MAXIMAL SUBSETS OF PAIRWISE NON-COMMUTING ELEMENTS OF SOME FINITE $p ext{-}\mathsf{GROUPS}$

A. AZAD*, S. FOULADI AND R. ORFI

Communicated by Ali Reza Ashrafi

ABSTRACT. Let G be a group. A subset X of G is a set of pairwise non-commuting elements if $xy \neq yx$ for any two distinct elements x and y in X. If $|X| \geq |Y|$ for any other set of pairwise non-commuting elements, Y in G, then X is said to be a maximal subset of pairwise non-commuting elements. Here, we determine the cardinality of a maximal subset of pairwise non-commuting elements in any non-abelian p-groups with central quotient of order less than or equal to p^3 for any prime number p. As an immediate consequence, we give this cardinality for any non-abelian group of order p^4 .

1. Introduction

Let G be a non-abelian group and let X be a maximal subset of pairwise non-commuting elements of G. The cardinality of such a subset is denoted by $\omega(G)$. Also, $\omega(G)$ is the maximal clique size in the non-commuting graph of a group G. Let Z(G) be the center of G. The non-commuting graph of a group G is a graph with $G \setminus Z(G)$ as the vertices and join two distinct vertices x and y, whenever $xy \neq yx$. By a famous result of Neumann [7], answering a question of Erdös, the

MSC(2010): Primary: 20D60; Secondary: 20D15.

Keywords: Pairwise non-commuting elements, finite p-group, AC-group.

Received: 1 March 2011, Accepted: 4 September 2011.

*Corresponding author

© 2013 Iranian Mathematical Society.

finiteness of $\omega(G)$ in G is equivalent to the finiteness of the factor group G/Z(G). Pyber [8] has shown that there is a constant c such that $|G:Z(G)| \leq c^{\omega(G)}$. Chin [4] obtained upper and lower bounds for $\omega(G)$ for an extra-special p-group G, where p is an odd prime number. For p=2, Isaacs (see [3], p. 40) showed that $\omega(G)=2n+1$ for any extraspecial group G of order 2^{2n+1} . Also, in [1, Lemma 4.4], it was proved that $\omega(GL(2,q))=q^2+q+1$. Furthermore, in [2, Theorem 1.1], it was shown that $\omega(GL(3,q))=q^6+q^5+3q^4+3q^3+q^2-q-1$, for $q\geq 4$, $\omega(GL(3,2))=56$ and $\omega(GL(3,3))=1067$.

Here, we show that $\omega(G) = p + 1$, for any finite p-group G with central quotient of order p^2 , where p is a prime number (Lemma 3.1). Also, we find $\omega(G)$, for any finite p-group G with central quotient of order p^3 (Theorem 3.3). As an immediate consequence, we determine $\omega(G)$ for any non-abelian group of order p^4 .

Throughout this paper, we use the following notation: p denotes a prime number, $C_G(x)$ is the centralizer of an element x in a group G, the nilpotency class of a group G is shown by cl(G), and a p-group of maximal class is a non-abelian group G of order p^n with cl(G) = n - 1.

2. Basic results

In this section, we give some basic results needed for are main results.

Lemma 2.1. Let G be a finite group. Then,

- (i) for any subgroup H of G, $\omega(H) \leq \omega(G)$, and
- (ii) for any normal subgroup N of G, $\omega(G/N) \leq \omega(G)$.

Proof. This is evident.

A group G is called an AC-group, if the centralizer of every non-central element of G is abelian.

Lemma 2.2. The followings on a group G are equivalent.

- (i) G is an AC-group.
- (ii) If [x,y] = 1, then $C_G(x) = C_G(y)$, where $x,y \in G \setminus Z(G)$.
- (iii) If [x, y] = [x, z] = 1, then [y, z] = 1, where $x \in G \setminus Z(G)$.
- (iv) If A and B are subgroups of G and $Z(G) < C_G(A) \le C_G(B) < G$, then $C_G(A) = C_G(B)$.

Proof. This is straightforward. See also [9], Lemma 3.2. \square

Lemma 2.3. Let G be an AC-group.

