Bulletin of the Iranian Mathematical Society Vol. 39 No. 1 (2013), pp 175-185.

THE QUASI-MORPHIC PROPERTY OF GROUP

Q. WANG*, K. LONG AND L. FENG

Communicated by Ali Reza Ashrafi

ABSTRACT. A group is called morphic, if for each normal endomorphism $\alpha \in end(G)$, there exists $\beta \in end(G)$ such that $ker(\alpha) = G\beta$ and $G\alpha = ker(\beta)$. Here, we consider the case that there exist normal endomorphisms β and γ such that $ker(\alpha) = G\beta$ and $G\alpha = ker(\gamma)$. We call G quasi-morphic, if this happens for any normal endomorphism $\alpha \in end(G)$. We get the following results: G is quasi-morphic if and only if, for any normal subgroup K such that $G/K \cong N \triangleleft G$, there exist $T, H \triangleleft G$ such that $G/T \cong K$ and $G/N \cong H$. Furthermore, we investigate the quasi-morphic property of finitely generated abelian group and get that a finitely generated abelian group is quasi-morphic if and only if it is finite.

1. Introduction

Nicholson and Sánchez first introduced morphic ring in [5], and investigated the morphic property of ring and module in [3–5] and [1]. In 2010, Li, et al. investigated the morphic property of group in [2]. A group G is called morphic, if every normal endomorphism α of G satisfies $G/G\alpha \cong ker(\alpha)$, or equivalently, for any normal endomorphism α there exists $\beta \in end(G)$ such that $ker(\alpha) = G\beta$ and $G\alpha = ker(\beta)$.

MSC(2010): Primary: 20K01; Secondary: 20k27, 20D35.

Keywords: Quasi-morphic group, finitely generated abelian group, normal endomorphism. Received: 28 May 2011, Accepted: 4 September 2011.

 $[*] Corresponding \ author$

 $[\]bigodot$ 2013 Iranian Mathematical Society.

¹⁷⁵

Here, we investigate the quasi-morphic property of a group. Normal endomorphism α is called quasi-morphic, if there exist normal endomorphisms β and γ such that $ker(\alpha) = G\beta$ and $G\alpha = ker(\gamma)$. Gis called quasi-morphic, if every normal endomorphism $\alpha \in end(G)$ is quasi-morphic.

We get the following results: G is quasi-morphic if and only if, for any normal subgroup K such that $G/K \cong N \triangleleft G$, there exist $T, H \triangleleft G$ such that $G/T \cong K$ and $G/N \cong H$. Furthermore, if G is a quasi-morphic abelian group, then $I(G) = \{G\alpha : \alpha \in end(G)\}$ is a lattice. Finally, we turn our attention to the finitely generated abelian group. We get that a finitely generated abelian group is quasi-morphic if and only if it is finite.

If G is a group, then we write end(G) for the group endomorphism of G and write aut(G) for the group automorphism. Endomorphisms are written on the right side of their arguments. We use $H \triangleleft G$ to indicate that H is a normal subgroup of G. We simply write C_n as a cyclic group of order n, and C_{∞} as an infinite cyclic group.

2. Quasi-morphic endomorphism

We say that $\alpha \in end(G)$ is **normal** if $G\alpha \triangleleft G$. A normal endomorphism $\alpha \in end(G)$ is called **quasi-morphic**, if there exist normal endomorphisms β and γ such that $ker(\alpha) = G\gamma$ and $G\alpha = ker(\beta)$. It is clear that every morphic endomorphism is quasi-morphic.

Lemma 2.1. Let G be a group. The followings are equivalent for a normal endomorphism α .

- (1) α is quasi-morphic.
- (2) $ker(\alpha)$ is an image of G and $G/G\alpha \cong K$, where K is a normal subgroup of G.

Proof. (1) \Rightarrow (2) If α is quasi-morphic, then there exist normal endomorphisms β and γ such that $ker(\alpha) = G\beta$ and $G\alpha = ker(\gamma)$. Hence, $G/G\alpha = G/ker(\gamma) \cong G\gamma \triangleleft G$, and $ker(\alpha) = G\beta$ is an image of G.

 $(2) \Rightarrow (1)$ Given $\alpha \in end(G)$, $ker(\alpha)$ is an image of G and $G/G\alpha \cong K$, for some $K \triangleleft G$, by (2). We have isomorphism $\eta: G/G\alpha \to K$ and epic $\xi: G \to ker(\alpha)$. Defined normal endomorphism $\beta: G \to G$ and $\gamma: G \to G$, by $g\beta = (gG\alpha)\eta$ and $g\gamma = g\xi$, respectively. Then, $ker(\beta) = G\alpha$ and $G\gamma = ker(\alpha)$. Thus, α is quasi-morphic. \Box

By Lemma 2.1, every automorphism of group G is quasi-morphic, because $G/G\alpha \cong 1$ and $ker(\alpha) = 1$.

