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THE QUASI-MORPHIC PROPERTY OF GROUP

Q. WANG∗, K. LONG AND L. FENG

Communicated by Ali Reza Ashrafi

Abstract. A group is called morphic, if for each normal endomor-
phism α ∈ end(G), there exists β ∈ end(G) such that ker(α) = Gβ
and Gα = ker(β). Here, we consider the case that there ex-
ist normal endomorphisms β and γ such that ker(α) = Gβ and
Gα = ker(γ). We call G quasi-morphic, if this happens for any
normal endomorphism α ∈ end(G). We get the following results:
G is quasi-morphic if and only if, for any normal subgroup K such
that G/K ∼= N / G, there exist T,H / G such that G/T ∼= K and
G/N ∼= H. Furthermore, we investigate the quasi-morphic property
of finitely generated abelian group and get that a finitely generated
abelian group is quasi-morphic if and only if it is finite.

1. Introduction

Nicholson and Sánchez first introduced morphic ring in [5], and in-
vestigated the morphic property of ring and module in [3–5] and [1]. In
2010, Li, et al. investigated the morphic property of group in [2]. A
group G is called morphic, if every normal endomorphism α of G sat-
isfies G/Gα ∼= ker(α), or equivalently, for any normal endomorphism α
there exists β ∈ end(G) such that ker(α) = Gβ and Gα = ker(β).
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Here, we investigate the quasi-morphic property of a group. Normal
endomorphism α is called quasi-morphic, if there exist normal endo-
morphisms β and γ such that ker(α) = Gβ and Gα = ker(γ). G
is called quasi-morphic, if every normal endomorphism α ∈ end(G) is
quasi-morphic.

We get the following results: G is quasi-morphic if and only if, for any
normal subgroup K such that G/K ∼= N / G, there exist T,H / G such
that G/T ∼= K and G/N ∼= H. Furthermore, if G is a quasi-morphic
abelian group, then I(G) = {Gα : α ∈ end(G)} is a lattice. Finally, we
turn our attention to the finitely generated abelian group. We get that
a finitely generated abelian group is quasi-morphic if and only if it is
finite.

If G is a group, then we write end(G) for the group endomorphism of
G and write aut(G) for the group automorphism. Endomorphisms are
written on the right side of their arguments. We use H / G to indicate
that H is a normal subgroup of G. We simply write Cn as a cyclic group
of order n, and C∞ as an infinite cyclic group.

2. Quasi-morphic endomorphism

We say that α ∈ end(G) is normal if Gα / G. A normal endo-
morphism α ∈ end(G) is called quasi-morphic, if there exist normal
endomorphisms β and γ such that ker(α) = Gγ and Gα = ker(β). It is
clear that every morphic endomorphism is quasi-morphic.

Lemma 2.1. Let G be a group. The followings are equivalent for a
normal endomorphism α.

(1) α is quasi-morphic.
(2) ker(α) is an image of G and G/Gα ∼= K, where K is a normal

subgroup of G.

Proof. (1)⇒(2) If α is quasi-morphic, then there exist normal endomor-
phisms β and γ such that ker(α) = Gβ and Gα = ker(γ). Hence,
G/Gα = G/ker(γ) ∼= Gγ / G, and ker(α) = Gβ is an image of G.

(2)⇒(1) Given α ∈ end(G), ker(α) is an image of G and G/Gα ∼= K,
for some K / G, by (2). We have isomorphism η: G/Gα → K and epic
ξ : G→ ker(α). Defined normal endomorphism β : G→ G and γ : G→
G, by gβ = (gGα)η and gγ = gξ, respectively. Then, ker(β) = Gα and
Gγ = ker(α). Thus, α is quasi-morphic. �
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By Lemma 2.1, every automorphism of group G is quasi-morphic,
because G/Gα ∼= 1 and ker(α) = 1.

Theorem 2.2. If α is quasi-morphic and ρ ∈ aut(G), then αρ and ρα
are quasi-morphic.

