication fully copure module, then M is fully
pure.

(b) If M is a comultiplication fully pure module, then M is fully
copure.

(c) If M is a multiplication fully coidempotent module, then M is
fully idempotent.

(d) If M is a comultiplication fully idempotent module, then M is
fully coidempotent.

Proof. (a) By Proposition 3.15 (a), every submodule of M is idempotent.
Hence the result follows from Theorem 2.15.

(b) By Proposition 3.15 (b), every submodule of M is coidempotent.
Hence the result follows from Corollary 3.13 (a).

(c) This follows from Corollary 3.13 (a) and Proposition 3.15 (a).
(d) By Theorem 2.15, M is fully pure. Thus by part (b), M is fully

copure. So the result follows from Corollary 3.13 (b). �

The following example shows that in part (d) of the above corollary,
the condition M is a comultiplication module can not be omitted.

Example 3.17. Let

R = {(an) ∈
∞∏
i=1

Z2 : an is eventually constant},

and let
P = {(an) ∈ R : an is eventually 0}.
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Then R is a Boolean ring and P is a maximal ideal of R. Moreover,
AnnR(P ) = 0. Hence P is an idempotent submodule of R but it is not a
coidempotent submodule of R. Thus R is a fully idempotent R-module
but it is not a fully coidempotent R-module.

Example 3.18. By [23, p. 117]), Zn (as a Zn-module) is semisimple
if and only if n is square free. Also Zn is a multiplication and comul-
tiplication Zn-module. Therefore, Zn is a fully idempotent and fully
coidempotent Zn-module if and only if n is square free.

Theorem 3.19. Let M be a fully coidempotent R-module.

(a) For every submodule K of M and every collection {Nλ}λ∈Λ of
submodules of M , ∩λ∈Λ(Nλ +K) = ∩λ∈ΛNλ +K.

(b) If M is a finitely generated R-module, then M is a semisimple
R-module.

Proof. (a) Let K be a submodule of M and let {Nλ}λ∈Λ be a collection
of submodules of M . Clearly

∩λ∈ΛNλ +K ⊆ ∩λ∈Λ(Nλ +K).

By Proposition 3.5 (a), M is a comultiplication R-module. Hence

∩λ∈Λ(Nλ +K) = ∩λ∈Λ(0 :M AnnR(Nλ) ∩AnnR(K)) ⊆
∩λ∈Λ(0 :M AnnR(Nλ)AnnR(K)) = (∩λ∈ΛNλ :M AnnR(K)).

Now since ∩λ∈ΛNλ is a copure submodule of M by Corollary 3.13 (a),
we have

∩λ∈Λ(Nλ +K) ⊆ ∩λ∈ΛNλ +K.

(b) Let N be a submodule of M . By part (b) and (a) of Proposition
3.5, M/N is a comultiplication R-module. Thus by [7, 3.4], M/N is
a finitely cogenerated R-module because M/N is a finitely generated
R-module. Hence there exist completely irreducible submodules L1,
L2, · · · , Ln of M such that N = ∩ni=1Li. Now we use induction on n to
show that N is a direct summand of M . To see this, first suppose that
L is a completely irreducible submodule of M . Then

L = (0 :M AnnR(L)) = (0 :M
∑

ti∈AnnR(L)

Rti) = ∩ti∈AnnR(L)(0 :M ti).

So there exists t ∈ AnnR(L) such that L = (0 :M t). Thus L = (0 :M
t) = (0 :M t2). It follows that tM = t2M becauseM is a comultiplication
R-module. Now by Nakayama’s Lemma, there exists r ∈ R such that
(1 − rt)tM = 0. It follows that M = ((0 :M t) :M 1 − rt). Since by



1004 Ansari-Toroghy and Farshadifar

Corollary 3.13 (a), every submodule of M is copure, we have M = (0 :M
t) + (0 :M 1 − rt). Clearly, (0 :M t) ∩ (0 :M 1 − rt) = 0. Thus L is
a direct summand of M . Now suppose that L1 and L2 are completely
irreducible submodules of M . Then M = L1 + T1 (d.s.) and M =
L2 + T2 (d.s.) for some submodules T1 and T2 of M . By part (a),
M = L1 ∩ L2 + (T1 ∩ L2 + T2) (d.s.). Therefore, by induction on n, it
follows that N is a direct summand of M , as desired. �
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