
Bulletin of the Iranian Mathematical Society Vol. 38 No. 4 (2012), pp 955-972.

PARA-KÄHLER TANGENT BUNDLES OF CONSTANT

PARA-HOLOMORPHIC SECTIONAL CURVATURE

S. L. DRUŢĂ-ROMANIUC

Communicated by Jost-Hinrich Eschenburg

Abstract. We characterize the natural diagonal almost product
(locally product) structures on the tangent bundle of a Riemannian
manifold. We obtain the conditions under which the tangent bundle
endowed with the determined structure and with a metric of natural
diagonal lift type is a Riemannian almost product (locally product)
manifold, or an (almost) para-Hermitian manifold. We find the
natural diagonal (almost) para-Kählerian structures on the tangent
bundle, and we study the conditions under which they have constant
para-holomorphic sectional curvature.

1. Introduction

The natural fiber bundles over manifolds, and in particular the tan-
gent and cotangent bundles endowed with various structures of natural
lift type, were studied in papers such as [1, 10, 11] [16]-[18], [23]-[32],
[35].

Roughly speaking, a natural operator is a fibred manifold mapping,
which is invariant with respect to the group of local diffeomorphisms of
the base manifold. The results from [16]-[18] allowed the extension of
the Sasaki metric, which is very rigid in certain senses, to the metrics
of natural lift type, leading to interesting geometric structures and to
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interesting relations with some problems in Lagrangian and Hamiltonian
mechanics (e.g. see [7]).

On the other hand, authors like Bejan, Cruceanu, Heydari, Ianus,
Ishihara, Mihai, Nicolau, Oproiu, Ornea, Papaghiuc, Peyghan, Yano,
considered almost product structures and almost para-Hermitian struc-
tures (called also almost hyperbolic Hermitian structures) on the tangent
and cotangent bundles.

The study of the Riemannian almost product manifolds was initiated
in 1965 by K. Yano (see [36]). A classification of these manifolds with
respect to the covariant derivative of the almost product structure, was
made by Naveira in 1983. In [26] he obtained 36 classes of almost product
manifolds. In 1992 Staikova and Gribachev realized a classification of
the Riemannian almost product manifolds, for which the trace of the
almost product structure vanishes (see [34]). The basic class is that of
the almost product manifolds with nonintegrable structure, studied for
example in the recent paper [19].

Bejan made a classification of the almost para-Hermitian manifolds.
In 1988 she obtained 36 classes, up to duality, and the characterizations
of some of them (see [3]). In 1991 Gadea and Muñoz Masqué gave a
classification à la Gray-Hervella (see [13]). They obtained 136 classes,
up to duality. One of the most studied classes of (almost) para-Hermitian
manifolds is the class of (almost) para-Kähler manifolds (e.g., see [2]),
characterized by the vanishing condition for the exterior differential of
the associated 2-form.

In the present paper we obtain the almost product structures P of
natural diagonal lift type on the tangent bundle TM of a Riemannian
manifold M . Then we determine the conditions under which the tangent
bundle endowed with a natural diagonal almost product structure, and
with a natural diagonal lifted metric G is a Riemannian almost product
(locally product) manifold, or an (almost) para-Hermitian manifold. We
characterize the natural diagonal (almost) para-Kahler structures on the
tangent bundle.

The analogue notion for the holomorphic sectional curvature of a
Kahler manifold is the para-holomorphic sectional curvature of a para-
Kahler manifold, introduced by M. Prvanovic in the paper [33], in 1971,
and studied by Gadea and Montesinos Amilibia in 1989 ( see [12]).
Prvanovic introduced the para-holomorphic projective curvature tensor,
or H-projectiv curvature tensor, and she obtained the explicit expression



Para-Kähler tangent bundles of constant para-holomorphic sectional curvature 957

of the curvature tensor field for spaces with constant para-holomorphic
sectional curvature.

The final purpose of the present paper is to obtain the conditions
under which the determined para-Kahler structures have constant para-
holomorphic sectional curvature.

The manifolds, tensor fields and other geometric objects considered
in this paper are assumed to be differentiable of class C∞ (i.e., smooth).
The Einstein summation convention is used throughout this paper, the
range of the indices h, i, j, k, l,m, r, being always {1, . . . , n}.