Proof. If α ∈ end(G) is a quasi-morphic endomorphism, then there
exist normal endomorphisms β and γ such that ker(α) = Gγ and
Gα = ker(β). Since ρ is automorphism, we have G/Gαρ ∼= G/Gα =
G/ker(β) ∼= Gβ / G and ker(αρ) = ker(α) = Gγ is an image of G.
Hence, αρ is quasi-morphic, by Lemma 2.1. Similarly, we have that ρα
is quasi-morphic. �

In particular, every unit regular endomorphism is quasi-morphic. For
more general endomorphisms, we have the following result.

Theorem 2.3. If α and β are quasi-morphic endomorphisms, α is epic,
and β is monic, then αβ is quasi-morphic.

Proof. Since α, β ∈ end(G) are quasi-morphic endomorphisms, we have
normal endomorphisms γ and ρ such that ker(α) = Gγ and Gβ =
ker(ρ). Then, ker(αβ) = ker(α) = Gγ and Gαβ = Gβ = ker(ρ),
because α is epic and β is monic. Thus, αβ is quasi-morphic. �

3. Quasi-morphic group

A group is called quasi-morphic, if every normal endomorphism
α ∈ end(G) is quasi-morphic. By Lemma 2.1, a simple group and Cn

are quasi-morpic, but C∞ is not quasi-morphic.

Theorem 3.1. The following are equivalent for a group G.

(1) G is quasi-morphic.
(2) For any normal subgroup K such that G/K ∼= N /G, there exists

T,H / G such that G/T ∼= K and G/N ∼= H.

Proof. (1)⇒ (2) If G/K ∼= N , then we have an isomorphism ρ : G/K →
N . Define normal endomorphism α : G → G by gα = (gK)ρ. Then,
ker(α) = K and Gα = N . By (1), we have normal endomorphism β
and γ such that ker(α) = Gβ and Gα = ker(γ). Then, G/ker(β) ∼=
Gβ = ker(α) = K and G/N = G/Gα = G/ker(γ) ∼= Gγ.

(2) ⇒ (1) For any normal endomorphism α ∈ end(G), we have
G/ker(α) ∼= Gα/G. Hence, there exist T,H/G such that G/T ∼= ker(α)
and G/Gα ∼= H by (2). Then, we have isomorphisms ρ1 : G/T → ker(α)
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and ρ2 : G/Gα → H. Define β and γ by gβ = (gT )ρ1, gγ = (gGα)ρ2.
Then, Gβ = ker(α) and Gα = ker(γ). Hence, α is quasi-morphic. Since
α is arbitrary, we get that G is quasi-morphic. �

Theorem 3.2. If G is quasi-morphic, then the followings are equivalent.

(1) Every normal subgroup of G is an image of G.
(2) Every image of G is isomorphism to a normal subgroup of G.

Proof. (1)⇒ (2) For any normal subgroup N of G, we have G/K ∼= N ,
for some K / G, by (1). Then, G/N ∼= T , where T / G, because G is
quasi-morphic.

(2) ⇒ (1) For any normal subgroup K of G, there exists N / G such
that G/K ∼= N , by (2). Hence, G/T ∼= K, for some T , because G is
quasi-morphic. �

Let G be a group. If G satisfies (1) and (2), then G is quasi-morphic,
by Theorem 3.1. C∞ satisfies(1), but it is not quasi-morphic.

Recall that a group G is said to be uniserial, if the normal subgroup
forms a finite chain, that is, it has the form: G = G0 ⊃ G1 ⊃ · · ·Gn =
1. We define the uniserial length of the normal subgroup Gk / G by
lG(Gk) = n − k for each k = 0, 1, · · · , n. We have the following lemma
given in [2].

Lemma 3.3. Let G be uniserial with normal subgroup lattice G = G0 ⊃
G1 ⊃ · · ·Gn = 1.

