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THE LEAST-SQUARE BISYMMETRIC SOLUTION TO

A QUATERNION MATRIX EQUATION WITH

APPLICATIONS

Q. WANG∗ AND G. YU

Communicated by Abbas Salemi Parizi

Abstract. In this paper, we derive the necessary and sufficient
conditions for the quaternionic matrix equation XA = B to have
the least-square bisymmetric solution and give the expression of
such solution when the solvability conditions are met. Further-
more, we derive sufficient and necessary conditions for XA = B
to have the positive (nonnegative) definite least-square bisymmet-
ric solution and the maximal (minimal) least-square bisymmetric
solution.

1. Introduction

Let R and C, be the real, complex and quaternionicnumber fields.
Hm×n stands for the set of all m×n quaternion matrices. Hn×n

h denotes
the set of all n×n Hermitian quaternion matrices. A quaternion matrix
A is called unitary if A∗A = AA∗ = I, where I is the identity matrix.
A = (aij) ∈ Hn×n is called bisymmetric if aij = an−i+1,n−j+1 = aji.
Clearly, if a matrix A is bisymmetric, then A is Hermitian. For conve-
nience, we denote the set of all n×n bisymmetric quaternionic matrices
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by Bn. For an m × n quaternionic matrix A, the Moore-Penrose in-
verse of matrix A, denoted by A†, is an n × m matrix which satisfy
simultaneously

AA†A = A,A†AA† = A†, (AA†)∗ = AA†, (A†A)∗ = A†A,

where ∗ denotes the conjugate transpose of quaternion matrices. The
generalized inverse of matrix A ∈ Hm×n, denoted by A−, is an n ×m
matrix which satisfies AA−A = A. Moreover, EA = I − AA†, FA =
I −A†A are two projectors induced by A.

It is well known that a ∈ H can be uniquely expressed as a = α +
βj, α, β ∈ C. Therefore for any quaternion matrix A ∈ Hm×n, it can
be uniquely written as A = A1 + A2j (A1, A2 ∈ Cm×n). The complex
representation of quaternion matrix A = A1 +A2j is defined to be

Ac =

[
A1 −A2

A2 A1

]
∈ C2m×2n.

As we know, the complex matrix Ac is uniquely determined by the ma-
trix A. For the complex representation of a quaternionic matrix, there
are some properties as follows.

Lemma 1.1. Let A,B,C,D ∈ Hm×n, a, b ∈ R. Then
(1) (aA+ bB)c = aAc + bBc;
(2) (AB)c = AcBc;
(3) (A∗)c = (Ac)∗;
(4) ((AB)∗)c = (B∗)c(A∗)c;

(5)

[
A B
C D

]c
=

[
Ac Bc

Cc Dc

]
.

According to [5], we introduce the norm of quaternion matrices.

Definition 1.2. Suppose A,B ∈ Hm×n are arbitrary matrices and a
is an arbitrary complex number. A function ν : Hm×n −→ R is a
quaternion norm if it satisfies the following statements:

(1) ν(A) ≥ 0,
(2) ν(A) = 0 if and only if A = 0,
(3) ν(aA) = |a|ν(A),
(4) ν(A+B) ≤ ν(A) + ν(B).

Let µ(M) be a Frobenius norm for any M ∈ C2m×2n. For any A ∈
Hm×n, we define

ν(A) = µ(Ac).
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It is easy to verify that this matrix norm is unitary invariant. For
convenience, we call it the Frobenius norm of quarternion matrix A,
denoted by ‖A‖. Let A ∈ Hn×n. A quaternion λ is said to be a right
eigenvalue of A if Ax = xλ for some nonzero quaternionic column vector
x. Similarly, λ is a left eigenvalue if Ax = λx. It is evident that all right
eigenvalues are real if A is Hermitian. Moreover, the right eigenvalue
of A ∈ Hn×n

h must be left eigenvalue of A. The rank of A ∈ Hn×n is
defined to be the maximum number of columns of A which are right
linear independent [15]. Furthermore, the rank of A is equal to the
number of positive singular values of A (see Theorem 7.2 in [15]). As
shown in [15], matrices A, AA∗ and A∗A are all of the same rank. So the
rank of an Hermitian matrix is the number of nonzero right eigenvalues.
For A ∈ Hn×n

h , we define the inertia of A as follows:

IN(A) = {IN+(A), IN−(A), IN0(A)},
where IN+(A), IN−(A), IN0(A) are the numbers of positive, negative,
zero eigenvalues (including multiplicity), respectively.