2. Preliminary results

Let (M, g) be a smooth n-dimensional Riemannian manifold and de-
note its tangent bundle by τ : TM → M . The total space TM has
a structure of a 2n-dimensional smooth manifold, induced from the
smooth manifold structure of M . This structure is obtained by us-
ing local charts on TM induced from the usual local charts on M . If
(U,ϕ) = (U, x1, . . . , xn) is a local chart on M , then the correspond-
ing induced local chart on TM is (τ−1(U),Φ) = (τ−1(U), x1, . . . , xn,
y1, . . . , yn), where the local coordinates xi, yj , i, j = 1, . . . , n, are defined
as follows. The first n local coordinates of a tangent vector y ∈ τ−1(U)
are the local coordinates in the local chart (U,ϕ) of its base point, i.e.,
xi = xi ◦ τ , by an abuse of notation. The last n local coordinates
yj , j = 1, . . . , n, of y ∈ τ−1(U) are the vector space coordinates of y
with respect to the natural basis in Tτ(y)M defined by the local chart
(U,ϕ). Due to this special structure of differentiable manifold for TM ,
it is possible to introduce the concept of M -tensor field on it (see [22]),
called by Miron and his collaborators distinguished tensor field or d-
tensor field (e.g., see [7], [21]).

Denote by ∇̇ the Levi Civita connection of the Riemannian metric g
on M . Then we have the direct sum decomposition

(2.1) TTM = V TM ⊕HTM
of the tangent bundle to TM into the vertical distribution V TM =
Ker τ∗ and the horizontal distributionHTM defined by ∇̇ (see [37]). The
set of vector fields { ∂

∂y1
, . . . , ∂

∂yn } on τ−1(U) defines a local frame field

for V TM , and for HTM we have the local frame field { δ
δx1
, . . . , δ

δxn },
where δ

δxi
= ∂

∂xi
− Γh0i

∂
∂yh

, Γh0i = ykΓhki, and Γhki(x) are the Christoffel

symbols of g.
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The set { δ
δxi
, ∂
∂yj
}i,j=1,n, denoted also by {δi, ∂j}i,j=1,n defines a local

frame on TM , adapted to the direct sum decomposition (2.1).
Extensive literature for the Finsler geometry, namely the study of

some classes of Finsler connections, may be found in a few recent papers,
such as [6] and [7].

Consider the energy density of the tangent vector y with respect to
the Riemannian metric g

(2.2) t =
1

2
‖y‖2 =

1

2
gτ(y)(y, y) =

1

2
gik(x)yiyk, y ∈ τ−1(U).

Obviously, we have t ∈ [0,∞) for all y ∈ TM .
We shall use the following lemma, which may be proved easily.

Lemma 2.1. If n > 1 and u, v are smooth functions on TM such that

ugij + vg0ig0j = 0, or uδji + vyjg0i = 0,
on the domain of any induced local chart on TM , then u = 0, v = 0.
We used the notation g0i = yhghi.

3. Natural diagonal almost product structures on the tangent
bundle

In the sequel we shall find the almost product structures on the tan-
gent bundle, obtained as natural diagonal lifts of the metric from the
base manifold.

An almost product structure J on a differentiable manifold M is a
(1, 1)- tensor field on M such that J2 = I. The pair (M,J) is called an
almost product manifold.

An almost paracomplex manifold is an almost product manifold (M,J),
such that the two eigenbundles associated to the two eigenvalues +1 and
−1 of J , respectively, have the same rank. Equivalently, a splitting of
the tangent bundle TM into the Whitney sum of two subbundles T±M
of the same fiber dimension is called almost paracomplex structure on
M .

Considering a linear connection ∇̇ on the base manifold M , the ver-
tical lift XV and the horizontal lift XH of a vector field X ∈ T 1

0 (M)
to the tangent bundle TM , one can define the simplest almost product
structures on TM by the relations

(3.1) P (XH) = −XH , P (XV ) = XV ,

(3.2) Q(XH) = XV , Q(XV ) = XH .
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P is a paracomplex structure if and only if ∇̇ has vanishing curvature,
while Q is paracomplex if and only if ∇̇ has both vanishing torsion
and curvature. These structures have been extended to the case of a
nonlinear connection, and to the specific case of a nonlinear connection
defined by a Finsler, Lagrange or Hamilton structure.