(1) If H / G is also uniserial, then lG(H) = lH(H).
(2) In particular, if Gi

∼= G/Gk, then i = n− k.

Theorem 3.4. If G is a uniserial group, then the followings are equiv-
alent.

(1) G is quasi-morphic.
(2) If G/Gk

∼= Gn−k, k = 1, 2, . . . , n, then G/Gn−k ∼= Gk.
(3) G is morphic.

Proof. (1) ⇒ (2) If G/Gk
∼= Gn−k, then we have N = Gi such that

G/Gn−k ∼= N = Gi, by Theorem 3.1. By Lemma 3.3, we have i = k.
Hence, G/Gn−k ∼= Gk.

(2) ⇒ (3) Let α ∈ end(G) be a normal endomorphism, and write
ker(α) = Gk and Gα = Gi. Then, G/Gk

∼= Gi, i = n − k, by Lemma
3.3. Hence, we have G/Gn−k ∼= Gk, by (2). G is morphic, by [2, Lemma
5].
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(3) ⇒ (1) is clear. �

Next, we investigate the group which have a composition series.

Theorem 3.5. Let G be a group which has a composition series. G
is quasi-morphic, if G satisfies the following conditions: (a) every sub-
group of G is isomorphic to an image of G; and (b) G/K ∼= G/K1, for
arbitrary K,K1 / G with the same length.

Proof. Let K and N be normal subgroups of G, write n = length(G)
and t = length(K). Assume G/K ∼= N , and there exists T / G such
that G/T ∼= K, by (a). Then, length(T ) = length(N) = n − t, and so
G/N ∼= G/T ∼= K, by (b). Then, G is quasi-morphic. �

Example 3.6. If G has a composition series, and the length of the
composition series is 2, then G is quasi-morphic.

Proof. If G/N ∼= K / G, then we show that G/K ∼= T, and G/H ∼= N ,
for some T,H / G. If N = G or 1, or K = 1, G/K ∼= N is clear. If
K = G, then we show that N must be 1. In fact, when 1 6= N ⊂ G, G/N
is simple, but G is not simple, we have a contradiction. Next, suppose
N and K are nontrivial subgroups. Since N,K are normal subgroups,
then we have that composition series G ⊇ K ⊇ 1 is isomorphic to
composition series G ⊇ N ⊇ 1, by the hypothesis. Then, G/K ∼= N ,
because G/N ∼= K. �

C2×C2 is quasi-morphic, because the length of its composition series
is 2.

4. Abelian group

If G is an abelian group, then every α ∈ end(G) is a normal endo-
morphism. Let I(G) = {Gα : α ∈ end(G)} be the set of images and
K(G) = {ker(α) : α ∈ end(G)} be the set of kernels.

Theorem 4.1. Let G be an abelian group. Then, G is quasi-morphic if
and only if I(G) = K(G).

Proof. ⇒) Suppose G is quasi-morphic. For any Gα ∈ I(G), there
exists β such that Gα = ker(β). Hence Gα ∈ K(G), I(G) ⊂ K(G).
If ker(α) ∈ K(G), then there exists γ such that ker(α) = Gγ. Hence,
K(G) ⊆ I(G). We have I(G) = K(G).
⇐) For any α ∈ end(G), we have Gα ∈ I(G) = K(G). Hence, there

exists β such that Gα = ker(β). We also have ker(α) ∈ K(G) = I(G).
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Then, there exists γ such that ker(α) = Gγ. Thus, α is quasi-morphic.
Since α is arbitrary, G is quasi-morphic. �

Theorem 4.2. If G is a quasi-morphic abelian group, and N = Gα,
H = Gβ(α, β ∈ end(G)), then there exists γ ∈ end(G) such that NH =
Gγ.

