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SPACELIKE HYPERSURFACES IN RIEMANNIAN OR

LORENTZIAN SPACE FORMS SATISFYING Lkx = Ax+ b

F. PASHAIE AND S. M. B. KASHANI∗

Communicated by Jost-Hinrich Eschenburg

Abstract. We study connected orientable spacelike hypersurfaces
x : Mn → Mn+1

q (c), isometrically immersed into the Riemann-
ian or Lorentzian space forms of curvature c = −1, 0, 1, and index
q = 0, 1, satisfying the condition Lkx = Ax + b, where Lk is the
linearized operator of the (k+ 1)th mean curvature Hk+1 of the hy-
persurface for a fixed integer 0 ≤ k < n, A is a constant matrix
and b is a constant vector. We show that the only hypersurfaces
satisfying that condition are hypersurfaces with zero Hk+1 and con-
stant Hk (when c 6= 0), open pieces of totally umbilic hypersurfaces
and open pieces of the standard Riemannian product of two totally
umbilic hypersurfaces.

1. Introduction

In 1966, Takahashi [11] determined the n-dimensional submanifolds
isometrically immersed into the Euclidean space Rn+m whose position
vector field was an eigenvector of the Laplace operator ∆ with the same
eigenvalue. Many people generalized this result in different directions
(see [2–5,8,9]). As is well-known, the Laplace operator of a hypersurface
Mn ⊂ Rn+1 arises naturally as the linearized operator of the first vari-
ation of the mean curvature for normal variations of Mn. As such, ∆ is
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the first one of a sequence of n operators, L0 = ∆, L1 = �, ... , Ln−1,
where Lk is the linearized operator of the first variation of the (k+ 1)th
mean curvature arising from normal variations of the hypersurface. The
operator � was introduced in [7]. Based on this background, Alias et al.
( [3–5]) considered hypersurfaces in space forms whose position vector
fields satisfies the general condition Lkx = Ax + b, where A and b are
as specified in the abstract.

In [4], hypersurfaces in the Euclidean space Rn+1, satisfying the con-

dition Lkx = Ax + b, are characterized, where A ∈ R(n+1)×(n+1) and
b ∈ Rn+1. This work is generalized in [5] to the hypersurfaces in the
Riemannian space forms Sn+1 and Hn+1 satisfying Lkx = Ax+ b, for a
self-adjoint matrix A and a vector b. Here, we extend the result of [4]
and [5] to spacelike hypersurfaces in the Riemannian or Lorentzian space
forms Rn+1

q , Sn+1
q and Hn+1

q , with q = 0, 1, whose position vector x satis-
fies the condition Lkx = Ax+b, A and b are as specified in the abstract.
Our main results are theorems 1.1 - 1.5 below. We should emphasize
that in [5], A is self-adjoint, but here, we have managed to omit this
restricting condition. One of main ingredients of the proof of our result
is Lemma 3.3. Its proof is based on the moving frame method, and is
completely different from that of Lemma 4.1 in [5]. Here are our new
results.

Theorem 1.1. Let Mn(n > 2) be a connected orientable spacelike hy-
persurface isometrically immersed into the (pseudo-)Euclidean space by
the map x : Mn → Rn+1

q , where q = 0 or 1. Then, x satisfies the condi-
tion Lkx = Ax+ b, for an integer 0 ≤ k < n, a matrix A ∈M(n+ 1,R)
and a vector b ∈ Rn+1, if and only if Mn is an open piece of one of the
following hypersurfaces:
(i) A k-minimal hypersurface;
(ii) Sn(c), if q = 0 (Hn(−c), if q = 1), where c > 0;
(iii) Sm(c) × Rn−m, if q = 0 (Hm(−c) × Rn−m, if q = 1), where c > 0
and k < m < n.

Theorem 1.2. Let Mn(n > 2) be a connected orientable spacelike hy-
persurface isometrically immersed into the (pseudo-)sphere by the map
x : Mn → Sn+1

q ⊂ Rn+2
q , where q = 0, 1, and assume that Hk (i.e. the

k-th mean curvature of Mn) is constant on M . Then, x satisfies the
condition Lkx = Ax+ b, for an integer 0 ≤ k < n, A ∈M(n+ 2,R) and
a non-zero vector b ∈ Rn+2, if and only if Mn is an open piece of one
of the following hypersurfaces:
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(i) Sn(r), for some 0 < r < 1, if q = 0 (r > 1, if q = 1);
(ii) Rn or Hn(−r), for some r > 0, if q = 1.

Theorem 1.3. Let Mn(n > 2) be a connected orientable spacelike hy-
persurface isometrically immersed into the (pseudo-)hyperbolic space by
the map x : Mn → Hn+1

q ⊂ Rn+2
q+1 , where q = 0 or 1, and assume that

Hk is constant on M . Then, x satisfies the condition Lkx = Ax+ b, for
k,A, b as in Theorem 1.2, if and only if Mn is an open piece of one of
the following hypersurfaces:
(i) Hn(−r), for some r > 1, if q = 0 (0 < r < 1 if q = 1);
(ii) Rn, or Sn(r), for some r > 0 if q = 0.

Theorem 1.4. Let Mn(n > 2) be a connected orientable spacelike hy-
persurface isometrically immersed into the (pseudo-)sphere by the map
x : Mn → Sn+1

q ⊂ Rn+2
q , where q = 0 or 1. Then, x satisfies the con-

dition Lkx = Ax, for k,A as in Theorem 1.2, if and only if Mn is an
open piece of one of the following hypersurfaces:
(i) A hypersurface with zero Hk+1 and constant Hk;

(ii) Sm(
√

1− r2)× Sn−m(r), where 0 < r < 1 and 0 < m < n, if q = 0;

(iii) Hm(−
√
r2 − 1)× Sn−m(r), where r > 1 and 0 < m < n, if q = 1.