Using the adapted frame {δi, ∂j}i,j=1,n to TM , we define a natural
diagonal lift of the metric g on the base manifold to the tangent bundle
by the relations:

(3.3) Pδi = P1ji∂j , P∂i = P2ji δj ,

where the M -tensor fields involved as coefficients have the forms

(3.4) Pαji = aα(t)δji + bα(t)yjg0i,∀α = 1, 2,

aα, bα, being smooth functions of the energy density t, for α = 1, 2.
The invariant expression of the defined structure is{

PXH
y = a1(t)XV

y + b1(t)gτ(y)(X, y)yVy ,

PXV
y = a2(t)XH

y + b2(t)gτ(y)(X, y)yHy ,
(3.5)

∀X ∈ T 1
0 (TM), ∀y ∈ TM .

Example 3.1. When a1(t) = a2(t) = 1, and b1(t), b2(t) vanish, we have
the structure given by (3.2).

Next we shall find the conditions under which the above (1, 1)-tensor
field P is an almost product structure on the tangent bundle. Using the
relation (3.3), the condition P 2 = I, from the definition of the almost
product structure, becomes

P1jiP2il = δjl , P2jiP1il = δjl ,

which due to (3.4) may be written in the form

(a1a2 − 1)δjl + [b1(a2 + 2tb2) + a1b2]yjg0l = 0.

Taking Lemma 2.1 into account, we have that the coefficients from
the above expression must vanish simultanously. The first coefficient
vanishes if and only if a1 = 1

a2
.

Multiplying the second coefficient by 2t and then adding the first
coefficient we obtain (a1 + 2tb1)(a2 + 2tb2)− 1, which is equal to zero if
and only if a1 + 2tb1 = 1

a2+2tb2
.

Now we may state the following result.
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Theorem 3.2. The natural tensor field P of type (1, 1) on TM , defined
by the relations (3.3) or (3.5), is an almost product structure on TM , if
and only if the coefficients are related by

(3.6) a1 =
1

a2
, a1 + 2tb1 =

1

a2 + 2tb2
.

Remark 3.3. When we consider b1 = b2 = 0 and some particular values
of a1 and a2 such that a1a2 = 1, we obtain the almost product structures
studied in [14], [31] and [32].

In the following theorem we characterize the locally product structures
of natural diagonal lift type on the tangent bundle.

Theorem 3.4. The almost product structure P of natural diagonal lift
type on the tangent bundle of an n(> 2)-dimensional connected Rie-
mannian manifold (M, g) is integrable (i.e., P is a locally product struc-
ture on TM) if and only if (M, g) has constant sectional curvature c,
and the coefficients b1, b2 have the forms:

(3.7) b1 =
a1a
′
1 + c

a1 − 2ta′1
, b2 =

a1a
′
2 − a2

2c

a1 + 2cta2
.

Proof. The integrability of an almost product structure P on TM is
characterized by the vanishing condition for its Nijenhuis tensor field
NP defined by

NP (X,Y ) = [PX,PY ]− P [PX, Y ]− P [X,PY ] + P 2[X,Y ],

for all vector fields X and Y on TM .
When both arguments are vertical generators, the Nijenhuis tensor

field has the form

NP (∂i, ∂j) = [P1hm(∂jP2mi − ∂iP2mj )− Rimh
0ml P2mi P2lj ]∂h,

which after replacing the values of the M -tensor fields P1ji and P2ji from
(3.4) becomes

a1(a′2 − b2)(δhi g0j − δhj g0i)− a2
2 Rimh

0ij

+a2b2(Rimh
0j0 g0i − Rimh

0i0 g0j) = 0.
(3.8)

Since the curvature of the base manifold does not depend on y, we dif-
ferentiate with respect to yk in (3.8). Taking the value of this derivative
in y = 0, we get

(3.9) Rhkij = c(δhi gkj − δhj gki),
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where

c =
a1(0)

a2
2(0)

(a′2(0)− b2(0)),

which is a function depending only on x1, ..., xn. According to Schur’s
theorem, c must be a constant when n > 2 and M is connected.

Replacing the expression (3.9) of the curvature, the relation (3.8)
becomes

(3.10) (a1a
′
2 − a1b2 − a2

2c− 2ta2b2c)(δ
h
i gkj − δhj gki) = 0.