The least-square problem over complex number field has gained much
attention. It has practical applications in information theory, theoretical
physics, statistics, signal processing, system theory, automatic control,
etc. In recent years, there are some good results about the least-square
problem for matrix equation

(1.1) XA = B

as follows. In [16], Zhou, Zhang and Hu investigated the least-square
centrosymmetric solutions. Liu et al [7] considered the least-square cen-
trohermitian solutions. Xie et al [10] studied the least-square symmetric
and sub-anti-symmetric solutions. In [14], Xiu and Liao investigated the
least-square anti-symmetric and persymmetric solutions. In [9], Sheng
and Xie considered the least-square anti-symmetric solutions. In [13],
Xie, Zhang and Hu investigated the least-square bisymmetric solutions.
In recent years, quaternion matrices were extensively applied in quantum
mechanics, rigid mechanics and control theory (see [1, 3, 4]). Thus, it is
necessary to further study the theory and methods of quaternion matri-
ces, especially the quaternion least-squares problem since this problem
has been settled only a little. In this paper, we consider the least-squares
bisymmetric solutions to quaternionic matrix equation (1.1).

The inertia theory is an ancient and useful context in matrix the-
ory. As we know, the inertias of a Hermitian matrix can be used to
characterize definiteness of the Hermitian matrix. The positive definite
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Hermitian solutions to matrix equation is considered scarcely. In this
paper, we use the inertia theory to derive necessary and sufficient condi-
tions for quaternion matrix equations to have positive and nonnegative
definite least-square bisymmetric solutions.

We organize the paper as follows. In section 2, we derive the necessary
and sufficient conditions for quaternionic matrix equation (1.1) to have
the least-square bisymmetric solution and give the expression of this
solution. In section 3, we investigate the extreme inertias of the least-
square bisymmetric solution and characterize the solution with extreme
inertias. We get the sufficient and necessary conditions for (1.1) to
have the positive and nonnegative least-square bisymmetric solution. In
section 4, we give the definition of the maximal and minimal solutions
to matrix equation. By means of inertia theory, we derive sufficient
and necessary conditions for (1.1) to have the maximal and minimal
least-square bisymmetric solutions.

2. The least-square bisymmetric solutions to (1.1)

For the construction of bisymmetric matrices, Wang [12] presents the
following lemma.

Lemma 2.1. [12]

(1) Suppose that

D =
1

2

[
Ik Vk
−Vk Ik

]
where Ik is k × k identity matrix and Vk is a k × k permutation
matrix whose elements along the southwest-northeast diagonal
are 1

′
s and 0

′
s otherwise. Then X ∈ B2k if and only if

X = D

[
X1 0
0 X2

]
D∗

where X1, X2 are k × k Hermitian matrices.
(2) Suppose that

D =
1

2

 Ik 0 Vk
0 1 0
−Vk 0 Ik


where Ik, Vk are the same as above. Then X ∈ B2k+1 if and only
if

X = D

[
X1 0
0 X2

]
D∗
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where X1, X2 are Hermitian K×K, (K+1)× (K+1) matrices,
respectively.

By extending the result in [6] from the complex field to the quaternion
field, we can get the following lemma.

Lemma 2.2. Suppose that A,B ∈ Hn×m, such that the matrix equation
(1.1) is consistent. Then the equation (1.1) has a Hermitian solution if
and only if B∗A is Hermitian. The general Hermitian solution is of the
form

(A∗)†B∗ +BA† − (A∗)†A∗BA† + FA∗KFA,

where K is an arbitrary Hermitian quaternion matrix with appropriate
size.

Now for X ∈ B2k, we consider the necessary and sufficient condi-
tions for the real quaternion matrix equation (1.1) to have least-square
bisymmetric solutions and investigate the expression of these solutions.