Theorem 2.2. If α is quasi-morphic and $\rho \in aut(G)$, then $\alpha \rho$ and $\rho \alpha$ are quasi-morphic.

Proof. If $\alpha \in end(G)$ is a quasi-morphic endomorphism, then there exist normal endomorphisms β and γ such that $ker(\alpha) = G\gamma$ and $G\alpha = ker(\beta)$. Since ρ is automorphism, we have $G/G\alpha\rho \cong G/G\alpha =$ $G/ker(\beta) \cong G\beta \triangleleft G$ and $ker(\alpha\rho) = ker(\alpha) = G\gamma$ is an image of G. Hence, $\alpha\rho$ is quasi-morphic, by Lemma 2.1. Similarly, we have that $\rho\alpha$ is quasi-morphic.

In particular, every unit regular endomorphism is quasi-morphic. For more general endomorphisms, we have the following result.

Theorem 2.3. If α and β are quasi-morphic endomorphisms, α is epic, and β is monic, then $\alpha\beta$ is quasi-morphic.

Proof. Since $\alpha, \beta \in end(G)$ are quasi-morphic endomorphisms, we have normal endomorphisms γ and ρ such that $ker(\alpha) = G\gamma$ and $G\beta = ker(\rho)$. Then, $ker(\alpha\beta) = ker(\alpha) = G\gamma$ and $G\alpha\beta = G\beta = ker(\rho)$, because α is epic and β is monic. Thus, $\alpha\beta$ is quasi-morphic. \Box

3. Quasi-morphic group

A group is called **quasi-morphic**, if every normal endomorphism $\alpha \in end(G)$ is quasi-morphic. By Lemma 2.1, a simple group and C_n are quasi-morphic, but C_{∞} is not quasi-morphic.

Theorem 3.1. The following are equivalent for a group G.

- (1) G is quasi-morphic.
- (2) For any normal subgroup K such that $G/K \cong N \triangleleft G$, there exists $T, H \triangleleft G$ such that $G/T \cong K$ and $G/N \cong H$.

Proof. (1) \Rightarrow (2) If $G/K \cong N$, then we have an isomorphism $\rho : G/K \rightarrow N$. Define normal endomorphism $\alpha : G \rightarrow G$ by $g\alpha = (gK)\rho$. Then, $ker(\alpha) = K$ and $G\alpha = N$. By (1), we have normal endomorphism β and γ such that $ker(\alpha) = G\beta$ and $G\alpha = ker(\gamma)$. Then, $G/ker(\beta) \cong G\beta = ker(\alpha) = K$ and $G/N = G/G\alpha = G/ker(\gamma) \cong G\gamma$.

 $(2) \Rightarrow (1)$ For any normal endomorphism $\alpha \in end(G)$, we have $G/ker(\alpha) \cong G\alpha \triangleleft G$. Hence, there exist $T, H \triangleleft G$ such that $G/T \cong ker(\alpha)$ and $G/G\alpha \cong H$ by (2). Then, we have isomorphisms $\rho_1 : G/T \to ker(\alpha)$

and $\rho_2: G/G\alpha \to H$. Define β and γ by $g\beta = (gT)\rho_1, g\gamma = (gG\alpha)\rho_2$. Then, $G\beta = ker(\alpha)$ and $G\alpha = ker(\gamma)$. Hence, α is quasi-morphic. Since α is arbitrary, we get that G is quasi-morphic.

Theorem 3.2. If G is quasi-morphic, then the followings are equivalent.

- (1) Every normal subgroup of G is an image of G.
- (2) Every image of G is isomorphism to a normal subgroup of G.

Proof. (1) \Rightarrow (2) For any normal subgroup N of G, we have $G/K \cong N$, for some $K \triangleleft G$, by (1). Then, $G/N \cong T$, where $T \triangleleft G$, because G is quasi-morphic.

 $(2) \Rightarrow (1)$ For any normal subgroup K of G, there exists $N \triangleleft G$ such that $G/K \cong N$, by (2). Hence, $G/T \cong K$, for some T, because G is quasi-morphic.

Let G be a group. If G satisfies (1) and (2), then G is quasi-morphic, by Theorem 3.1. C_{∞} satisfies(1), but it is not quasi-morphic.