By solving the above equation with respect to b2, we obtain the second
relation in (3.7).

Now, from the vanishing conditions of the Nijenhuis tensor field com-
puted for horizontal arguments,

NP (δi, δj) = (P1li∂lP1hj − P1lj∂lP1hi − Rimh
0ij)∂h,

we obtain

(a1a
′
1 − a1b1 + c+ 2a′1b1t)(δ

h
j g0i − δhi g0j) = 0,

which is true if and only if b1 has the expression from (3.7) presented in
the theorem.

The components NP (δi, ∂j) = −NP (∂j , δi) of the Nijenhuis tensor
field have the expression

(P1mi ∂mP2hj + P2hl ∂jP1li + P2ljP2hm Rimm
0il)δh,

which after the computations becomes

(a′1a2 + a1b2 + a2
2c+ 2a2b2ct)δ

h
j g0i + (a1a

′
2 + a2b1 − a2

2c+ 2ta′2b1)δhi g0j

+(a2b
′
1 + a′1b2 + 3b1b2 + a1b

′
2 − a2b2c+ 2tb′1b2 + 2tb1b

′
2)g0ig0jy

h.

+(a2b1 + a1b2 + 2b1b2t)gijy
h,

and it is easy to prove that it vanishes if and only if b1 and b2 have the
expressions (3.7).

Since all the components of the Nijenhuis tensor field vanish under
the same conditions, it follows that the almost product structure P on
TM is integrable. �

Example 3.5. If b1 = b2 = 0, and a2 = 1
a1

= a(L2), where L2 = 2t,

the relation (3.10) takes the form 2a′ = −ca3. Using the notations of
A. Heydary and E. Peyghan, and denoting by k the quantity −c, the
characterization of the first locally product structure constructed in [14,
Theorem 3.3] is proved. In an analogous way, we can obtain the other
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locally product structures in the mentioned paper, and some structures
in [31] and [32].

Remark 3.6. Taking a1 = 1
a2

=
√

2t, b1 = b2 = 0, the relation (3.8)
becomes

− 1

2t
[(δhi gkj − δhj gki) +Rhkij ]y

k = 0,

which is satisfied if and only if the base manifold has constant sectional
curvature −1, and since all the other components of the Nijenhuis tensor
vanish, [31, Theorem 12] is proved.

4. Riemannian almost product and almost para-Hermitian
structures of natural diagonal lift type on TM

A lot of papers were dedicated to the almost product and almost
para-Hermitian structures on the tangent and cotangent bundles (see
[4, 5, 8, 9, 14, 15, 20, 31, 32, 36]).

A Riemannian manifold (M, g), endowed with an almost product
structure J , satisfying the relation

(4.1) g(JX, JY ) = εg(X,Y ), ∀X,Y ∈ T 1
0 (M),

is called Riemannian almost product manifold if ε = 1, or almost para-
Hermitian manifold(called also almost hyperbolic Hermitian structures)
if ε = −1.

In this section we shall find the conditions under which the tangent
bundle TM , endowed with an almost product structure P and with a
metric G, both of them being natural diagonal lifts of the metric from
the base manifold, is a Riemannian almost product manifold, or a para-
Hermitian manifold.

In [27] V. Oproiu defined the semi-Riemannian metric G of natural
diagonal lift type on TM by the relations:

G(XH
y , Y

H
y ) = c1(t)gτ(y)(X,Y ) + d1(t)gτ(y)(X, y)gτ(y)(Y, y),

G(XV
y , Y

V
y ) = c2(t)gτ(y)(X,Y ) + d2(t)gτ(y)(X, y)gτ(y)(Y, y),

G(XV
y , Y

H
y ) = 0,

(4.2)

∀X,Y ∈ T 1
0 (TM), ∀y ∈ TM, where cα, dα, α = 1, 2 are four smooth

functions of the energy density on TM .
The conditions for G to be nondegenerate are assured if

c1c2 6= 0, (c1 + 2td1)(c2 + 2td2) 6= 0.
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The metric G is positively defined if

c1 + 2td1 > 0, c2 + 2td2 > 0.