Theorem 2.3. Suppose that

D =
1

2

[
Ik Vk
−Vk Ik

]
, D∗A =

[
A1

A2

]
, D∗B =

[
B1

B2

]
,

A1 = U

[
Σr1 0
0 0

]
V ∗ = U1Σ1V

∗
1

and

A2 = P

[
Σr2 0
0 0

]
= P1Σr2Q

∗
1

are the singular value decompositions of A1, A2, respectively, where A1, A2,
B1, B2 ∈ Hk×m, and U = (U1, U2), V = (V1, V2), P = (P1, P2), Q =
(Q1, Q2) are unitary matrices. Then:

(1) The quaternion matrix equation (1.1) has least-square bisymmet-
ric solutions if and only if (2B1V1Σ

−1
r1 )∗U1, (2B2Q1Σ

−1
r2 )∗P1 1000

are Hermitian.
(2) The general expression of the least-square bisymmetric solutions

to (1.1) is

(2.1) X = D

[
M1 0
0 M2

]
D∗ +D

[
FU∗1

K1FU∗1
0

0 FP ∗1
K2FP ∗1

]
D∗,

where

M1 = 2B1V1Σ
−1
r1 U

†
1 + (2B1V1Σ

−1
r1 U

†
1)∗ − 2(U∗1 )†U∗1B1V1Σ

−1
r1 U

†
1 ,

M2 = 2B2Q1Σ
−1
r2 P

†
1 + (2B2Q1Σ

−1
r2 P

†
1 )∗ − 2(P ∗1 )†P ∗1B2Q1Σ

−1
r2 P

†
1
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and K1,K2 are arbitrary K×K Hermitian quaternion matrices.

Proof. From Lemma 2.1, it is easy to verify that X ∈ B2k if and only if
there exists unitary matrix

√
2D such that

(2.2) 2D∗X2D =

[
X1 0
0 X2

]
,

where

D =
1

2

[
Ik Vk
−Vk Ik

]
and X1, X2 are k × k Hermitian matrices.

By the unitary invariance of the Frobenius norm and (2.2), we have

‖XA−B‖ = ‖
√

2D∗XA−
√

2D∗B‖
= ‖

√
2D∗X

√
2D
√

2D∗A−
√

2D∗B‖

= ‖1

2

[
X1 0
0 X2

]√
2D∗A−

√
2D∗B‖

=
√

2‖1

2

[
X1 0
0 X2

] [
A1

A2

]
−
[
B1

B2

]
‖

=
√

2‖1

2
X1A1 −B1‖+

√
2‖1

2
X2A2 −B2‖

=
√

2‖1

2
U∗X1A1V − U∗B1V ‖

+
√

2‖1

2
P ∗X2A2Q− P ∗B2Q‖

=
√

2‖1

2
U∗X1UU

∗A1V − U∗B1V ‖

+
√

2‖1

2
P ∗X2PP

∗A2Q− P ∗B2Q‖

=
√

2‖1

2
U∗1X1U1Σr1 − U∗1B1V1‖+

√
2‖ − U∗1B1V2‖

+
√

2‖1

2
U∗2X1U1Σr1 − U∗2B1V1‖+

√
2‖ − U∗2B1V2‖

+
√

2‖1

2
P ∗1X2P1Σr2 − P ∗1B2Q1‖+

√
2‖ − P ∗1B2Q2‖

+
√

2‖1

2
P ∗2X2P1Σr2 − P ∗2B2Q1‖+

√
2‖ − P ∗2B2Q2‖.



Extreme inertias of the least-square bisymmetric solution 245

Therefore, ‖XA−B‖ = minX∈B2k
holds if and only if

1

2
U∗1X1U1Σr1 = U∗1B1V1,

1

2
U∗2X1U1Σr1 = U∗2B1V1,

1

2
P ∗1X2P1Σr2 = P ∗1B2Q1,

1

2
P ∗2X2P1Σr2 = P ∗2B2Q1.

It is easy to find that

U∗X1U =

[
U∗1X1U1 U∗1X1U2

U∗2X1U1 U∗2X1U2

]
=

[
2U∗1B1V1Σ

−1
r1 U∗1X1U2

2U∗2B1V1Σ
−1
r1 U∗2X1U2

]
and

U

[
2U∗1B1V1Σ

−1
r1

2U∗2B1V1Σ
−1
r1

]
= 2B1V1Σ

−1
r1 , U

[
U∗1X1U2

U∗2X1U2

]
= X1U2.