Recall that a group G is said to be uniserial, if the normal subgroup forms a finite chain, that is, it has the form: $G = G_0 \supset G_1 \supset \cdots \supset G_n =$ 1. We define the uniserial length of the normal subgroup $G_k \triangleleft G$ by $l_G(G_k) = n - k$ for each $k = 0, 1, \cdots, n$. We have the following lemma given in [2].

Lemma 3.3. Let G be uniserial with normal subgroup lattice $G = G_0 \supset G_1 \supset \cdots \supset G_n = 1$.

- (1) If $H \triangleleft G$ is also uniserial, then $l_G(H) = l_H(H)$.
- (2) In particular, if $G_i \cong G/G_k$, then i = n k.

Theorem 3.4. If G is a uniserial group, then the followings are equivalent.

- (1) G is quasi-morphic.
- (2) If $G/G_k \cong G_{n-k}, k = 1, 2, ..., n$, then $G/G_{n-k} \cong G_k$.
- (3) G is morphic.

Proof. (1) \Rightarrow (2) If $G/G_k \cong G_{n-k}$, then we have $N = G_i$ such that $G/G_{n-k} \cong N = G_i$, by Theorem 3.1. By Lemma 3.3, we have i = k. Hence, $G/G_{n-k} \cong G_k$.

 $(2) \Rightarrow (3)$ Let $\alpha \in end(G)$ be a normal endomorphism, and write $\ker(\alpha) = G_k$ and $G\alpha = G_i$. Then, $G/G_k \cong G_i$, i = n - k, by Lemma 3.3. Hence, we have $G/G_{n-k} \cong G_k$, by (2). G is morphic, by [2, Lemma 5].

 $(3) \Rightarrow (1)$ is clear.

Next, we investigate the group which have a composition series.

Theorem 3.5. Let G be a group which has a composition series. G is quasi-morphic, if G satisfies the following conditions: (a) every subgroup of G is isomorphic to an image of G; and (b) $G/K \cong G/K_1$, for arbitrary $K, K_1 \triangleleft G$ with the same length.

Proof. Let K and N be normal subgroups of G, write n = length(G)and t = length(K). Assume $G/K \cong N$, and there exists $T \triangleleft G$ such that $G/T \cong K$, by (a). Then, length(T) = length(N) = n - t, and so $G/N \cong G/T \cong K$, by (b). Then, G is quasi-morphic. \Box

Example 3.6. If G has a composition series, and the length of the composition series is 2, then G is quasi-morphic.

Proof. If $G/N \cong K \triangleleft G$, then we show that $G/K \cong T$, and $G/H \cong N$, for some $T, H \triangleleft G$. If N = G or 1, or K = 1, $G/K \cong N$ is clear. If K = G, then we show that N must be 1. In fact, when $1 \neq N \subset G, G/N$ is simple, but G is not simple, we have a contradiction. Next, suppose N and K are nontrivial subgroups. Since N, K are normal subgroups, then we have that composition series $G \supseteq K \supseteq 1$ is isomorphic to composition series $G \supseteq N \supseteq 1$, by the hypothesis. Then, $G/K \cong N$, because $G/N \cong K$. □

 $C_2 \times C_2$ is quasi-morphic, because the length of its composition series is 2.

4. Abelian group

If G is an abelian group, then every $\alpha \in end(G)$ is a normal endomorphism. Let $I(G) = \{G\alpha : \alpha \in end(G)\}$ be the set of images and $K(G) = \{ker(\alpha) : \alpha \in end(G)\}$ be the set of kernels.

Theorem 4.1. Let G be an abelian group. Then, G is quasi-morphic if and only if I(G) = K(G).

Proof. ⇒) Suppose G is quasi-morphic. For any $G\alpha \in I(G)$, there exists β such that $G\alpha = ker(\beta)$. Hence $G\alpha \in K(G)$, $I(G) \subset K(G)$. If $ker(\alpha) \in K(G)$, then there exists γ such that $ker(\alpha) = G\gamma$. Hence, $K(G) \subseteq I(G)$. We have I(G) = K(G).

 \Leftarrow) For any $\alpha \in end(G)$, we have $G\alpha \in I(G) = K(G)$. Hence, there exists β such that $G\alpha = ker(\beta)$. We also have $ker(\alpha) \in K(G) = I(G)$.

Then, there exists γ such that $ker(\alpha) = G\gamma$. Thus, α is quasi-morphic. Since α is arbitrary, G is quasi-morphic.

Theorem 4.2. If G is a quasi-morphic abelian group, and $N = G\alpha$, $H = G\beta(\alpha, \beta \in end(G))$, then there exists $\gamma \in end(G)$ such that $NH = G\gamma$.