The symmetric matrix of type 2n× 2n(
G

(1)
ij 0

0 G
(2)
ij

)
=

(
c1(t)gij + d1(t)g0ig0j 0

0 c2(t)gij + d2(t)g0ig0j

)
,(4.3)

associated to the metric G in the adapted frame {δj , ∂i}i,j=1,n, has the
inverse(

Hkl
(1) 0

0 Hkl
(2)

)
=

(
p1(t)gkl + q1(t)ykyl 0

0 p2(t)gkl + q2(t)ykyl

)
,

where gkl are the entries of the inverse matrix of (gij)i,j=1,n, and p1, q1,
p2, q2, are some real smooth functions of the energy density. More
precisely, they may be expressed as rational functions of c1, d1, c2, d2 :

p1 =
1

c1
, p2 =

1

c2
, q1 = − d1

c1(c1 + 2td1)
, q2 = − d2

c2(c2 + 2td2)
.(4.4)

Now we may prove the characterization theorem for the Riemannian
almost product (locally product), or (almost) para-Hermitian tangent
bundles of natural diagonal lift type.

Theorem 4.1. The tangent bundle of a Riemannian manifold M , en-
dowed with the natural diagonal metric G and with the almost product
structure P characterized in Theorem 3.2, is a Riemannian almost prod-
uct manifold, or an almost para-Hermitian manifold if and only if the
coefficients of G and P satisfy the following proportionality relations

c1

a1
= ε

c2

a2
= λ,

c1 + 2td1

a1 + 2tb1
= ε

c2 + 2td2

a2 + 2tb2
= λ+ 2tµ,(4.5)

where ε takes the corresponding values from definition (4.1), and the
proportionality coefficients λ > 0 and λ + 2tµ > 0 are some functions
depending on the energy density t.

If moreover, the conditions in the statements of Theorem 3.4 hold,
then (TM,G, P ) is a Riemannian locally product manifold for ε = 1, or
a para-Hermitian manifold for ε = −1.

Proof. The relation (4.1) has the following forms in the adapted frame
{δj , ∂i}i,j=1,n:

(4.6) G(Pδi, P δj) = εG(δi, δj), G(P∂i, P∂j) = εG(∂i, ∂j), G(P∂i, P δj) = 0.
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Taking (3.3) and (4.3) into account, the relations (4.6) become

(−εc1+a2
1c2)gij+[−εd1+a2

1d2+2b1c2(a1+tb1)+4tb1d2(a1+tb1)]g0ig0j = 0,

(a2
2c1−εc2)gij+[−εd2+a2

2d1+2b2c1(a2+tb2)+4tb2d1(a2+tb2)]g0ig0j = 0.

Using Lemma 2.1, we have that the coefficients of gij and g0ig0j from
the above expressions are equal to zero. Since the first relation in (3.6)
must be satisfied, we get, by imposing the vanishing conditions for the
coefficients of gij , the first relation in (4.5).

Then, multiplying by 2t the coefficients of g0ig0j and adding the cor-
responding coefficients of gij we obtain the relations

(4.7)
−ε(c1 + 2td1) + (a1 + 2tb1)2(c2 + 2td2) = 0,
(a2 + 2tb2)2(c1 + 2tb1)− ε(c2 + 2td2) = 0,

which due to the second relation in (3.6) lead to the second relation in
(4.5) presented in the theorem. �

Example 4.2. When ε = −1, λ = 1, and a1 = a2 = 1, it follows from
(4.5) that c1 = −c2 = 1. If the other parameters from the definitions of
P and G are zero, we get the almost para-Hermitian structure studied
in [8].

Remark 4.3. In the case when ε = −1, λ = 1, a1 = 1
a2

=
√

2t, c1 =

−2, c2 = 1
t , and the other coefficients involved in the definitions (3.5)

and (4.2) vanish, Theorem 4.1 reduces to [31, Theorem 16]. Next, by
using Remark (3.6), the results in [31, Theorem 18] are proved.

5. Natural diagonal almost para-Kähler structures on the
tangent bundle

In this section we shall study a special class of almost para-Hermitian
structures on the tangent bundles, characterized by the vanishing con-
dition of the exterior differential of the associated 2-form Ω. This struc-
tures are called almost para-Kähler structures.