So we have
UU∗X1U = (2B1V1Σ

−1
r1 , X1U2),

i.e.,
(X1U1, X1U2) = (2B1V1Σ

−1
r1 , X1U2).

So we get a matrix equation

(2.3) X1U1 = 2B1V1Σ
−1
r1

for Hermitian matrix X1.
Similarly, for Hermitian matrix X2, we have a matrix equation

(2.4) X2P1 = 2B2Q1Σ
−1
r2 .

Therefore, the equation (1.1) has least-square bisymmetric solution if
and only if the matrix equations (2.3) and (2.4) have Hermitian solutions
for X1, X2, respectively.

By Lemma 2.2, the matrix equation (2.3) has a Hermitian solution if
and only if (2B1V1Σ

−1
r1 )∗U1 is Hermitian, in which case a general Her-

mitian solution is
X1 = M1 + FU∗1

K1FU∗1
,

where

M1 = 2B1V1Σ
−1
r1 U

†
1 + (2B1V1Σ

−1
r1 U

†
1)∗ − 2(U∗1 )†U∗1B1V1Σ

−1
r1 U

†
1
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and K1 is an arbitrary K ×K Hermitian matrix.
Similarly, the matrix equation (2.4) has a Hermitian solution if and

only if (2B2Q1Σ
−1
r2 )∗P1 is Hermitian. The general Hermitian solution is

X2 = M2 + FP ∗1
K2FP ∗1

,

where

M2 = 2B2Q1Σ
−1
r2 P

†
1 + (2B2Q1Σ

−1
r2 P

†
1 )∗ − 2(P ∗1 )†P ∗1B2Q1Σ

−1
r2 P

†
1

and K2 is an arbitrary K ×K Hermitian matrix. Hence the expression
of the least-square bisymmetric solutions can be written as

X = D

[
M1 0
0 M2

]
D∗ +D

[
FU∗1

K1FU∗1
0

0 FP ∗1
K2FP ∗1

]
D∗,

where K1,K2 are arbitrary K ×K Hermitian quaternion matrices. �

Theorem 2.4. Suppose that

D =
1

2

 Ik 0 Vk
0 1 0
−Vk 0 Ik

 , D∗A =

[
A1

A2

]
, D∗B =

[
B1

B2

]
,

A1, B1 ∈ Hk×m, A2, B2 ∈ H(k+1)×m.

A1 = U

[
Σr1 0
0 0

]
V ∗ = U1Σ1V

∗
1

and

A2 = P

[
Σr2 0
0 0

]
= P1Σr2Q

∗
1

are the singular value decompositions of A1, A2, respectively, where U =
(U1, U2), V = (V1, V2), P = (P1, P2), Q = (Q1, Q2) are unitary matrices.
Then:

(1) The quaternion matrix equation (1.1) has least-square bisymmet-
ric solutions if and only if (2B1V1Σ

−1
r1 )∗U1, (2B2Q1Σ

−1
r2 )∗P1 are

Hermitian.
(2) The general expression of a least-square bisymmetric solution to

(1.1) is the same as (2.1) where K1,K2 are arbitrary Hermitian
quaternion matrices with appropriate sizes.

Remark 2.5. Let

D =
1

2

 Ik 0 Vk
0 1 0
−Vk 0 Ik


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and A2, B2 ∈ H(k+1)×m, we find that the proof of Theorem 2.4 is similar
to Theorem 2.3. Therefore, we skip it.

3. The least-square bisymmetric solutions to (1.1) with
extreme inertias

In this section, we consider the extreme inertias of least-square bisym-
metric solutions to (1.1) and characterize the least-square bisymmetric
solutions with extreme inertias. Finally, we get some necessary and
sufficient conditions for matrix equation (1.1) to have positive and non-
negative least-square bisymmetric solutions.

First we give some equalities for the ranks of partitioned matrices
which were derived by Marsaglia and Styan [8].