Theorem 1.5. Let Mn(n > 2) be a connected orientable spacelike hy-
persurface isometrically immersed into the (pseudo-)hyperbolic space by
x : Mn → Hn+1

q ⊂ Rn+2
q+1 , where q = 0 or 1. Then, x satisfies the con-

dition Lkx = Ax, for k,A as in Theorem 1.2, if and only if Mn is an
open piece of one of the following hypersurfaces:
(i) A hypersurface with zero Hk+1 and constant Hk;

(ii) Hm(−
√

1 + r2)× Sn−m(r), where r > 0 and 0 < m < n, if q = 0;

(iii) Hm(−
√

1− r2) × Hn−m(−r), where 0 < r < 1 and 0 < m < n, if
q = 1.

2. Preliminaries

Here, we recall some basic preliminaries from [4, 5] and [10]. By Rmp ,
we mean the vector space Rm with the scalar product,

< x, y >:= −Σp
i=1xiyi + Σj>pxjyj ,

where 0 ≤ p < m. Specially, Rm0 = Rm, and Rm1 is the Minkowski space.
For r > 0 and q = 0, 1, Sn+1

q (r) = {y ∈ Rn+2
q | < y, y >= r2} denotes

the (pseudo-)sphere or the de Sitter space of radius r and curvature
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1/r2, and Hn+1
q (−r) = {y ∈ Rn+2

q+1 | < y, y >= −r2} denotes the (pseudo-

)hyperbolic space or the anti-de Sitter space of radius r and curvature
−1/r2. The simply connected space form Mn+1

q (c) of curvature c and

index q is Rn+1
q , for c = 0, Sn+1

q = Sn+1
q (1), for c = 1 (with induced

metric from Rn+2
q ), and Hn+1

q = Hn+1
q (−1), for c = −1 (with inherited

metric from Rn+2
q+1 ). When q = 0, we take a component of Hn+1

0 . For

an immersed hypersurface x : Mn → Mn+1
q (c), the symbols ∇ and ∇̄

denote the Levi-Civita connections on Mn and Mn+1
q (c), respectively.

Furthermore, ∇0 denotes the Levi-Civita connection on Rn+2
q or Rn+2

q+1 .

The Weingarten formula for a spacelike hypersurface x : Mn →Mn+1
q (c)

is ∇̄VW = ∇VW − ε < SV,W > N, for V,W ∈ χ(M), where ε = 2q−1,
q ∈ {0, 1} and S is the shape operator of M associated to a unit normal
vector field N on M with < N,N >= −ε. Furthermore, in the case |c| =
1, Mn+1

q (c) is a hyperquadric, in Rn+2
q or Rn+2

q+1 , with the unit normal

vector field x and the Gauss formula ∇0
VW = ∇̄VW − c < V,W > x.

So, we have

(2.1) ∇0
VW = ∇VW−ε < SV,W > N−c < V,W > x, ∀V,W ∈ χ(M).

Since M is spacelike, S can be diagonalized. Denote its eigenvalues (the
principal curvatures of M) by the functions κ1, ..., κn on M , define the
elementary symmetric function as

sj :=
∑

1≤i1<...<ij≤n
κi1 ...κij ,

and the jth mean curvature of M by (nj )Hj = (−ε)jsj , as (5.19) in [1].

The hypersurface Mn in Rn+1
p is called j-minimal, if its (j + 1)th mean

curvature Hj+1 is identically zero.
In particular, H1 = −ε(1/n)tr(S) and H = H1N are respectively the

mean curvature and the mean curvature vector of M . In general, Hj is
extrinsic (respectively, intrinsic), when j is an odd (respectively, even)
number, since the sign of Hj depends on the chosen orientation only in
the odd case.

For a spacelike hypersurface M in the space form Mn+1
q (c), we in-

troduce, as (4) in [6], the Newton transformations Pj : χ(M) → χ(M),
associated with the shape operator S of M , inductively by

P0 = I, Pj = (−ε)jsjI + εS ◦ Pj−1 , (j = 1, ..., n),
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where I is the identity on χ(M). One can see that Pj has an explicit

formula, Pj = (−ε)jΣj
l=0(−1)lsj−lS

l =
∑j

l=0(nj−l)ε
lHj−lS

l, where H0 =

1 and S0 = I. According to the characteristic polynomial of S, QS(t) =
det(tI − S) =

∑n
l=0(−1)n−lsn−lt

l, the Cayley-Hamilton theorem gives
Pn = 0.

Using the explicit formula of Pj , one can see that it is self-adjoint
and commutes with S. Therefore, S(p) and Pj(p) are simultanuously
diagonalizable at each point p ∈M . Let e1, ..., en be a local orthonormal
tangent frame on M that diagonalizes S and Pj as Sei = κiei and Pjei =
µi,jei, for i = 1, 2, ..., n, where µi,j = (−ε)j

∑
i1<...<ij , il 6=i κi1 ...κij , (for

j = 0, 1, ..., n− 1). Using this and the useful identity

(2.2) εκiµi,j = µi,j+1 − (−ε)j+1sj+1 = µi,j+1 − (nj+1)Hj+1,

and the notation cj = (n− j)(nj ) = (j+ 1)(nj+1), the following properties
of Pk may be obtained easily:

(2.3) tr(Pj) = (−ε)j(n− j)sj = cjHj ,

(2.4) tr(S ◦ Pj) = (−ε)j(j + 1)sj+1 = −εcjHj+1,

tr(S2 ◦ Pj) = (nj+1)[nH1Hj+1 − (n− j − 1)Hj+2],

tr(Pj ◦ ∇XS) = −ε(nj+1) < grad(Hj+1), X >, ∀X ∈ χ(M).

By Corollary 34 in [10], page 115, ∇S is symmetric. Then, from the
last equation, we obtain

(2.5)

n∑
i=1

(∇eiS)(Pj−1ei) = −ε(nj )grad(Hj).

The linearized operator Lj : C∞(M) → C∞(M) of the (j + 1)th mean
curvature of M is defined by Lj(f) := tr(Pj ◦∇2f), where ∇2f is given
by < ∇2f(X), Y >= Hess(f)(X,Y ).