Proof. Since G is quasi-morphic, we have endomorphism ϕ ∈ end(G)
such that Gα = ker(ϕ), and we also have ρ ∈ end(G) such that Gβϕ =
ker(ρ). It suffices to show that NH = GαGβ = ker(ϕρ). Let z = xy ∈
GαGβ,where x ∈ Gα, y ∈ Gβ. Then, (z)ϕρ = (xy)ϕρ = (xϕρ)(yϕρ) =
0, and hence GαGβ ⊆ ker(ϕρ).

For the other inclusion, let s ∈ ker(ϕρ). Then, sϕ ∈ ker(ρ) = Gβϕ,
say sϕ = yϕ, where y ∈ Gβ, which shows sy−1 ∈ ker(ϕ) = Gα. Hence,
s ∈ GαGβ and ker(ϕρ) ⊆ GαGβ. Now, we have GαGβ = ker(ϕρ).
Since ϕρ is a normal endomorphism, we have γ ∈ end(G) such that
ker(ϕρ) = Gγ, and hence NH = Gγ. �

Corollary 4.3. If G is quasi-morphic and abelian, α1, . . . , αn ∈ end(G)
and N1 = Gα1, N2 = Gα2, · · · , Nn = Gαn, then N1N2 . . . Nn = Gγ, for
some γ ∈ end(G).

Similarly, it is easy to see that if G is a quasi-morphic abelian group,
andN1 = ker(α1), N2 = ker(α2), · · · , Nn = ker(αn)(α1, . . . , αn ∈ end(G)),
then we also have

N1N2 · · ·Nn = ker(γ),

where γ ∈ end(G).

Theorem 4.4. If G is a quasi-morphic abelian group, and N = Gα,H =
Gβ, for some α, β ∈ end(G), then there exists γ ∈ end(G) such that
N ∩H = Gγ.

Proof. Since G is quasi-morphic, we have an endomorphism ϕ ∈ end(G)
such that Gα = ker(ϕ), and we also have ρ such that ker(βϕ) = Gρ.
It suffices to show that N ∩H = Gρβ. For any x ∈ Gα ∩ Gβ, say x =
(g1)α = (g2)β. Then, g1αϕ = g2βϕ = 0, and hence g2 ∈ ker(βϕ) = Gρ,
x ∈ Gρβ. We have N ∩H ⊆ Gρβ. On the other hand, let y ∈ Gρβ, say
y = (g)ρβ. Since yϕ = (g)ρβϕ = 0, we have y ∈ ker(ϕ) = Gα. Hence,
Gρβ ⊆ Gα ∩Gβ. Then, N ∩H = Gρβ. �

Corollary 4.5. If G is abelian and quasi-morphic, and N1 = Gα1, N2 =
Gα2, · · · , Nn = Gαn (α1, . . . , αn ∈ end(G)), then N1 ∩N2 ∩ · · · ∩Nn =
Gγ, where γ is an endomorphism of end(G).
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Similarly, suppose G is a quasi-morphic abelian group, and N1 =
ker(α1), N2 = ker(α2), · · · , Nn = ker(αn) (α1, . . . , αn ∈ end(G)). Then,
N1 ∩N2 ∩ · · · ∩Nn = ker(γ) holds for some γ ∈ end(G).

Theorem 4.6. Let G be an abelian group. If G is quasi-morphic group,
then I(G) and K(G) are lattices.

Proof. We can get it by Theorem 4.1, Theorem 4.2 and Theorem 4.4. �

The converse fails. For example, I(C∞) and K(C∞) are lattices, but
C∞ is not quasi-morphic.

Lemma 4.7. Suppose G = ⊕n
i=1 < ui > is an abelian p-group, and

ord(ui) = pai, ai ≤ ai+1, i = 1, 2, · · · , n − 1. Let H = ⊕m
j=1 < vj > be

a subgroup of G, and ord(vj) = pbj , bj ≤ bj+1, j = 1, · · · ,m− 1. Then,
m ≤ n.

Proof. Let Gp = {g ∈ G : pg = 0} be a set of G. If x, y ∈ Gp, then
px = py = 0, p(x− y) = 0. Hence, Gp is a subgroup of G.