Lemma 3.1. [8] Let A ∈ Hm×n, B ∈ Hm×k. Then

r(A,B) = r(A) + r([I −AA−]B) = r([I −BB−]A) + r(A),

r

[
A
B

]
= r(A) + r(B[I −A−A]) = r(A[I −B−B]) + r(B).

For the inertias of quaternion matrices, there are some simple results.

Lemma 3.2. Let A ∈ Hm×m
h , B ∈ Hn×n

h and P ∈ Hm×m be nonsingu-
lar. Then

IN±(A) =
1

2
in±(Ac);

IN±(PAP ∗) = IN±(A);

IN±

[
A 0
0 B

]
= IN±(A) + IN±(B).

Recently, Tian [11] and Chu [2] present some equalities for inertias
of block Hermitian complex matrices. In the following we extend two
results [11] from complex matrix to quaternion matrix by Lemma 3.2.

Lemma 3.3. Let A ∈ Hm×m
h , B ∈ Hm×n and

M =

[
A B
B∗ 0

]
.

Then the following equality holds for the inertia of M.

IN±(M) = r(B) + IN±(EBAEB).
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Lemma 3.4. Let A ∈ Hm×m
h , B ∈ Hm×n,

M =

[
A B
B∗ 0

]
, S =

[
0
In

]
, S1 = S −MM †S.

Then the following statements hold:

(1) The extreme inertias of A−BXB∗ are given by

max
X∈Hn×n

h

IN±(A−BXB∗)) = IN±(M),

(3.1) min
X∈Hn×n

h

IN±(A−BXB∗) = r(A,B)− IN∓(M).

(2) The general expressions of X satisfying IN+(A − BXB∗) =
IN+(M) can be written as

X = −S∗M †S − UU∗,
where U ∈ Hn×k is chosen such that IN−(−FS1UU

∗FS1) =
r(FS1); the general expressions of X satisfying IN−(A−BXB∗) =
IN−(M) can be written as

X = −S∗M †S + UU∗,

where U ∈ Hn×k is chosen such that IN+(FS1UU
∗FS1) = r(FS1).

(3) The general expressions of X satisfying IN+(A − BXB∗) =
r(A,B)− IN−(M) can be written as

X = −S∗M †S − UU∗ + V − FS1V FS1 ,

where U ∈ Hn×k, V ∈ Hn×n
h are arbitrary Hermitian matrices.

(4) The general expressions of X satisfying IN−(A − BXB∗) =
r(A,B)− IN+(M) can be written as

X = −S∗M †S + UU∗ + V − FS1V FS1 ,

where U ∈ Hn×k, V ∈ Hn×n
h are arbitrary Hermitian matrices.

In the following, we investigate the extreme inertias of the least-square
bisymmetric solutions to the quaternion matrix equation (1.1) and char-
acterize the least-square bisymmetric solutions with extreme inertias.

Theorem 3.5. With the assumption of Theorem 2.3, let

M̂1 =

[
M1 FU∗1

(FU∗1
)∗ 0

]
, M̂2 =

[
M2 FP ∗1

(FP ∗1
)∗ 0

]
, S =

[
0
Ik

]
,

Si = S − M̂iM̂i
†
S, (i = 1, 2)
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and SX be the set of the least-square bisymmetric solutions to (1.1). If
the quaternion matrix equation (1.1) has least-square bisymmetric solu-
tions, then the extreme inertias of the least-square bisymmetric solutions
to (1.1) are

max
X∈SX

IN±(X) = 2k − (r1 + r2) + IN±(2U1U
†
1B1V1Σ

−1
r1 U

†
1)

+IN±(2P1P
†
1B10002Q1Σ

−1
r2 P

†
1 ).

min
X∈SX

IN±(X) = r(B1V1) + r(B2Q1)− IN∓(2U1U
†
1B1V1Σ

−1
r1 U

†
1)

−IN∓(2P1P
†
1B2Q1Σ

−1
r2 P

†
1 ).