Proof. Since G is quasi-morphic, we have endomorphism $\varphi \in end(G)$ such that $G\alpha = ker(\varphi)$, and we also have $\rho \in end(G)$ such that $G\beta\varphi = ker(\rho)$. It suffices to show that $NH = G\alpha G\beta = ker(\varphi\rho)$. Let $z = xy \in G\alpha G\beta$, where $x \in G\alpha, y \in G\beta$. Then, $(z)\varphi\rho = (xy)\varphi\rho = (x\varphi\rho)(y\varphi\rho) = 0$, and hence $G\alpha G\beta \subseteq ker(\varphi\rho)$.

For the other inclusion, let $s \in ker(\varphi\rho)$. Then, $s\varphi \in ker(\rho) = G\beta\varphi$, say $s\varphi = y\varphi$, where $y \in G\beta$, which shows $sy^{-1} \in ker(\varphi) = G\alpha$. Hence, $s \in G\alpha G\beta$ and $ker(\varphi\rho) \subseteq G\alpha G\beta$. Now, we have $G\alpha G\beta = ker(\varphi\rho)$. Since $\varphi\rho$ is a normal endomorphism, we have $\gamma \in end(G)$ such that $ker(\varphi\rho) = G\gamma$, and hence $NH = G\gamma$.

Corollary 4.3. If G is quasi-morphic and abelian, $\alpha_1, \ldots, \alpha_n \in end(G)$ and $N_1 = G\alpha_1, N_2 = G\alpha_2, \cdots, N_n = G\alpha_n$, then $N_1N_2 \ldots N_n = G\gamma$, for some $\gamma \in end(G)$.

Similarly, it is easy to see that if G is a quasi-morphic abelian group, and $N_1 = ker(\alpha_1), N_2 = ker(\alpha_2), \dots, N_n = ker(\alpha_n)(\alpha_1, \dots, \alpha_n \in end(G))$, then we also have

$$N_1 N_2 \cdots N_n = ker(\gamma),$$

where $\gamma \in end(G)$.

Theorem 4.4. If G is a quasi-morphic abelian group, and $N = G\alpha$, $H = G\beta$, for some $\alpha, \beta \in end(G)$, then there exists $\gamma \in end(G)$ such that $N \cap H = G\gamma$.

Proof. Since G is quasi-morphic, we have an endomorphism $\varphi \in end(G)$ such that $G\alpha = ker(\varphi)$, and we also have ρ such that $ker(\beta\varphi) = G\rho$. It suffices to show that $N \cap H = G\rho\beta$. For any $x \in G\alpha \cap G\beta$, say $x = (g_1)\alpha = (g_2)\beta$. Then, $g_1\alpha\varphi = g_2\beta\varphi = 0$, and hence $g_2 \in ker(\beta\varphi) = G\rho$, $x \in G\rho\beta$. We have $N \cap H \subseteq G\rho\beta$. On the other hand, let $y \in G\rho\beta$, say $y = (g)\rho\beta$. Since $y\varphi = (g)\rho\beta\varphi = 0$, we have $y \in ker(\varphi) = G\alpha$. Hence, $G\rho\beta \subseteq G\alpha \cap G\beta$. Then, $N \cap H = G\rho\beta$.

Corollary 4.5. If G is abelian and quasi-morphic, and $N_1 = G\alpha_1, N_2 = G\alpha_2, \dots, N_n = G\alpha_n \ (\alpha_1, \dots, \alpha_n \in end(G)), then \ N_1 \cap N_2 \cap \dots \cap N_n = G\gamma$, where γ is an endomorphism of end(G).

Similarly, suppose G is a quasi-morphic abelian group, and $N_1 = ker(\alpha_1), N_2 = ker(\alpha_2), \cdots, N_n = ker(\alpha_n) (\alpha_1, \ldots, \alpha_n \in end(G))$. Then, $N_1 \cap N_2 \cap \cdots \cap N_n = ker(\gamma)$ holds for some $\gamma \in end(G)$.

Theorem 4.6. Let G be an abelian group. If G is quasi-morphic group, then I(G) and K(G) are lattices.

Proof. We can get it by Theorem 4.1, Theorem 4.2 and Theorem 4.4. \Box

The converse fails. For example, $I(C_{\infty})$ and $K(C_{\infty})$ are lattices, but C_{∞} is not quasi-morphic.

Lemma 4.7. Suppose $G = \bigoplus_{i=1}^{n} \langle u_i \rangle$ is an abelian p-group, and $ord(u_i) = p^{a_i}, a_i \leq a_{i+1}, i = 1, 2, \cdots, n-1$. Let $H = \bigoplus_{j=1}^{m} \langle v_j \rangle$ be a subgroup of G, and $ord(v_j) = p^{b_j}, b_j \leq b_{j+1}, j = 1, \cdots, m-1$. Then, $m \leq n$.