For an spacelike hypersurface x : Mn → Mn+1
q (c) ⊂ Rn+1+|c|

t , where
c ∈ {−1, 0, 1}, t := q+ (1/2)(|c|− c) and q ∈ {0, 1}, with a (locally) unit
normal vector field N, from [1] and [4–6], we have grad < x,a >= aT

and grad < N,a >= −SaT , for every a ∈ Rn+1+|c|
t , and also

εLjN= (nj+1)grad(Hj+1)+(nj+1)[nH1Hj+1−(n−j−1)Hj+2]N−ccjHj+1x,

and

(2.6) Ljx = cjHj+1N− ccjHjx, (for j = 0, ..., n− 1).
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Now, let the isometric immersion x : Mn →Mn+1
q (c) ⊂ Rn+1+|c|

t satisfy
Lkx = Ax+ b, for an integer 0 < k < n, a matrix A ∈M(n+ 1 + |c|,R)

and a vector b ∈ Rn+1+|c|. Then, for i = 1, .., n, we have

(2.7) Aei = −ck(κiHk+1 + cHk)ei + ck < grad(Hk+1), ei > N

−cck < grad(Hk), ei > x,

(2.8) Hk+1AN = +ε(nk+1)Hk+1grad(Hk+1)− 2(Pk ◦ S)(grad(Hk+1))

−2cPkgrad(Hk)− cHkb
T − c[εckH2

k+1 + cHk < b, x > +LkHk]x

+ε{(nk+1)Hk+1[nH1Hk+1−(n−k−1)Hk+2]+cHk < b,N > +εLkHk+1}N,

(2.9) (< AX,N > − < AN,X >)SY −(< AY,N > − < AN, Y >)SX

= εc[< ckgrad(Hk)− bT , X > Y− < ckgrad(Hk)− bT , Y > X].

To get formulae (2.7)− (2.9), as in [5], one can get

AX=−ck[Hk+1SX− < grad(Hk+1), X >N+cHkX+c < ∇Hk, X > x],

which gives (2.7). One may obtain (2.8), similar to (18) in [5]. Finally,
we have easily < AX,Y >=< X,AY >, for every X,Y ∈ χ(M), which,
by covariant derivation, gives

< A∇0
ZX,Y > + < AX,∇0

ZY >=< ∇0
ZX,AY > + < X,A∇0

ZY > .

This, By using (2.1), (2.6) and the symmetry of S, gives (2.9).

3. Main results

In order to prove theorems 1.1− 1.5, we state the following auxiliary
lemma.

Lemma 3.1. Let x : Mn → Mn+1
q (c) (where n ≥ 3) be a connected

hypersurface satisfying Lkx = Ax + b, for A, b as in Theorem 1.2 and
integers 0 < k < n, c ∈ {−1, 0, 1}, q ∈ {0, 1}. Let {e1, ..., en} be the
local orthonormal tangent frame of principal directions on M . Define
U := {p ∈M |Hk+1(p) 6= 0}, ωij(el) :=< ∇elei, ej > and

Ωi,j := εκj

(
2
µi,k+1

Hk+1
− (k + 4)(nk+1)

)
< grad(Hk+1), ei >

+ c(2
κjµi,k
Hk+1

− εck) < grad(Hk), ei > + c(ε+
κjHk

Hk+1
) < b, ei > .

Then, on U, for every i, j, l ∈ {1, ..., n}, where i 6= l, we have

(i) < κi grad(Hk+1) + c grad(Hk), el > = −Hk+1 < grad(κi), el >;
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(ii) ωil(el) (κl − κi) Hk+1 = < κl grad(Hk+1) + c grad(Hk) , ei >;

(iii) ωij(el)(κi − κj)Hk+1 = 0, when i, j and l are mutually different;
(iv) Ωi,l = 0;
(v) µi,j < grad(κi), ei >= −ε(nj+1) < grad(Hj+1), ei >

− ε
(
j(nj+1)

Hj+1

Hk+1
+

µi,j+1

Hk+1

)
< grad(Hk+1), ei >

+ c
Hk+1

( cjHj − µi,j) < grad(Hk), ei >;

(vi) If < b, ei >= 0, then

Hk+1 < grad(κi), ei >= −κi
(

2k − 1
k + 1 +

2µi,k+1

ckHk+1

)
< grad(Hk+1), ei >

−2c
(

k
k + 1 +

µi,k+1

ckHk+1

)
< grad(Hk), ei > .

Proof. (i)−(iii): Using the local orthonormal tangent frame field {e1, · · · ,
en} of principal directions on M , we compute both sides of the equation

< ∇0
el

(Aei), ej >=< A∇0
el
ei, ej >

on U, for i, l, j ∈ {1, ..., n}. Assume that i 6= l and recall that ∇0
el
x = el,

∇0
el
N = −κlel, ∇0

el
ei = ∇elei − εκlδliN− cδlix = Σn

j=1ωij(el)ej to easily

have ωij(el) = −ωji(el).
Using (2.7), by a computation, we obtain

(3.1) < ∇0
el

(Aei), ej >= −ckδlj < κl grad(Hk+1) + c grad(Hk), ei >

−ckδij < grad(κiHk+1 + cHk), el > −ck(κiHk+1 + cHk)ωij(el).

On the other hand, using (2.7), we get

(3.2) < A∇0
el
ei, ej >= −ckωij(el)(κjHk+1 + cHk).

When j = i, we have ωij = 0 and since i 6= l, we have j 6= l and δlj = 0.
By comparing equations (3.1) and (3.2), we get (i) when j = i, (ii) when
j = l and (iii) when i, j, l are mutually different.

(iv): Equation (2.9) for X = ei, Y = el, when i 6= l, gives

(< Aei,N > − < AN, ei >)κl − εc < ckgrad(Hk)− bT , ei >= 0,

which by (2.2), (2.7), (2.8) and < N,N >= −ε gives (iv).
(v): By applying (2.5) and Pjem = µm,jem, we get

n∑
m=1

µm,j(∇emS)em = −ε(nj+1)grad(Hj+1).