Next, we show that the order of Gp is pn. For any x ∈ G, we have
x = b1u1 + b2u2 + · · · + bnun, where 0 ≤ bi � pai . If x is an element of
Gp, then px = pb1u1 + · · ·+pbnun = 0. Hence, pb1u1 = · · · = pbnun = 0,
because G = ⊕n

i=1 < ui >. Then, pai | pbi, and bi = pai−1ci. Since
0 ≤ bi � pai , we have 0 ≤ ci � p. Moreover, Gp can be represented by
Gp = {

∑n
i=1 cip

ai−1ui|0 ≤ ci < p, i = 1, . . . , n}. Hence, the order of Gp

is pn.
Similarly, we can define Hp. Hp is a subgroup of Gp, and ord(Hp) =

pm. Then, we have m ≤ n. �

Proposition 4.8. Suppose G = ⊕n
i=1 < ui > is an abelian p-group, and

ord(ui) = pai, ai ≤ ai+1, i = 1, 2, · · · , n − 1. Let H = ⊕m
j=1 < vj > be

a subgroup of G, and ord(vj) = pbj , bj ≤ bj+1, j = 1, · · · ,m− 1. Then,

pbm−i ≤ pan−i, where i = 0, 1, 2, · · · ,m− 1.

Proof. We prove it by induction. If m = 1, then H =< v1 >, where
v1 ∈ G. For any element α ∈ G, we have ord(α) ≤ ord(un). Hence,
ord(v1) ≤ ord(un).

Now, let H2 = ⊕t
k=1 < vk >(t � m) be a subgroup of G2 = ⊕w

s=1 <
λs > and assume that H2 satisfies ord(vt−i) ≤ ord(λw−i), where i =
0, 1, 2, · · · , t− 1.

First, for the H given in this proposition, we show that ord(v1) ≤
ord(un−m+1). Suppose ord(un−m+1) � ord(v1), and define pan−m+1G =
{g ∈ G : g = pan−m+1h, where h ∈ G}. We assert that pan−m+1G =
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⊕n
i=t < pan−m+1ui >, t is the least value such that pan−m+1 � pat(if

we cannot find t, then pan−m+1G = 0). In fact, if g ∈ pan−m+1G, then
we have g = pan−m+1h, where h = a1u1 + · · · + anun. Hence, g =
a1p

an−m+1u1 + · · ·+ anp
an−m+1un = atp

an−m+1ut + · · ·+ anp
an−m+1un ∈∑n

i=t < pan−m+1ui >, pan−m+1G ⊆
∑n

i=t < pan−m+1ui >, and clearly
pan−m+1G = ⊕n

i=t < pan−m+1ui >. Similarly, we can define pan−m+1H.
Then, pan−m+1H = ⊕m

j=1 < pan−m+1vj > and pan−m+1H ≤ pan−m+1G.

This is a contradiction to Lemma 4.7, and thus ord(v1) ≤ ord(un−m+1).
If k is the largest value such that pbk = pb1 , then we have ord(vi) =
ord(v1) ≤ ord(un−m+i), i = 1, 2, · · · , k.

If k � m, then we can define pb1H and pb1G as above. Then, pb1H =
⊕m

j=k+1 < pb1vj >, pb1G = ⊕n
i=h < pb1ui > (h is the least value such

that pb1 � pah), and pb1H is the subgroup of pb1G. We have m − k ≤
n− h+ 1, h ≤ n− (m− k − 1), by Lemma 4.7. Hence, ord(pb1vm−i) ≤
ord(pb1un−i), where i = 0, 1, · · · ,m−k−1, by assumption, and it follows
that ord(vm−i) ≤ ord(un−i)(i = 0, 1, · · · ,m− k − 1). �

Lemma 4.9. Suppose G = ⊕n
i=1 < ui > is an abelian p-group, and

ord(ui) = pai, ai ≤ ai+1, i = 1, 2, · · · , n − 1. Let H = ⊕m
j=1 < vj > be

an image of G, and ord(vj) = pbj , bj ≤ bj+1, j = 1, · · · ,m − 1. Then,
m ≤ n.