Proof. Let $G_p = \{g \in G : pg = 0\}$ be a set of G. If $x, y \in G_p$, then px = py = 0, p(x - y) = 0. Hence, G_p is a subgroup of G.

Next, we show that the order of G_p is p^n . For any $x \in G$, we have $x = b_1u_1 + b_2u_2 + \cdots + b_nu_n$, where $0 \leq b_i \leq p^{a_i}$. If x is an element of G_p , then $px = pb_1u_1 + \cdots + pb_nu_n = 0$. Hence, $pb_1u_1 = \cdots = pb_nu_n = 0$, because $G = \bigoplus_{i=1}^n \langle u_i \rangle$. Then, $p^{a_i} \mid pb_i$, and $b_i = p^{a_i-1}c_i$. Since $0 \leq b_i \leq p^{a_i}$, we have $0 \leq c_i \leq p$. Moreover, G_p can be represented by $G_p = \{\sum_{i=1}^n c_i p^{a_i-1}u_i | 0 \leq c_i < p, i = 1, \ldots, n\}$. Hence, the order of G_p is p^n .

Similarly, we can define H_p . H_p is a subgroup of G_p , and $ord(H_p) = p^m$. Then, we have $m \leq n$.

Proposition 4.8. Suppose $G = \bigoplus_{i=1}^{n} \langle u_i \rangle$ is an abelian p-group, and $ord(u_i) = p^{a_i}, a_i \leq a_{i+1}, i = 1, 2, \dots, n-1$. Let $H = \bigoplus_{j=1}^{m} \langle v_j \rangle$ be a subgroup of G, and $ord(v_j) = p^{b_j}, b_j \leq b_{j+1}, j = 1, \dots, m-1$. Then, $p^{b_{m-i}} \leq p^{a_{n-i}}, where i = 0, 1, 2, \dots, m-1$.

Proof. We prove it by induction. If m = 1, then $H = \langle v_1 \rangle$, where $v_1 \in G$. For any element $\alpha \in G$, we have $ord(\alpha) \leq ord(u_n)$. Hence, $ord(v_1) \leq ord(u_n)$.

Now, let $H_2 = \bigoplus_{k=1}^t \langle v_k \rangle (t \leq m)$ be a subgroup of $G_2 = \bigoplus_{s=1}^w \langle \lambda_s \rangle$ and assume that H_2 satisfies $ord(v_{t-i}) \leq ord(\lambda_{w-i})$, where $i = 0, 1, 2, \cdots, t-1$.

First, for the H given in this proposition, we show that $ord(v_1) \leq ord(u_{n-m+1})$. Suppose $ord(u_{n-m+1}) \leq ord(v_1)$, and define $p^{a_{n-m+1}}G = \{g \in G : g = p^{a_{n-m+1}}h, \text{ where } h \in G\}$. We assert that $p^{a_{n-m+1}}G = \{g \in G : g = p^{a_{n-m+1}}h, g \in G\}$.

 $\begin{array}{l} \oplus_{i=t}^{n} < p^{a_{n-m+1}}u_{i} >, t \text{ is the least value such that } p^{a_{n-m+1}} \lneq p^{a_{t}}(\text{if we cannot find } t, \text{ then } p^{a_{n-m+1}}G = 0). \text{ In fact, if } g \in p^{a_{n-m+1}}G, \text{ then we have } g = p^{a_{n-m+1}}h, \text{ where } h = a_{1}u_{1} + \cdots + a_{n}u_{n}. \text{ Hence, } g = a_{1}p^{a_{n-m+1}}u_{1} + \cdots + a_{n}p^{a_{n-m+1}}u_{n} = a_{t}p^{a_{n-m+1}}u_{t} + \cdots + a_{n}p^{a_{n-m+1}}u_{n} \in \sum_{i=t}^{n} < p^{a_{n-m+1}}u_{i} >, p^{a_{n-m+1}}G \subseteq \sum_{i=t}^{n} < p^{a_{n-m+1}}u_{i} >, \text{ and clearly } p^{a_{n-m+1}}G = \oplus_{i=t}^{n} < p^{a_{n-m+1}}u_{i} >. \text{ Similarly, we can define } p^{a_{n-m+1}}H. \text{ Then, } p^{a_{n-m+1}}H = \oplus_{j=1}^{m} < p^{a_{n-m+1}}v_{j} > \text{ and } p^{a_{n-m+1}}H \leq p^{a_{n-m+1}}G. \text{ This is a contradiction to Lemma 4.7, and thus <math>ord(v_{1}) \leq ord(u_{n-m+1}). \text{ If } k \text{ is the largest value such that } p^{b_{k}} = p^{b_{1}}, \text{ then we have } ord(v_{i}) = ord(v_{1}) \leq ord(u_{n-m+i}), i = 1, 2, \cdots, k. \end{array}$