Proof. By Lemmas 3.2 3.4, the extreme inertias of the least-square bisym-
metric solutions to (1.1) satisfy the following equations

max
X∈SX

IN±(X) = max
K1=K∗1

IN±(M1 + FU∗1
K1EU1)

+ max
K2=K∗2

IN±(M2 + FP ∗1
K2EP1)

= IN±(M̂1) + IN±(M̂2).

min
X∈SX

IN±(X) = min
K1K∗1

IN±(M1 + FU∗1
K1EU1)

+ min
K2=K∗2

IN±(M2 + FP ∗1
K2EP1)

= r(M1, FU∗1
) + r(M2, FP ∗1

)− IN∓(M̂1)− IN∓(M̂2).(3.2)

By Lemma 3.3, we obtain

IN±(M̂1) = r(FU∗1
) + IN±(U1U

†
1M1U1U

†
1)

= k − r1 + IN±(2U1U
†
1B1V1Σ

−1
r1 U

†
1).

IN±(M̂1) = k − r2 + IN±(2P1P
†
1B2Q1Σ

−1
r2 P

†
1 ).
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By Lemma 3.1 and elementary block matrix operations, we can get

r

[
M1 Ik
0 U∗1

]
= r(M1, FU∗1

) + r(U1)

= r(M1, FU∗1
) + r1,

r

[
M1 Ik
0 U∗1

]
= r

[
M1 Ik

−U∗1M1 0

]
= r

[
0 Ik

−2(B1V1Σ
−1
r1 )∗ 0

]
= k + r(B1V1).

The above equalities, gives that

(3.3) r(M1, FU∗1
) = k + r(B1V1)− r1.

Similarly, we can verify that

(3.4) r(M2, FP ∗1
) = k + r(B2Q1)− r2.

By Lemma 3.3 and substituting (3.3), (3.4) into (3.2), we get the result.
�

By Lemma 3.4 and Theorem 3.5, we easily can get the following The-
orem.

Theorem 3.6. With the assumption of Theorem 3.5,

(1) if X ∈ SX satisfies

max
X∈SX

IN+(X) = 2k − (r1 + r2) + IN+(2U1U
†
1B1V1Σ

−1
r1 U

†
1)

+IN+(2P1P
†
1B2Q1Σ

−1
r2 P

†
1 ),

then X can be expressed as

X = D

[
X1 0
0 X2

]
D∗,

where

X1 = M1 + FU∗1
(−S∗M̂1

†
S −N1N

∗
1 )FU∗1

,

X2 = M2 + FP ∗1
(−S∗M̂2

†
S −N2N

∗
2 )FP ∗1

and Ni(i = 1, 2) are chosen such that

IN−(−FS1N1N
∗
1FS1) = r(FS1),

IN−(−FS2N2N
∗
2FS2) = r(FS2).
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(2) If X ∈ SX satisfies

max
X∈SX

IN−(X) = 2k − (r1 + r2) + IN−(2U1U
†
1B1V1Σ

−1
r1 U

†
1)

+IN−(2P1P
†
1B2Q1Σ

−1
r2 P

†
1 ),

then X can be written as

X = D

[
X1 0
0 X2

]
D∗,

where

X1 = M1 + FU∗1
(−S∗M̂1

†
S +N1N

∗
1 )FU∗1

,

X2 = M2 + FP ∗1
(−S∗M̂2

†
S +N2N

∗
2 )FP ∗1

and Ni(i = 1, 2) are chosen such that

IN+(FS1N1N
∗
1FS1) = r(FS1),

IN+(FS2N2N
∗
2FS2) = r(FS2).

(3) If X ∈ SX satisfies

min
X∈SX

IN+(X) = r(B1V1) + r(B2Q1)− IN−(2U1U
†
1B1V1Σ

−1
r1 U

†
1)

−IN−(2P1P
†
1B2Q1Σ

−1
r2 P

†
1 ),

then of X can be written as

X = D

[
X1 0
0 X2

]
D∗,

where

X1 = M1 + FU∗1
(−S∗M̂1

†
S −N1N

∗
1 +W1 − FS1W1FS1)FU∗1

,

X2 = M2 + FP ∗1
(−S∗M̂2

†
S −N2N

∗
2 +W2 − FS2W2FS2)FP ∗1

and Ni(i = 1, 2) are arbitrary quaternion matrices and Wi(i =
1, 2) are arbitrary Hermitian quaternion matrices.