The 2-form Ω associated to the almost para-Hermitian structure (G,P )
on the tangent bundle is given by the relation

Ω(X,Y ) = G(X,PY ),∀X,Y ∈ T 1
0 (TM).

Computing the exterior differential of Ω, we may prove the following
characterization theorem:
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Theorem 5.1. The natural diagonal almost para-Hermitian structure
(G,P ) on TM is almost para-Kählerian if and only if

µ = λ′.

Proof. Expressing Ω with respect to the local adapted frame on TM , we
have

Ω(δi, δj) = Ω(∂i, ∂j) = 0, Ω(δi, ∂j) = G
(1)
ih P2hj , Ω(∂j , δi) = G

(2)
jh P1hi .

Moreover, replacing the involved M -tensor fields by their values given
in (3.4) and (4.3), and taking into account that all the conditions for
(TM,G, P ) to be an almost para-Hermitian structure (see Theorem 4.1),
we obtain

Ω(δi, ∂j) = −Ω(∂j , δi) = λgij + µg0ig0j ,

so the associated 2-form Ω has the expression

(5.1) Ω = (λgij + µg0ig0j)dx
i ∧Dyj ,

where Dyi = dyi + Γi0hdx
h is the absolute differential of yi.

Now, let us compute the differential of Ω:

dΩ = (dλgij + λdgij + dµg0ig0j + µdg0ig0j + µg0idg0j) ∧ dxi ∧Dyj
−(λgij + µg0ig0j)dx

i ∧ dDyj .

We first calculate the expressions of dλ, dµ, dg0i and dDyi:

dλ = λ′g0hDy
h, dµ = µ′g0hDy

h, dg0i = ghiDy
h + g0hΓhikdx

k,

dDyh =
1

2
Rh0ikdx

i ∧ dxk + ΓhikDy
i ∧ dxk.

Replacing these relations in the expression of dΩ, using the proper-
ties of the external product, the symmetry of gij , Γhik and the Bianchi
identities, we get

dΩ =
1

2
(µ− λ′)(gijg0k − g0igjk)Dy

k ∧Dyi ∧ dxj .

Now we can conclude that dΩ = 0 if and only if µ = λ′, hence the
theorem is proved. �

Remark 5.2. The almost para-Kählerian structures of natural diagonal
lift type on TM depend on three essential coefficients a1, b1, λ, which
must satisfy the supplementary conditions a1 > 0, a1 + 2tb1 > 0, λ >
0, λ+ 2tµ > 0.

Taking theorems 3.2, 3.4 and 5.1 into account, the following result is
proved.
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Theorem 5.3. A natural diagonal almost para-Hermitian structure (G,P )
on TM is para-Kählerian if and only if the almost product structure P
is integrable (see Theorem 3.4) and µ = λ′.

Remark 5.4. The natural diagonal para-Kählerian structures on TM
depend on two essential coefficients a1, λ, which must satisfy the supple-
mentary conditions a1 > 0, a1 + 2tb1 > 0, λ > 0, λ + 2tλ′ > 0, with b1
given by (3.7).

6. Natural diagonal para-Kähler tangent bundles of constant
para-holomorphic sectional curvature

The aim of this section is to obtain the conditions under which the
para-Kahler structures determined in the previous section have constant
para-holomorphic sectional curvature.

Let us recall some results from [27], using the notations from the
present paper.

Theorem 6.1. ([27]) The Levi-Civita connection ∇ of the natural diag-
onal lifted metric G on the tangent bundle of the Riemannian manifold
(M, g) has the following expression with respect to the local adapted frame
{δi, ∂j}i,j=1,...,n{

∇∂i∂j = Qhij∂h, ∇δi∂j = Γhij∂h + P hjiδh,

∇∂iδj = P hijδh, ∇δiδj = Γhijδh + Shij∂h,

where Γhij are the Christoffel symbols of the Levi-Civita connection ∇̇ on
the base manifold, and the M -tensor fields appearing as coefficients in
the above expressions are given as

(6.1)


Qhij = 1

2(∂iG
(2)
jk + ∂jG

(2)
ik − ∂kG

(2)
ij )Hkh

(2),

P hij = 1
2(∂iG

(1)
jk +Rl0jkG

(2)
li )Hkh

(1),

Shij = −1
2(∂kG

(2)
ij +Rl0ijG

(2)
lk )Hkh

(2),

Rhkij being the components of the curvature tensor field of ∇̇.
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The components of the curvature tensor field K of the connection ∇
with respect to the adapted frame {δi, ∂j}i,j=1,...,n are