If $k \leq m$, then we can define $p^{b_1}H$ and $p^{b_1}G$ as above. Then, $p^{b_1}H = \bigoplus_{j=k+1}^m \langle p^{b_1}v_j \rangle$, $p^{b_1}G = \bigoplus_{i=h}^n \langle p^{b_1}u_i \rangle$ (*h* is the least value such that $p^{b_1} \leq p^{a_h}$), and $p^{b_1}H$ is the subgroup of $p^{b_1}G$. We have $m - k \leq n - h + 1, h \leq n - (m - k - 1)$, by Lemma 4.7. Hence, $ord(p^{b_1}v_{m-i}) \leq ord(p^{b_1}u_{n-i})$, where $i = 0, 1, \cdots, m - k - 1$, by assumption, and it follows that $ord(v_{m-i}) \leq ord(u_{n-i})(i = 0, 1, \cdots, m - k - 1)$.

Lemma 4.9. Suppose $G = \bigoplus_{i=1}^{n} \langle u_i \rangle$ is an abelian p-group, and $ord(u_i) = p^{a_i}, a_i \leq a_{i+1}, i = 1, 2, \dots, n-1$. Let $H = \bigoplus_{j=1}^{m} \langle v_j \rangle$ be an image of G, and $ord(v_j) = p^{b_j}, b_j \leq b_{j+1}, j = 1, \dots, m-1$. Then, $m \leq n$.

Proof. We have an epic $\theta: G \to H$ by the hypothesis. Since $G = \bigoplus_{i=1}^{n} < u_i >$, we have $\mathbb{Z}^n/T \cong G$, where $T \triangleleft \mathbb{Z}^n$ and rank(T) = n. There exists an isomorphism $\alpha: \mathbb{Z}^n/T \to G$. Define $\beta: \mathbb{Z}^n/T \to H$ by $(x+T)\beta = (x+T)\alpha\theta$. Then, $ker(\beta) = K/T$, $T \leq K \leq \mathbb{Z}^n$. Hence, $\mathbb{Z}^n/K \cong (\mathbb{Z}^n/T)/(K/T) \cong H$. Since $rank(T) \leq rank(K)$, by [6, Theorem 10.17], we have rank(K) = n. There exist bases $\{y_1, y_2, \cdots, y_n\}$ of \mathbb{Z}^n such that

 $K = \langle d_1 y_1, \cdots, d_n y_n \rangle, d_i \mid d_{i+1} (i = 1, \cdots, n-1).$

Then, $\mathbb{Z}^n/K = \bigoplus_{i=1}^n \langle \bar{y}_i \rangle \cong H, \bar{y}_i = y_i + K$. If t is the least value such that $1 \leq d_t$, then we have $\mathbb{Z}^n/K = \bigoplus_{i=t}^n \langle \bar{y}_i \rangle \cong H$, and $m = n - t + 1 \leq n$.

Proposition 4.10. Suppose $G = \bigoplus_{i=1}^{n} \langle u_i \rangle$ is an abelian p-group, and $ord(u_i) = p^{a_i}$, $a_i \leq a_{i+1}$, $i = 1, 2, \cdots, n-1$. Let $H = \bigoplus_{j=1}^{m} \langle v_j \rangle$ be an image of G, and $ord(v_j) = p^{b_j}$, $b_j \leq b_{j+1}$, $j = 1, \cdots, m-1$. Then, $p^{b_{m-i}} \leq p^{a_{n-i}}$, where $i = 0, 1, 2, \cdots, m-1$.

Proof. We use induction on m. It is clearly true for m = 1. Now, let $H_1 = \bigoplus_{k=1}^t \langle v_k \rangle (t \leq m)$ be an image of $G_1 = \bigoplus_{s=1}^w \langle \lambda_s \rangle$ and

assume that H_1 satisfies $ord(v_{t-i}) \leq ord(\lambda_{w-i})$, where $i = 0, 1, 2, \cdots, t - d(\lambda_{w-i})$ 1.

For the H given in this proposition, there exists an epic $\alpha : G \to H$.