But, for every i,m we have
< (∇emS)em, ei >=< ∇em(Sem)− S∇emem, ei >
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=< grad(κm), em > δmi + (κm − κi)ωmi(em),
from which we obtain
µi,j < grad(κi), ei >= −ε(nj+1) < grad(Hj+1), ei >

−
n∑
l=1

µl,j(κl − κi)ωli(el).

Then, by (i) and (iii), we get

(3.3) µi,j < grad(κi), ei >= −ε(nj+1) < grad(Hj+1), ei >

+
n∑

l=1, l 6=i

µl,j
Hk+1

< κl grad(Hk+1) + c grad(Hk), ei > .

On the other hand, by (2.2) and (2.4), we have the identity

n∑
l=1, l 6=i

κlµl,j = −ε
(
j(nj+1)Hj+1 + µi,j+1

)
.

Using this identity and (2.3), the result can be obtained from (3.3).
(vi): Similar to (i)− (iii), by the identity < A∇0

eiei−∇
0
ei(Aei), ei >=

0, (2.7), (2.8) and (2.2), we get

ckHk+1 < grad(κi), ei > + 2c

(
k(nk+1) +

µi,k+1

Hk+1

)
< grad(Hk), ei >

+ κi

(
(2k − 1)(nk+1) + 2

µi,k+1

Hk+1

)
< grad(Hk+1), ei >= 0,

which gives the result. �

The next lemma is similar to Lemma 5 in [4].

Lemma 3.2. Let x : Mn → Rn+1
q , q ∈ {0, 1}, be an orientable connected

spacelike hypersurface in the Euclidean or Minkowski space satisfying
Lkx = Ax+b, k,A, b as in Theorem 1.1. Then, Hk+1 is constant on M .

Proof. The case k = 0 is obtained by Proposition 3.2 in [3]. The proof
of the case k ≥ 1 is exactly similar to that of Lemma 5 in [4]. �

The following key lemma, which is the essential ingredient of the
proofs of theorems 1.2−1.5, generalizes Lemma 4.1 of [5]. In the lemma,
the range of x is Mn+1

q (c), for q = 0, 1 and A is an arbitrary matrix. Our
proof is completely different from that of Lemma 4.1 of [5].
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Lemma 3.3. Let n ≥ 3, 0 < k < n and x : Mn → Mn+1
q (c) ⊂ Rn+2

t be
an orientable connected spacelike hypersurface satisfying Lkx = Ax+ b,
where q ∈ {0, 1}, c ∈ {−1, 1}, t := q + (1/2)(|c| − c) and A, b as in
Theorem 1.2. Then,
(i) Hk is constant if and only if Hk+1 is constant.
(ii) If b = 0, then Hk and Hk+1 are constant.

Proof. (i) Assume that Hk is constant on M . It is enough to show
that Hk+1 is constant on the open subset V = {p ∈ M |Hk+1(p) 6= 0}.
Using the local orthonormal tangent frame field {e1, ..., en} of principal
directions on M , we show that

Vi = {p ∈ V| < grad(Hk+1), ei >p 6= 0} = ∅, (for i = 1, 2, ..., n).

For each i, we take Ji := {1, ..., n} − {i} and write Vi as

Vi = Wi,1∪̇Wi,2∪̇Wi,3,

where ∪̇ is the disjoint union and

(3.4) Wi,1 = {p ∈ Vi|∃l ∈ Ji, κl(p) = κi(p)},

(3.5) Wi,2 = {p ∈ Vi|∀j ∈ Ji, (κj(p) 6= κi(p) ∧ ∃l ∈ Ji, κj(p) 6= κl(p))},

(3.6) Wi,3 = Vi −Wi,1∪̇Wi,2.

For any i, 1 ≤ i ≤ n, in three steps we prove that Wi,1 = Wi,2 = Wi,3 =
∅.

Step 1 (Wi,1 = ∅): If Wi,1 6= ∅, at each point p ∈Wi,1, there exists an
l ∈ Ji such that κl(p) = κi(p), and by Lemma 3.1 (ii), κl(p) = κi(p) = 0.
Then, by Lemma 3.1 (iv), < b, ei >p= 0. Since Hk+1 6= 0, one may
choose j ∈ Ji − {l} such that κj(p) 6= 0. By Lemma 3.1 (iv), we get

κj(p)

(
(k + 4)(nk+1) − 2

µi,k+1(p)

Hk+1(p)

)
< ∇Hk+1, ei >p= 0.

So, on Wi,1, µi,k+1 = (2 + k
2 )(nk+1)Hk+1 . On the other hand, as κi = 0,

by (2.2), µi,k+1 = (nk+1)Hk+1. Hence, we get Hk+1 = 0, which is a
contradiction. Hence, Wi,1 = ∅.

Step 2 (Wi,2 = ∅): If Wi,2 6= ∅, at each point p ∈ Wi,2, for every
j ∈ Ji, there exists l ∈ Ji such that κl(p), κj(p) and κi(p) are mutually
distinct. By Lemma 3.1 (iv), Ωi,j = Ωi,l = 0, which gives < b, ei >p= 0,
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and µi,k+1(p) = (2+ k
2 )(nk+1)Hk+1(p). Then, by Lemma 3.1 (v), for j = k,

we get

(3.7) µi,kθi = −3ε(1+
k

2
)(nk+1) 6= 0 (where, θi =

< grad(κi), ei >

< grad(Hk+1), ei >
).

These equations and (2.2) give that

(3.8) θi = −3
κi

Hk+1
.

On the other hand, by Lemma 3.1(v), for j = k − 1, we get

µi,k−1θi = − ε

Hk+1
((k − 1)(nk)Hk + µi,k),

from which, by (2.2), (3.7) and (3.8), we get

(3.9) Hkκi =
(n− k)ε

k + 1
Hk+1,

which, by covariant derivation on the open set Wi,2, gives

(3.10) < grad(Hk+1), ei >=
k + 1

(n− k)ε
Hk < grad(κi), ei > .