(4) If X ∈ SX satisfies

min
X∈SX

IN−(X) = r(B1V1) + r(B2Q1)− IN+(2U1U
†
1B1V1Σ

−1
r1 U

†
1)

−IN+(2P1P
†
1B2Q1Σ

−1
r2 P

†
1 ),

then X can be written as

X = D

[
X1 0
0 X2

]
D∗,
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where

X1 = M1 + FU∗1
(−S∗M̂1

†
S +N1N

∗
1 +W1 − FS1W1FS1)FU∗1

,

X2 = M2 + FP ∗1
(−S∗M̂2

†
S +N2N

∗
2 +W2 − FS2W2FS2)FP ∗1

.

and Ni(i = 1, 2) are arbitrary quaternion matrices and Wi(i =
1, 2) are arbitrary Hermitian quaternion matrices.

Theorem 3.7. With the notations as in Theorem 2.3, assume that the
matrix equation XA = B has least-square bisymmetric solutions and SX
is the set of the least-square bisymmetric solutions. Then:

(1) There exists a positive definite least-square bisymmetric solution
to XA = B if and only if

r1 = IN+(2U1U
†
1B1V1Σ

−1
r1 U

†
1),

r2 = IN+(2P1P
†
1B2Q1Σ

−1
r2 P

†
1 ).

(2) There exists a nonnegative definite least-square bisymmetric so-
lution to XA = B if and only if

r(B1V1) = IN+(2U1U
†
1B1V1Σ

−1
r1 U

†
1),

r(B2Q1) = IN+(2P1P
†
1B2Q1Σ

−1
r2 P

†
1 ).

Proof. It is obvious that

X = D

[
X1 0
0 X2

]
D∗ ∈ SX

is positive definite if and only if maxX∈SX
IN+(X) = 2k.

By Theorem 3.5, we obtain

max
X∈SX

IN+(X) = 2k ⇐⇒ max
X1

IN+(X1) = k,max
X2

IN+(X2) = k

⇐⇒ r1 = IN+(2U1U
†
1B1V1Σ

−1
r1 U

†
1),

r2 = IN+(2P1P
†
1B2Q1Σ

−1
r2 P

†
1 ).

Similarly, X ∈ SX is nonnegative definite if and only if
minX∈SX

IN−(X) = 0.
Moreover,

min
X∈SX

IN−(X) = 0 ⇐⇒ min
X1

IN+(X1) = 0,min
X2

IN+(X2) = 0

⇐⇒ r(B1V1) = IN+(2U1U
†
1B1V1Σ

−1
r1 U

†
1),

r(B2Q1) = IN+(2P1P
†
1B2Q1Σ

−1
r2 P

†
1 ).
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�

Remark 3.8. Any

X = D

[
X1 0
0 X2

]
D∗ ∈ SX

is positive (nonnegative) definite if and only if minX∈SX
IN+(X) = 2k

(maxX∈SX
IN−(X) = 0). So we can derive the sufficient and necessary

conditions for all least-square bisymmetric solutions to XA = B to be
positive (non-negative) definite.

4. The extremal least-square bisymmetric solutions

In this section, we consider the maximal and minimal least-square
bisymmetric solutions by means of inertia theory. For convenience, we
give some notations. The notation X ≥ 0 (X ≤ 0) means that the
matrix X is non-negative definite (non-positive definite). Let F (X) = 0
be a matrix equation. A hermitian solution P0 of F (X) = 0 will be called
maximal (respectively minimal) if P0 − P ≥ 0(respectivelyP0 − P ≤ 0)
for every other hermitian solution P of F (X) = 0. Clearly, the extremal
solution is unique if it exists.

Theorem 4.1. With notations as in Theorem 2.3, assume that the ma-
trix equation (1.1) has least-square bisymmetric solutions. Then:

(1) There exists the maximal least-square bisymmetric solution

P0 = D

[
P01 0
0 P02

]
D∗

for (1.1) if and only if

IN+(U1U
†
1P01−2U1U

†
1B1V1Σ

−1
r1 U

†
1) = r(U1U

†
1P01−U1U

†
12B1V1Σ

−1
r1 U

†
1),

IN+(P1P
†
1P02−2P1P

†
1B2Q1Σ

−1
r2 P

†
1 ) = r(P1P

†
1P02−P1P

†
12B2Q1Σ

−1
r2 P

†
1 ).