First, for the H given in this proposition, we show that $ord(v_1) \leq dv_2$ $ord(u_{n-m+1})$. Suppose $ord(u_{n-m+1}) \leq ord(v_1)$. We can define $p^{a_{n-m+1}}G$ and $p^{a_{n-m+1}}H$ as in Proposition 4.8. Then, $p^{a_{n-m+1}}G = \bigoplus_{i=t}^{n} \langle p^{a_{n-m+1}}u_i \rangle$, where t is the least value such that $p^{a_{n-m+1}} \leq p^{a_t} (p^{a_{n-m+1}}G = 0)$, if we cannot find t) and $p^{a_{n-m+1}}H = \bigoplus_{j=1}^{m} \langle p^{a_{n-m+1}}v_j \rangle$. Then, α induces a homomorphism $\alpha_1 : p^{a_{n-m+1}}G \to H$. For any $y \in (p^{a_{n-m+1}}G)\alpha_1$, we have $y \in p^{a_{n-m+1}}(G)\alpha_1 = p^{a_{n-m+1}}H$. Then, α induces a homomorphism $\alpha_2: p^{a_{n-m+1}}G \to p^{a_{n-m+1}}H$. Since α is epic, then α_2 is epic. Since $n - t + 1 \leq m$, we have a contradiction to Lemma 4.9. Hence, $ord(v_1) \leq ord(u_{n-m+1})$. If k is the largest value such that $p^{b_1} = p^{b_k}$, then $ord(v_i) = ord(v_1) \leq ord(u_{n-m+i}) \ (i = 1, \cdots, k).$

If $k \leq m$, then we can define $p^{b_1}G$ and $p^{b_1}H$ as in Proposition 4.8. Then, $p^{\overline{b}_1}H = \bigoplus_{j=k+1}^m \langle p^{a_1}v_j \rangle$, $p^{b_1}G = \bigoplus_{i=w}^n \langle p^{b_1}u_i \rangle$ (*w* is the least value such that $p^{b_1} \leq p^{a_w}$ and α induces an epic $\alpha_3 : p^{b_1}G \to p^{b_1}H$. We have $m-k \leq n-w+1, w \leq n-(m-k-1)$, by Lemma 4.9. Hence, $ord(p^{b_1}v_{m-i}) \leq ord(p^{b_1}u_{n-i})$ $(i = 0, 1, \dots, m-k-1)$, by assumption, and it follows that $ord(v_{m-i}) \leq ord(u_{n-i})$ $(i = 0, 1, \cdots, m-k-1)$.

Theorem 4.11. If G is an abelian p-group, then G is quasi-morphic.

Proof. Let $G = \bigoplus_{i=1}^n \langle u_i \rangle$, where $ord(u_i) = p^{a_i}$ and let $a_i \leq a_{i+1}$ $(i = 1, 2, \dots, n-1)$ be an abelian *p*-group. For any $H, K \triangleleft G$, if $G/H \cong$ K, then we show that $G/K \cong L$ and $G/T \cong H$, for some $T, L \triangleleft G$. By Proposition 4.10, we have $G/K = \bigoplus_{j=1}^{m} \langle v_j \rangle$, where $m \leq n$ and $ord(v_{m-i}) \leq ord(u_{n-i}), i = 0, 1, \cdots, m-1.$ Write $ord(v_j) = p^{b_j}, j = 0, 1, \cdots, m-1$ $1, 2, \dots, m$. Let $L = \bigoplus_{i=n-m+1}^{n} < p^{a_i-b_i}u_i > be a subgroup of G.$ Then, $G/K \cong L.$

By Proposition 4.8, we have $H = \bigoplus_{k=1}^{t} \langle w_k \rangle, t \leq n \text{ and } ord(w_{t-i}) \leq t$ $ord(u_{n-i})$ $(i = 0, 1, \dots, t-1)$. Write $ord(w_k) = p^{c_k}, k = 1, 2, \dots, t$. Let $T = \bigoplus_{j=1}^{n-t} \langle u_j \rangle \oplus_{i=1}^t \langle p^{c_i} u_{n-t+i} \rangle$ be a subgroup of G. Then, $G/T \cong H$. Hence, G is a quasi-morphic group, by Theorem 3.1.

Theorem 4.12. Let $G = G_1 \times G_2 \times \cdots \times G_n$, where the G_i are the groups such that $Hom(G_i, G_j) = \{0\}$, whenever $i \neq j$. Then, G is quasi-morphic if and only if G_i is quasi-morphic.