Then, θi = (n−k)ε
(k+1)Hk

, which by (3.8) and (3.9), we get Hk+1 = 0. This is

a contradiction, and hence Wi,2 = ∅. So, Vi = Wi,3.
Step 3 (Wi,3 = ∅): If Wi,3 6= ∅, on which, we have for all l, j ∈ Ji,

κl = κj and κj 6= κi, then, for each m,

(3.11) µi,m = (−ε)m(n−1
m )κmj .

Lemma 3.1 (v), for j = k, jointly with (2.2) and (3.11), give

(3.12) Hk+1θi =
(k + 2)(n− k − 1)

k + 1
κj + (k + 1)κi.

Similarly, from Lemma 3.1 (v), for j = k−1, (2.2) and (3.11), we obtain
Hk+1θi = (n− k)κj + (k − 1)κi, which, comparing with (3.12), gives

(3.13) κi = (1− n

2k + 2
)κj .

Using (2.2), (3.11) and (3.13),we getHk = 1
2(−εκj)k,Hk+1 = 1

2(−εκj)k+1.
These equations imply that κj and Hk+1 are constant on the open set
Vi = Wi,3. This is a contradiction, and hence Vi = Wi,3 = ∅.

Therefore, Hk+1 is constant on V, and by continuity of Hk+1 on M ,
it is constant on M .
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Conversely , assume that Hk+1 is constant on M . In order to prove
that grad(Hk) = 0 on V = {p ∈M |Hk(p) 6= 0}, we show that

Vi = {p ∈ V| < grad(Hk), ei >p 6= 0} = ∅ (for, i = 1, 2, ..., n).

If Hk+1 = 0, then by Lemma 3.1 (ii), grad(Hk) = 0 on V, and the
proof is complete. Assume that Hk+1 6= 0. For any i, 1 ≤ i ≤ n, we
take Vi = Wi,1∪̇Wi,2∪̇Wi,3, where the Wi,j are as in (3.4) − (3.6). The
claim is that Wi,1 = Wi,2 = Wi,3 = ∅. For any i, 1 ≤ i ≤ n, we prove
the claim in the following steps.

Step 1 (Wi,1 = ∅): If Wi,1 6= ∅, at each point p ∈ Wi,1 there exists
an l ∈ Ji such that κl(p) = κi(p). So, by Lemma 3.1 (ii), we obtain
< grad(Hk), ei >= 0 on Wi,1, which is a contradiction. Hence, Wi,1 = ∅.

Step 2 (Wi,2 = ∅): If Wi,2 6= ∅, at each p ∈ Wi,2, by definition, for
every j ∈ Ji, there exists an l ∈ Ji such that κl(p), κj(p) and κi(p)
are mutually distinct. By Lemma 3.1 (iv), Ωi,j = Ωi,l = 0, which gives
ck < grad(Hk), ei >p=< b, ei >p, and

(3.14) µi,k(p) = −1

2
ckHk(p).

Now, By Lemma 3.1 (v), for j = k, we have

(3.15) µi,k(ψi +
c

Hk+1
) = cck

Hk

Hk+1
, (where ψi =

< grad(κi), ei >

< grad(Hk), ei >
).

From these equations, we get ψi = −3 c
Hk+1

6= 0 on Wi,2. Also, by

Lemma 3.1 (v), when j = k − 1, we have

(3.16) µi,k−1(ψi +
c

Hk+1
) = (nk)(−ε+ ck

Hk−1

Hk+1
),

which, using (2.2) and (3.15), we get

(3.17) Hk(ψi − (n− k − 1)
c

Hk+1
) = κi(1− cεk

Hk−1

Hk+1
).

Similarly, one may obtain that for every j ∈ Ji,

ck < grad(Hk), ej >=< b, ej >,

and (µj,k + 1
2ckHk(p)) < grad(Hk), ej >= 0.

If < b, ej >p 6= 0, for some j ∈ Ji and p ∈ Wi,2, then ψi(p) = ψj(p) =
−3 c

Hk+1
. Also, with the assumption < b, ej >p 6= 0, as (3.17), one can
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obtain

(3.18) Hk(ψj − (n− k − 1)
c

Hk+1
) = κj(1− cεk

Hk−1

Hk+1
).

Then, by (3.17) and (3.18), we get (κi − κj)(1 − cεk
Hk−1

Hk+1
) = 0, and

hence Hk+1 = cεkHk−1. As a result, by (3.17), Hk(p) = 0, which is a
contradiction. So, ck < grad(Hk), ej >=< b, ej >= 0 on Wi,2, for all
j ∈ Ji.
By (2.7), Aej = −ck(κjHk+1 + cHk)ej and κjHk+1 + cHk is constant
on the open set Wi,2, for all j ∈ Ji, and so is dlj = κl − κj , for every
pair j, l ∈ Ji. Then, for a fixed j ∈ Ji and for every l ∈ Ji we have
κl = dlj + κj . So, by (3.14), Hk has a polynomial expression in terms of
κj , and consequently κjHk+1+cHk is a polynomial in κj and constant on
Wi,2. Therefore, κj and Hk are constant on Wi,2. This is a contradiction,
and hence Wi,2 = ∅.

Step 3 (Wi,3 = ∅): Assume that Vi = Wi,3 6= ∅. On Wi,3, by
definition, we have for all l, j ∈ Ji, κl = κj 6= κi, and, µl,m = µj,m, for
m = 0, 1, ..., n − 1. We also get the formulas (3.11), (3.15) and (3.16).
From (2.2), (3.15) and (3.11), we obtain

(3.19) Hk+1ψi = c(n− k − 1) + ck
κi
κj
.

Similarly, from (2.2), (3.16) and ((3.11), the following formula holds:

(3.20) Hk+1ψi =
−ε
k

[(n−k−1)κ2
j +(k+1)κiκj ]+c(n−k)+c(k−1)

κi
κj
.