K(δi, δj)δk = (P hliS
l
jk − P hljSlik +Rhkij +Rl0ijP

h
lk)δh,

K(δi, δj)∂k = (P lkjS
h
il − P lkiShjl +Rl0ijQ

h
lk +Rhkij)∂h,

K(∂i, ∂j)δk = (∂iP
h
jk − ∂jP hik + P ljkP

h
il − P likP hjl)δh,

K(∂i, ∂j)∂k = (∂iQ
h
jk − ∂jQhik +QljkQ

h
il −QlikQhjl)∂h,

K(∂i, δj)δk = (∂iS
h
jk + SljkQ

h
il − P likShjl − ∇̇jRr0ikG

(2)
rl H

(1)
hl )∂h,

K(∂i, δj)∂k = (∂iP
h
kj + P lkjP

h
il −QlikP hlj)δh.

Notice that, in the case of the obtained para-Kähler manifold (TM,G,
P ), due to the integrability condition of P , the base manifold (M, g) has

constant sectional curvature, so ∇̇Rhkij = 0, and the above formulas
become simpler.

Replacing theM -tensor fields P hij , Q
h
ij , S

h
ij by their values given in The-

orem 6.1, and taking into account that all the conditions for (TM,G, P )
to be a para-Kahler manifold (see Theorem 5.3), the components of the
corresponding curvature tensor field will have some expressions of the
form

α1δ
h
i gjk + α2δ

h
j gik + α3δ

h
kgij + α4δ

h
kg0ig0j + α5δ

h
j g0ig0k + α6δ

h
i g0jg0k(6.2)

+ α7gjkg0iy
h + α8gikg0jy

h + α9gijg0ky
h + α10g0ig0jg0ky

h = 0,

where the coefficients α1, . . . , α10 are some quite complicated smooth
functions on TM , depending on the parameters a1, λ, their derivatives
of orders 1, 2 and 3, the energy density, and the constant sectional cur-
vature c of the base manifold. We mention that in a few components of
K some of this ten coefficients vanish.

The curvature tensor field corresponding to a para-Kälerian mani-
fold of constant para-holomorphic sectional curvature, k, was indepen-
dently defined in [12] and [33]. In the case of the para-Käler manifold
(TM,G, P ) it is given by the formula:

K0(X,Y )Z =
k

4
[G(Y,Z)X −G(X,Z)Y +G(Y, PZ)PX

−G(X,PZ)PY − 2G(X,PY )PZ], ∀X,Y, Z ∈ T 1
0 (TM).
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The curvature of the natural diagonal para-Kähler manifold (TM,G, P )
of constant para-holomorphic sectional curvature has the following com-
ponents with respect to the adapted frame {δi, ∂j}i,j=1,...,n :

K0(δi, δj)δk =
k

4
(G

(1)
jk δ

h
i −G

(1)
ik δ

h
j )δh,

K0(δi, δj)∂k =
k

4
(G

(1)
jl P1hi −G

(1)
il P1hj )P2lk∂h,

K0(∂i, ∂j)δk =
k

4
(G

(2)
jl P2hi −G

(2)
il P2hj )P1lkδh,

K0(∂i, ∂j)∂k =
k

4
(G

(2)
jk δ

h
i −G

(2)
ik δ

h
j )∂h,

K0(∂i, δj)δk =
k

4
[G

(1)
jk δ

h
i −G

(2)
il (P1lkP1hj − 2P1ljP1hk)]∂h,

K0(∂i, δj)∂k =
k

4
(−G(2)

ik δ
h
j +G

(1)
jl P2lkP2hi − 2G

(2)
il P1ljP2hk)δh.

Next we have to study the vanishing conditions for the components of
the difference K −K0. In this study the following generic result similar
to Lemma 2.1 is useful.

Lemma 6.2. If α1, . . . , α10 are smooth functions on TM such that

α1δ
h
i gjk + α2δ

h
j gik + α3δ

h
kgij + α4δ

h
kg0ig0j + α5δ

h
j g0ig0k + α6δ

h
i g0jg0k

+ α7gjkg0iy
h + α8gikg0jy

h + α9gijg0ky
h + α10g0ig0jg0ky

h = 0,

then α1 = · · · = α10 = 0.