Proof. We have an epic θ : G→ H by the hypothesis. Since G = ⊕n
i=1 <

ui >, we have Zn/T ∼= G, where T / Zn and rank(T ) = n. There exists
an isomorphism α : Zn/T → G. Define β : Zn/T → H by (x + T )β =
(x + T )αθ. Then, ker(β) = K/T , T ≤ K ≤ Zn. Hence, Zn/K ∼=
(Zn/T )/(K/T ) ∼= H. Since rank(T ) ≤ rank(K), by [6, Theorem 10.17],
we have rank(K) = n. There exist bases {y1, y2, · · · , yn} of Zn such
that

K =< d1y1, · · · , dnyn >, di | di+1(i = 1, · · · , n− 1).

Then, Zn/K = ⊕n
i=1 < ȳi >∼= H, ȳi = yi + K. If t is the least value

such that 1 � dt, then we have Zn/K = ⊕n
i=t < ȳi >∼= H, and m =

n− t+ 1 ≤ n. �

Proposition 4.10. Suppose G = ⊕n
i=1 < ui > is an abelian p-group,

and ord(ui) = pai, ai ≤ ai+1, i = 1, 2, · · · , n− 1. Let H = ⊕m
j=1 < vj >

be an image of G, and ord(vj) = pbj , bj ≤ bj+1, j = 1, · · · ,m−1. Then,

pbm−i ≤ pan−i, where i = 0, 1, 2, · · · ,m− 1.

Proof. We use induction on m. It is clearly true for m = 1. Now,
let H1 = ⊕t

k=1 < vk >(t � m) be an image of G1 = ⊕w
s=1 < λs > and
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assume that H1 satisfies ord(vt−i) ≤ ord(λw−i), where i = 0, 1, 2, · · · , t−
1.
For the H given in this proposition, there exists an epic α : G→ H.

First, for the H given in this proposition, we show that ord(v1) ≤
ord(un−m+1). Suppose ord(un−m+1) � ord(v1). We can define pan−m+1G
and pan−m+1H as in Proposition 4.8.Then, pan−m+1G=⊕n

i=t<p
an−m+1ui>

, where t is the least value such that pan−m+1 � pat (pan−m+1G = 0, if
we cannot find t) and pan−m+1H = ⊕m

j=1 < pan−m+1vj >. Then, α in-

duces a homomorphism α1 : pan−m+1G→ H. For any y ∈ (pan−m+1G)α1,
we have y ∈ pan−m+1(G)α1 = pan−m+1H. Then, α induces a homomor-
phism α2 : pan−m+1G → pan−m+1H. Since α is epic, then α2 is epic.
Since n − t + 1 � m, we have a contradiction to Lemma 4.9. Hence,
ord(v1) ≤ ord(un−m+1). If k is the largest value such that pb1 = pbk ,
then ord(vi) = ord(v1) ≤ ord(un−m+i) (i = 1, · · · , k).

If k � m, then we can define pb1G and pb1H as in Proposition 4.8.
Then, pb1H = ⊕m

j=k+1 < pa1vj >, pb1G = ⊕n
i=w < pb1ui > (w is the least

value such that pb1 � paw) and α induces an epic α3 : pb1G→ pb1H. We
have m − k ≤ n − w + 1, w ≤ n − (m − k − 1), by Lemma 4.9. Hence,
ord(pb1vm−i) ≤ ord(pb1un−i) (i = 0, 1, . . . ,m − k − 1), by assumption,
and it follows that ord(vm−i) ≤ ord(un−i) (i = 0, 1, · · · ,m− k − 1).

�

Theorem 4.11. If G is an abelian p-group, then G is quasi-morphic.