Comparing (3.19) and (3.20), we get κi =
ckκj−ε(n−k−1)κ3j
ck+ε(k+1)κ2j

. By (2.2), one

may express Hk and Hk+1 in terms of κj . As Hk+1 is a constant, κj
satisfies a polynomial equation. So, κj and Hk are constant on the open
set Vi = Wi,3. This is a contradiction. Hence, Vi = Wi,3 = ∅.

Therefore, Hk is constant on V, and by continuity, it is constant on
M .

(ii)- Assume that b = 0. By (i), it is enough to prove that Hk+1 is
constant on M . We take V and Vi as in (i), and show that Vi = ∅, for
i = 1, 2, ..., n. Taking Vi = Wi,1∪̇Wi,2∪̇Wi,3, where the Wi,j (1 ≤ j ≤ 3)
are as in (3.4)−(3.6), we claim that Wi,1 = Wi,2 = Wi,3 = ∅, and prove it
in the following steps. Step 1 (Wi,1 = ∅): If Wi,1 6= ∅, then at each point
p ∈ Wi,1, there exists an l ∈ Ji such that κl(p) = κi(p). By Lemma
3.1 (ii), we get κl(p) < grad(Hk+1), ei >p= −c < grad(Hk), ei >p,
which by Lemma 3.1 (iv) and (2.2), we have < grad(Hk), ei >p= 0.
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Then, κi(p) = κl(p) = 0. So, applying Lemma 3.1 (iv), for every j ∈ Ji,
we have

κj((k + 4)(nk+1)− 2
µi,k+1

Hk+1
) < ∇Hk+1, ei >= 0,

and hence µi,k+1 = (2 + k
2 )(nk+1)Hk+1 on Wi,1. Also, since κi = 0, by

(2.2), we get µi,k+1 = (nk+1)Hk+1. As a result, we get a contradiction as

(1 + k
2 )(nk+1)Hk+1 = 0. So, Wi,1 = ∅.

Step 2 (Wi,2 = ∅): If Wi,2 6= ∅, at each point p ∈ Wi,2, for every
j ∈ Ji, there exists an l ∈ Ji, such that κl(p), κj(p) and κi(p) are
mutually distinct. Then, by Lemma 3.1 (iv), we have Ωi,j = Ωi,l = 0,
which gives < grad(Hk), ei >p= 0. Now, exactly as in (3.7)-(3.10), we
obtain a contradiction. Hence, Wi,2 = ∅.

Step 3 (Wi,3 = ∅): If Wi,3 6= ∅, on which we have for all l, j ∈ Ji,
κl = κj and κj 6= κi. So, for each m, we have (3.11). Taking ϕi :=
<grad(Hk),ei>
<grad(Hk+1),ei>

and ϑi := <grad(κi),ei>
<grad(Hk+1),ei>

, by Lemma 3.1 (iv) and (3.11),

we get, for every l ∈ Ji,

(3.21) κl[(
n

k + 1
−1)(k+2)κl+(k+4)κi] = −c((n−k+1)κl+(k+1)κi)ϕi.

From Lemma 3.1 (v), for j = k, we get for every l ∈ Ji,

(3.22) Hk+1ϑi = (
n

k + 1
−1)(k+2)κl+(k+1)κi+c(n−k−1+k

κi
κl

)ϕi,

and for j = k − 1, we get
Hk+1ϑi = (n− k)κl + (k − 1)κi

(3.23) − [ε
n− k − 1

k
κ2
l + ε

k + 1

k
κiκl − c(n− k)− c(k − 1)

κi
κl

]ϕi,

which, comparing with (3.22), gives
(3.24)

(2− n

k + 1
)κl − 2κi = [c(

κi
κl
− 1) + ε

(n− k − 1)κl + (k + 1)κi
k

κl]ϕi.

Now, by (3.21), n− k + 1 + (k + 1)κiκl 6= 0. So, we have

(3.25) ϕi =
(k + 2)( n

k+1 − 1)κl + (k + 4)κi

−c(n− k + 1 + (k + 1)κiκl )
.
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Using (3.25), from (3.24), we get
ε
k (n−k−1)2(k+2)κ3

l−c((n−k)2+n−3k−4)κl = c(2nk+n−2k2+4k+6)κi
(3.26)

+c(k+1)(k−2)
κ2
i

κl
− 2ε

k
(n−k−1)(k+1)(k+3)κiκ

2
l −

ε

k
(k+1)2(k+4)κ2

iκl,

from which, by covariant derivation in direction of ei, we obtain

[3ε
k (n− k − 1)2(k + 2)κ2

l − c((n− k)2 + n− 3k − 4) + c(k + 1)(k − 2)
κ2i
κ2l

+ 4ε
k (n−k−1)(k+1)(k+3)κiκl+

ε
k (k+1)2(k+4)κ2

i ] < grad(κl), ei >=

{c(2nk + n− 2k2 + 4k + 6) + 2c(k + 1)(k − 2)κiκl −
2ε
k (k + 1)2(k + 4)κiκl

(3.27) − 2ε

k
(n− k − 1)(k + 1)(k + 3)κ2

l } < grad(κi), ei > .

Now, by Lemma 3.1 (i) we have κl + cϕi = −<grad(κl),ei>
<grad(κi),ei>

Hk+1ϑi, which

using (3.22) and (3.25) and by multiplying by ck(k + 1) 1
κl

, we get

ε(n − k − 1)2(k + 2)(4k2 + 7k + 3n + 3)κ2
l − ε(k + 1)2(8nk2 + 15nk −

38n− 12k3 − 45k2

− 3k + 30)κ2
i − ck(n3 + 4n2k2 + 5n2k − 8nk3 − 7nk2 + 14nk + 2n2 +

13n+ 4k4 + k3 − 22k2

− 31k − 12) + ck(4n2k2 + n2k − 16nk3 − 10nk2 + 22nk − 2n2 + 16n+
12k4 + 3k3 − 52k2 − 65k− 22)κiκl + ck(k+ 1)(8nk2 − 5nk− 7n− 12k3 +

9k2 + 33k + 12)
κ2i
κ2l

− ε(k + 1)(n− k − 1)(4nk2 + nk − 24n− 12k3 − 45k2 − 29k + 4)κiκl

(3.28) +ck(k+1)2(k−2)(4k+1)
κ3
i

κ3
l

− ε(k+1)3(k+4)(4k−5)
κ3
i

κl
= 0.