Now we may prove the characterization theorem for the para-Kähler
tangent bundles of natural diagonal lift type, which have constant para-
holomorphic sectional curvature.

Theorem 6.3. The natural diagonal para-Kählerian manifold (TM,G,
P ) is of constant para-holomorphic sectional curvature k, if and only if
the base manifold M is flat, the coefficient c1 involved in the definition
of G is a constant C, the coefficient a1 of P satisfies the differential
equation

(6.3) a′′1 =
4a′1

2(a1 − a′1t)
a1(a1 − 2a′1t)

,

and the proportionality factor λ is expressed by

(6.4) λ =
C
a1
.
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Moreover, the para-Kählerian manifold (TM,G, P ) cannot have nonzero
constant para-holomorphic sectional curvature.

Proof. Computing the difference K − K0 with respect to the adapted
frame {δi, ∂j}i,j=1,...,n, we remark that all its components are combina-
tions of the form (6.2).

Analyzing the vanishing problem of the mentioned difference, we
choose the component (K −K0)(∂i, δj)∂k. Since in its final expression
there appear two terms with shorter expressions, using Lemma (6.2), we
have that all the coefficients, which are some quite complicated functions
depending on a1, λ, their first three order derivatives, the energy den-
sity, and the constant sectional curvature c of the base manifold, must
vanish. The coefficient of the term containing gikδ

h
j is zero if and only

if the derivative of the proportionality factor λ has the expression

λ′ = λ
a1k(a1 − 2ta′1)λ− a2

1a
′
1 − 2c(a1 − ta′1)

a1(a2
1 + 2ct)

.(6.5)

Taking (6.5) into account and imposing the vanishing conditions for
the coefficients of gjkδ

h
i and gikδ

h
j , we obtain the equations

−4a1c+ a2
1kλ− 2ckλt = 0,

4a1c− 3a2
1kλ+ 6ckλt− 4a1k

2λ2t = 0.

Replacing the value k = 4a1c
λ(a21−2ct)

, obtained from the first equation

above, into the second one, we have that

(6.6) − 8a1c(a
2
1 + 2ct)2

(a2
1 − 2ct)2

= 0.

There are three cases under which this relation is true.
If a1 = 0 the structure is no more an almost product one, so this

case is not valid. Moreover, the case a2
1 = −2ct may be discussed only

when the base manifold is of negative constant sectional curvature. This
situation reduces to a1c = 0. Hence, the equality (6.6) is true only in the
case when the base manifold is flat, i.e., c = 0, and the constant para-
holomorphic sectional curvature of the para-Kähler manifold (TM,G, P )
also becomes zero.

Replacing the values c = k = 0 into the expression (6.5), we obtain
the differential equation

λ′

λ
= −a

′
1

a1
,

which has the solution given by (6.4).
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Substituting the value (6.4) of λ into the condition (4.5) for the man-
ifold (TM, G, P ) to be para-Hermitian, we obtain that c1

a1
= C

a1
, so the

coefficient c1 involved in the definition of the metric G is a constant.
Next, replacing the expression (6.4) of λ, and taking into account that

c = k = 0, by using the RICCI package from Mathematica, we get that
all the components of K −K0 become zero, except (K −K0)(∂i, ∂j)∂k,
which has the final form

2
a1a
′′
1(a1 − 2a′1t) + 4a′1

2(a′1t− a1)

a1 − 2a′1t

[ 1

a2
1

(δhi g0j − δhj g0i)g0k

+
1

(a1 − 2a′1t)
2
(gjkg0i − gikg0j)y

h
]
∂h.

The above expression vanishes if and only if the relation (6.3) pre-
sented in the theorem is satisfied. �
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[13] P. M. Gadea, J. Muñoz Masqué, Classification of Almost Para-Hermitian Mani-

folds, Rend. Mat. Appl. (7) 11 (1991), no. 2, 377–396.
[14] A. Heydari and E. Peyghan, A characterization of the infinitesimal conformal

transformations on tangent Bundles, Bull. Iranian Math. Soc. 34 (2008), no. 2,
59–70.
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