Proof. Let G = ⊕n
i=1 < ui >, where ord(ui) = pai and let ai ≤ ai+1

(i = 1, 2, · · · , n− 1) be an abelian p-group. For any H,K /G, if G/H ∼=
K, then we show that G/K ∼= L and G/T ∼= H, for some T, L / G.
By Proposition 4.10, we have G/K = ⊕m

j=1 < vj >, where m ≤ n and

ord(vm−i) ≤ ord(un−i), i = 0, 1, · · · ,m − 1. Write ord(vj) = pbj , j =

1, 2, · · · ,m. Let L = ⊕n
i=n−m+1 < pai−biui > be a subgroup of G. Then,

G/K ∼= L.
By Proposition 4.8, we haveH = ⊕t

k=1 < wk >, t ≤ n and ord(wt−i) ≤
ord(un−i) (i = 0, 1, · · · , t− 1). Write ord(wk) = pck , k = 1, 2, · · · , t. Let
T = ⊕n−t

j=1 < uj > ⊕t
i=1 < pciun−t+i > be a subgroup of G. Then,

G/T ∼= H. Hence, G is a quasi-morphic group, by Theorem 3.1. �

Theorem 4.12. Let G = G1 × G2 × · · · × Gn, where the Gi are the
groups such that Hom(Gi, Gj) = {0}, whenever i 6= j. Then, G is
quasi-morphic if and only if Gi is quasi-morphic.
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Proof. ⇒) If α ∈ end(G), then there exist αi ∈ end(Gi) such that

(g1, g2, · · · , gn)α = (g1α1, g2α2, · · · , gnαn),

for all (g1, g2, · · · , gn) ∈ G, since Hom(Gi, Gj) = {0}, if i 6= j. Thus,
ker(α) =

∏n
i=1 ker(αi) and im(α) =

∏n
i=1 im(αi). For any normal en-

domorphism αi ∈ end(Gi), define α : G→ G by
(g1, · · · , gi−1, gi, gi+1, · · · , gn)α = (g1, · · · , gi−1, (gi)αi, gi+1, . . . , gn), for
all (g1, · · · , gn) ∈ G. There exist normal endomorphisms β and γ such
that ker(α) = Gβ andGα = ker(γ), becauseG is quasi-morphic. Hence,
ker(αi) = Gβi and Gαi = ker(γi). Then, Gi is quasi-morphic.

⇐) Suppose α =
∏n

i=1 αi is any normal endomorphism of G. Since
Gi is quasi-morphic, we have normal endomorphisms βi and γi (i =
1, 2, . . . , n), such that ker(αi) = Gβi and Gαi = ker(γi). Let β =∏n

i=1 βi and γ =
∏n

i=1 γi. Then, ker(α) = Gβ and Gα = ker(γ). Hence,
G is quasi-morphic.

�

Theorem 4.13. If G is a finite abelian group, then G is quasi-morphic.

Proof. If G is a finite abelian group, then G = P1 × · · ·P2 × · · · × Pn,
where Pi is pi-group. Since Hom(Pi, Pj) = 0, i 6= j, G is quasi-morphic,
by Theorem 4.11 and Theorem 4.12. �

Theorem 4.14. A finitely generated abelian group is quasi-morphic if
and only if it is finite.

Proof. ⇒) If G is a finitely generated abelian group, then

G = Gp1 ⊕Gp2 ⊕ · · · ⊕Gpn ⊕G1 ⊕ · · ·Gm,

where Gpi is the pi-primary component and Gj is the infinite cyclic
group. If 1 ≤ m, then let Gm =< um > be an infinite cyclic group. Let
p be a prime, and p1, · · · , pn � p. We have

G/0 ∼= G ∼= Gp1 ⊕Gp2 ⊕ · · · ⊕Gpn ⊕G1 ⊕ · · ·Gm−1⊕ < pum >= K.

But, G/K is not isomorphic to a subgroup of G. Hence, G is not quasi-
morphic, by Theorem 3.1.
⇐) This is clear by Theorem 4.13. �
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