Proof. \Rightarrow) If $\alpha \in end(G)$, then there exist $\alpha_i \in end(G_i)$ such that

$$(g_1, g_2, \cdots, g_n)\alpha = (g_1\alpha_1, g_2\alpha_2, \cdots, g_n\alpha_n)$$

for all $(g_1, g_2, \dots, g_n) \in G$, since $Hom(G_i, G_j) = \{0\}$, if $i \neq j$. Thus, $ker(\alpha) = \prod_{i=1}^n ker(\alpha_i)$ and $im(\alpha) = \prod_{i=1}^n im(\alpha_i)$. For any normal endomorphism $\alpha_i \in end(G_i)$, define $\alpha : G \to G$ by

 $(g_1, \dots, g_{i-1}, g_i, g_{i+1}, \dots, g_n)\alpha = (g_1, \dots, g_{i-1}, (g_i)\alpha_i, g_{i+1}, \dots, g_n)$, for all $(g_1, \dots, g_n) \in G$. There exist normal endomorphisms β and γ such that $ker(\alpha) = G\beta$ and $G\alpha = ker(\gamma)$, because G is quasi-morphic. Hence, $ker(\alpha_i) = G\beta_i$ and $G\alpha_i = ker(\gamma_i)$. Then, G_i is quasi-morphic.

 \Leftarrow) Suppose $\alpha = \prod_{i=1}^{n} \alpha_i$ is any normal endomorphism of G. Since G_i is quasi-morphic, we have normal endomorphisms β_i and γ_i (i = 1, 2, ..., n), such that $ker(\alpha_i) = G\beta_i$ and $G\alpha_i = ker(\gamma_i)$. Let $\beta = \prod_{i=1}^{n} \beta_i$ and $\gamma = \prod_{i=1}^{n} \gamma_i$. Then, $ker(\alpha) = G\beta$ and $G\alpha = ker(\gamma)$. Hence, G is quasi-morphic.

Theorem 4.13. If G is a finite abelian group, then G is quasi-morphic.

Proof. If G is a finite abelian group, then $G = P_1 \times \cdots \otimes P_2 \times \cdots \times \otimes P_n$, where P_i is p_i -group. Since $Hom(P_i, P_j) = 0$, $i \neq j$, G is quasi-morphic, by Theorem 4.11 and Theorem 4.12.

Theorem 4.14. A finitely generated abelian group is quasi-morphic if and only if it is finite.

Proof. \Rightarrow) If G is a finitely generated abelian group, then

 $G = G_{p_1} \oplus G_{p_2} \oplus \cdots \oplus G_{p_n} \oplus G^1 \oplus \cdots G^m,$

where G_{p_i} is the p_i -primary component and G^j is the infinite cyclic group. If $1 \leq m$, then let $G^m = \langle u_m \rangle$ be an infinite cyclic group. Let p be a prime, and $p_1, \dots, p_n \leq p$. We have

$$G/0 \cong G \cong G_{p_1} \oplus G_{p_2} \oplus \cdots \oplus G_{p_n} \oplus G^1 \oplus \cdots \oplus G^{m-1} \oplus \langle pu_m \rangle = K.$$

But, G/K is not isomorphic to a subgroup of G. Hence, G is not quasimorphic, by Theorem 3.1.

 \Leftarrow) This is clear by Theorem 4.13.

Acknowledgments

The work of the author was supported by the National Natural Science Foundation of China (No. 10926183) and the Foundation of National University of Defense Technology (No. JC08-2-03).

References

- V. Camillo and W. K. Nichlson, Quasi-morphic rings, J. Algebra Appl. 6 (2007), no. 5, 789–799.
- [2] Y. Li and W. K. Nicholson and L. Zan, Morphic groups, J. Pure Appl. Algebra 214 (2010), no. 10, 1827–1834.
- [3] W. K. Nicholson and E. Sánchez Campos, Morphic modules, Comm. Algebra 33 (2005), no. 8, 2629–2647.
- [4] W. K. Nicholson and E. Sánchez Campos, Principal rings with the dual of the isomorphism theorem, *Glasg. Math. J.* 46 (2004), no. 1, 181–191.
- [5] W. K. Nicholson and E. Sánchez Campos, Rings with the dual of the isomorphism theorem, J. Algebra 271 (2004), no. 1, 391–406.
- [6] J. J. Rotman, An Introduction to the Theory of Groups, Fourth edition, Grad. Texts in Math., 148, Springer-Verlag, New York, 1995.

Qichuan Wang

Department of Mathematics and Systems Science, National University of Defense Technology, P. R. China 410073, Changsha, China Email: wangqichuan1026@163.com.cn

Kai Long

Department of Mathematics and Systems Science, National University of Defense Technology, P. R. China 410073, Changsha, China Email: lkkkkkk@hotmail.com.cn

Lianggui Feng

Department of Mathematics and Systems Science, National University of Defense Technology, P. R. China 410073, Changsha, China Email: fenglg2002@sina.com.cn