Taking x̄ := κ2
l and ȳ := κi

κl
, from (3.26) by dividing by κl, we get

x̄ = εck (k+1)(k−2)ȳ2+(2nk+n−2k2+4k+6)ȳ+(n−k)2+n−3k−4
(k+1)2(k+4)ȳ2+2(k+1)(n−k−1)(k+3)ȳ+(n−k−1)2(k+2)

.

Clearly, one can see that the denominator of the last fraction does
not have any real root for integers n > k > 0. So, from (3.28) we get
a polynomial of degree five in terms of ȳ, as c0 + c1ȳ + ... + c5ȳ

5 = 0,
where,

c0 = 2ck(k+2)(n−k−1)2(3k+11n+6k2+11nk−2n2+2n2k+3k3−n3),

c1 = ck(n− k− 1)(−96− 228k+ 260n− 78k2 + 550nk− 80n2− 30n3k+
24n2k2 − 6nk3 − 68n2k + 302nk2 + 150k4 + 174k3 − 20n3 + 12n2k3 −
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18nk4 + 30k5 − 8n3k2)
c2 = ck(k+1)(−336−888k+676n+1274nk−288n2−50n3k+78n2k2−
222nk3 − 240n2k + 448nk2 + 300k4 + 204k3 − 20n3 + 30n2k3 − 72nk4 +
60k5 − 10n3k2),
c3 = ck(k + 1)2(432 + 744k − 460n + 132k2 − 386nk + 44n2 − 38n2k +
48nk3 + 122nk2 − 60k4 − 240k3 − 10n2k2),
c4 = 6ck(k + 1)3(k + 4)(k − 2)(5k + 5− 2n)
c5 = −6ck(k + 1)4(k − 2)(k + 4).

If the last polynomial equation has no real root, then we have a con-
tradiction. Otherwise it has at most five distinct real roots, which im-
plies that there exists an open subset of Wi,3 = Vi on which, ȳ, x̄, κl,
κi and Hk+1 are constant, which is a contradiction. Therefore, we get
Vi = Wi,3 = ∅. So, Hk+1 is constant on V, and hence on M . �

4. Proof of the theorems

Proof. (1.1). For the case q = 0, see Theorem 1 in [4]. Now, we consider
the case q = 1. By examples 5.1 and 5.2, the hypersurfaces of type
(i)− (iii) do satisfy the formula Lkx = Ax+ b. Conversely, By Lemma
3.2, Hk+1 is constant on M . If Hk+1 = 0, then M is k-minimal. Assume
that Hk+1 6= 0. As the proof of Theorem 1 in [4], one may show that S

satisfies the equation ckHk+1S
2−βS = 0, where β =

(n−k−1)Hk+2

(k+1)Hk+1
− nH1

k+1

is constant on M , i.e., M is isoparametric. So, for each i, we have
κ2
i + (β/ckHk+1)κi = 0. Since M is connected, we may assume that

there exists an m ≥ 1 such that κi = −β/(ckHk+1), for i = 1, ...,m,
and κi = 0, for i = m + 1, ..., n. If m = n, then M = Hn(−c), which
gives (ii). If m < n, as in [12], TM decomposes as TM = T1 ⊕ T2,
where T1 := span{e1, ..., em} and T2 := span{em+1, ..., en}. By Lemma
3.1 (iii), if κi 6= κj , then ωij = 0. So, for every 1 ≤ i ≤ m and
m+1 ≤ j ≤ n, we have ωij = 0, and T1 and T2 are integrable. Therefore,
M decomposes as M = M1 ×M2, where M1 and M2 are the integral
manifolds of T1 and T2, respectively. Hence, M1 is an open piece of
Hm(−c) and M2 is an open piece of Rn−m. Therefore, M is an open
piece of Hm(−c)× Rn−m. �

Proof. (1.2 and 1.3). By examples 5.2 - 5.5, and examples 3.2 and
3.3 in [5], each of the hypersurfaces mentioned in Theorems 1.2 and 1.3
satisfies the formula Lkx = Ax+ b. Conversely, since Hk is constant, by
assumption, so is Hk+1 by Lemma 3.3 (i). If Hk+1 = 0, by Example 5.1,
we get b = 0, which is a contradiction. So, Hk+1 6= 0. In this case, similar
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to the proof of Theorem 1.7 in [5], we obtain that the shape operator S
satisfies the equation ckHk+1S

2 + (α+ 2cckHk)S+ cckHk+1I = 0, where
α is constant. So, M is an isoparametric hypersurface in Sn+1

q or Hn+1
q .

Then, by theorems 1 and 2 in [12], M is an open subset of one of the
hypersurfaces mentioned in theorems 1.2 and 1.3. �

Proof (1.4 and 1.5). By examples 5.1, 5.6 and 5.7, and examples 3.1
and 3.4 in [5], each of the hypersurfaces mentioned in theorems 1.4 and
1.5 satisfies the formula Lkx = Ax. Conversely, by Lemma 3.3 (ii),
Hk and Hk+1 are constant on M . If Hk+1 = 0, then there is nothing
to prove. Assume that Hk+1 6= 0. Similar to the proof of Theorem
1.2 in [5], the shape operator S satisfies the equation ckHk+1S

2 + (α +
2cckHk)S + cckHk+1I = 0, where α is constant, and hence M is an
isoparametric hypersurface in Sn+1

q or Hn+1
q , and by theorems 1 and 2

in [12], M is an open subset of one of the hypersurfaces mentioned in
the theorems. �

5. Examples

Following [4, 5] and [12], we give the following examples.