(2) There exists the minimal least-square bisymmetric solution

P0 = D

[
P01 0
0 P02

]
D∗

for (1.1) if and only if

IN−(U1U
†
1P01−2U1U

†
1B1V1Σ

−1
r1 U

†
1) = r(U1U

†
1P01−U1U

†
12B1V1Σ

−1
r1 U

†
1),

IN−(P1P
†
1P02−2P1P

†
1B2Q1Σ

−1
r2 P

†
1 ) = r(P1P

†
1P02−P1P

†
12B2Q1Σ

−1
r2 P

†
1 ).
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Proof. Suppose that

X = D

[
X1 0
0 X2

]
D∗

is a least-square bisymmetric solution to (1.1). By Theorem 2.3, X can
be expressed as (2.1).

As we know

P0 ≥ X ⇐⇒ min
XA=B,X∈H2k×2k

h

IN−(P0 −X) = 0

⇐⇒ min
X1

IN−(P01 −X1) = 0,min
X2

IN−(P02 −X2) = 0.

P0 ≤ X ⇐⇒ min
XA=B,X∈H2k×2k

h

IN+(P0 −X) = 0

⇐⇒ min
X1

IN+(P01 −X1) = 0,min
X2

IN+(P02 −X2) = 0.

By (3.1), Lemmas 3.1 and 3.4, we get

min
X1

IN±(P01 −X1) = r
(
P01 −M1, FU∗1

)
− IN∓

[
P01 −M1 FU∗1
FU∗1

0

]
= r(FU∗1

) + r(U1U
†
1(P01 −M1))

−r(FU∗1
)− IN∓(U1U

†
1(P01 −M1)U1U

†
1)

= r(U1U
†
1(P01 − 2B1V1Σ

−1
r1 U

†
1))

−IN∓(U1U
†
1(P01 − 2B1V1Σ

−1
r1 U

†
1)U1U

†
1).

Similarly, we have

min
X2

IN±(P02 −X2) = r(P1P
†
1 (P02 − 2B2Q1Σ

−1
r2 P

†
1 ))

−IN∓(P1P
†
1 (P02 − 2B2Q1Σ

−1
r2 P

†
1 )P1P

†
1 ).

�

5. Conclusion

In this paper, we investigate the least-square bisymmetric solutions
to quaternion matrix equation (1.1) and give the expression of these so-
lutions. We investigate the extreme inertias of these least-square bisym-
metric solutions and characterize the solutions with extreme inertias.
By the inertia theory, we get sufficient and necessary conditions for
the matrix equation (1.1) to have positive and nonnegative least-square
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bisymmetric solutions. Finally, we derive sufficient and necessary con-
ditions for (1.1) to have maximal and minimal least-square bisymmetric
solutions.

From the proof of Theorem 2.3, we can get a necessary and sufficient
condition for (1.1) to have bisymmetric solutions and give the expression
of these bisymmetric solutions as follows.

Theorem 5.1. With the assumption as in Theorem 2.3, the quater-
nion matrix equation (1.1) has bisymmetric solutions if and only if
(2B1V1Σ

−1
r1 )∗U1, (2B2Q1Σ

−1
r2 )∗P1 are Hermitian and B1V2 = 0, B2Q2 =

0.
The expression of the bisymmetric solutions is the same as (2.1).

So we can investigate the extreme inertias of bisymmetric solutions
and get some necessary and sufficient conditions for matrix equation
(1.1) to have positive and nonnegative bisymmetric solutions and to have
the maximal and minimal bisymmetric solutions. so we can consider the
system

(5.1)

{
AX = C
XB = D

,

where A,C ∈ Hm×n, B,D ∈ Hn×p. As we know, system (5.1) is equiv-
alent to

X(A∗, B) = (C∗, D).

So we can get the results about matrix equation system (5.1) as in
Theorem 5.1.

In Section 4 we derive necessary and sufficient condition for matrix
equation (1.1) to have the maximal and minimal least-square bisymmet-
ric solutions. But to our knowledge, there have been little information
on characterizing the extreme solutions. So we propose the following
question:

How one characterize the maximal and minimal (least-square) bisym-
metric solutions to (1.1)?
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