Example 5.1. Consider an spacelike connected orientable hypersurface
x : Mn → Mn+1

q (c), where q ∈ {0, 1} and c ∈ {−1, 0, 1}. Assume that
Hk is constant (when c 6= 0), and Hk+1 ≡ 0. By (2.6), it satisfies

Lkx = Ax+ b, with A = −cckHkIk+2 ∈ R(n+2)×(n+2) and b = 0 ∈ Rn+2.

Example 5.2. Let M be Hm(−r) × Rn−m ⊂ Rn+1
1 , with r > 0 and

1 ≤ m ≤ n. In fact, M = {y ∈ Rn+1
1 | − y2

1 + ... + y2
m+1 = −r2}. With

the Gauss map N(y) = −1
r (−y1, y2, ..., ym+1, 0, ..., 0) on M , we get its

principal curvatures κ1 = ... = κm = 1
r , κm+1 = ... = κn = 0. Then,

(nk+1)Hk+1 = (−1)k+1(mk+1)(1
r )k+1, for k < m, and Hk+1 = 0, otherwise.

By (2.6), Lkx = Ax, with A = (−1)k(mk+1)(k + 1)(1
r )k+2diag[−1, Im, 0].

When m = n, M = Hn(−r) is totally umbilic in Rn+1
1 .

Example 5.3. Take a unit vector a ∈ Rn+2
1 and σ =< a,a >. For each

r >
√
|σ|, Mr := {y ∈ Sn+1

1 ⊂ Rn+2
1 | < v,a >=

√
r2 + σ} is a totally

umbilic hypersurface in Sn+1
1 . Similar to Example 3.2 in [5], the Gauss

map is N(x) = 1
r (a−

√
r2 + σx), and so for all i, κi = 1

r

√
r2 + σ, and for

each k, Hk = (−1)k[1
r

√
r2 + σ]k. By (2.6), Mr satisfies Lkx = Ax + b,

with A = ck(−1)kσ
√
r2+σ

k

rk+2 In+2 and b = ck(−1)k+1
√
r2+σ

k+1

rk+2 a. When
σ = −1 and r ≥ 1, Mr = Sn(r). When σ = 1 and r > 0, Mr = Hn(−r).
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Example 5.4. In this example, we follow [12], page 132. Take ε =
(−1, 1, 0, ..., 0) ∈ Rn+2

1 . Define the function g : Sn+1
1 ⊂ Rn+2

1 → R
by g(x) = −x1 + x2, and take Mt := g−1(e−t), for each t ∈ R. In
fact, Mt = {(f(y) + sinh t, f(y) + cosh t, y) ∈ Sn+1

1 |y ∈ Rn}, where

f(y) = −et
2 Σn

i=1y
2
i . With respect to the Gauss map N(x) = etε − x on

Mt, one may obtain κ1 = ... = κn = 1, and so Hk = (−1)k. Therefore,
by (2.6), Mt satisfies Lkx = Ax + b, for k = 0, 1, ..., n − 1, with A = 0
and b = ck(−1)k+1etε.

Example 5.5. Take a timelike unit vector a ∈ Rn+2
2 and f : Hn+1

1 ⊂
Rn+2

2 → R, given byf(v) =< v,a >. For 0 < r ≤ 1, Mr := f−1(−
√

1− r2)

= Hn(−r) is a totally umbilic hypersurface in Hn+1
1 . Similar to Example

3.3 in [5], with the Gauss map N(x) = 1
r (a −

√
1− r2x), one may see

that for all i, κi =
√

1−r2
r , and for each k, Hk = (−1)k(

√
1−r2
r )k. By

(2.6), Mr satisfies Lkx = Ax + b, with A = ck(−1)kσ
√

1−r2k
rk+2 In+2 and

b = ck(−1)k+1
√

1−r2k+1

rk+2 a.

Example 5.6. Let M be the standard product

Hm(−
√
r2 − 1)× Sn−m(r) ⊂ Sn+1

1 ,

where r > 1 and 0 < m < n. Similar to Example 3.4 in [5], M is a
connected component of Mr := {y ∈ Sn+1

1 ⊂ Rn+1
1 |y2

m+2 + ... + y2
n+2 =

r2}. Then, the Gauss map of M is N(y) = −r√
r2−1

(y1, ..., ym+1, (1 −
1
r2

)ym+2, ..., (1 − 1
r2

)yn+2), and its principal curvatures are κ1 = ... =

κm = r√
r2−1

, κm+1 = ... = κn =
√
r2−1
r . So, Hk and Hk+1 are con-

stant, and by (2.6), Lkx = (λx1, ..., λxm+1, µxm+2, ..., µxn+2) = Ax+ b,

where λ = −r√
r2−1

ckHk+1 − ckHk, µ = −
√
r2−1
r ckHk+1 − ckHk, A =

diag[λ, ..., λ, µ, ..., µ] and b = 0.

Example 5.7. Let M be the standard product

Hm(−
√

1− r2)×Hn−m(−r) ⊂ Hn+1
1 ,

where 0 < r < 1 and 0 < m < n. M is a connected component of
Mr := {y ∈ Hn+1

1 ⊂ Rn+1
2 |−y2

2+y2
m+3+...+y2

n+2 = −r2}, with the Gauss

map N(y) = −r√
1−r2 (y1, (1 − 1

r2
)y2, y3, ..., ym+2, (1 − 1

r2
)ym+3, ..., (1 −

1
r2

)yn+2) and the principal curvatures κ1 = ... = κm = r√
1−r2 , κm+1 =

... = κn = −
√

1−r2
r . Then, Hk and Hk+1 are constant and Lkx =
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(λx1, µx2, λx3, ..., λxm+2, µxm+3, ..., µxn+2) = Ax+ b, where,

λ = −r√
1−r2 ckHk+1 + ckHk, µ =

√
1−r2
r ckHk+1 + ckHk, b = 0 and

A = diag[λ, µ, λ, ..., λ, µ, ..., µ].
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