- (i) If $a, b \in G \setminus Z(G)$ with distinct centralizers, then $C_G(a) \cap C_G(b) = Z(G)$.
- (ii) If $G = \bigcup_{i=1}^k \mathcal{C}_G(a_i)$, where $\mathcal{C}_G(a_i)$ and $\mathcal{C}_G(a_j)$ are distinct for $1 \leq i < j \leq k$, then $\{a_1 \ldots a_k\}$ is a maximal set of pairwise non-commuting elements.
- *Proof.* (i) We see that $Z(G) \leq \mathcal{C}_G(a) \cap \mathcal{C}_G(b)$. If $Z(G) < \mathcal{C}_G(a) \cap \mathcal{C}_G(b)$, then there exists an element x in $\mathcal{C}_G(a) \cap \mathcal{C}_G(b)$ such that $x \notin Z(G)$. This means that $\mathcal{C}_G(a) = \mathcal{C}_G(x)$ and $\mathcal{C}_G(b) = \mathcal{C}_G(x)$, by Lemma 2.2 (ii), which is impossible.
- (ii) By Lemma 2.2 (ii), $\{a_1, a_2, \dots a_k\}$ is a set of pairwise non-commuting elements. Suppose to the contrary that $\{b_1, b_2, \dots, b_t\}$ is another set of non-commuting elements of G with t > k. Then, we see that there exist positive integers r, s and i with $r \neq s$, $1 \leq r$, $s \leq t$ and $1 \leq i \leq k$, such that $b_r, b_s \in \mathcal{C}_G(a_i)$. This yields that $\mathcal{C}_G(b_r) = \mathcal{C}_G(b_s)$, by Lemma 2.2 (ii), or equivalently $b_r b_s = b_s b_r$, which is a contradiction.

3. Main results

In this section, we determine the cardinality of a maximal subset of pairwise non-commuting elements in any p-groups with central quotient of order less than or equal to p^3 . Then, we give this cardinality for any non-abelian group of order p^4 .

Lemma 3.1. Let G be a group of order p^n with the central quotient of order p^2 , where p is a prime number. Then, $\omega(G) = p + 1$.

Proof. First, we show that G ia an AC-group. Suppose that a is a non-central element of G. So, $Z(G) < \mathcal{C}_G(a)$. Therefore, $|\mathcal{C}_G(a)| = p^{n-1}$. Since $\mathcal{C}_G(a) = \langle Z(G), a \rangle$, we see that $\mathcal{C}_G(a)$ is abelian and so G is an AC-group. Now, since G is finite, we may write $G = \bigcup_{i=1}^k \mathcal{C}_G(a_i)$, where $\mathcal{C}_G(a_i)$ and $\mathcal{C}_G(a_j)$ are distinct for $1 \leq i < j \leq k$. Therefore, $X = \{a_1, a_2, \ldots, a_k\}$ is a maximal subset of pairwise non-commuting elements of G, by Lemma 2.3 (ii). Thus, by Lemma 2.3 (i),

$$|G| = \sum_{i=1}^{k} (|\mathcal{C}_G(a_i)| - |Z(G)|) + |Z(G)|.$$

This yields that $p^n = k \times (p^{n-1} - p^{n-2}) + p^{n-2}$, and so k = p + 1.

Lemma 3.2. Let G be a group of order p^n with the central quotient of order p^3 , where p is a prime number.

- (i) G is an AC-group.
- (ii) If G possesses an abelian maximal subgroup, then there exists an element x in $G\backslash Z(G)$ such that $C_G(x)$ is of order p^{n-1} and $C_G(x)$ is uniquely determined.

Proof. (i) Let $x \in G \setminus Z(G)$. Then, $Z(G) < Z(\mathcal{C}_G(x)) \le \mathcal{C}_G(x) < G$. This yields that $|\mathcal{C}_G(x): Z(\mathcal{C}_G(x))|$ divides p, and so $\mathcal{C}_G(x)$ is abelian. (ii) Let M be an abelian maximal subgroup of G and $x \in M \setminus Z(G)$. We see that $\mathcal{C}_G(x) = M$, since $M \le \mathcal{C}_G(x) < G$. Now, if $\mathcal{C}_G(y)$ is of order p^{n-1} with $\mathcal{C}_G(x) \ne \mathcal{C}_G(y)$, then $\mathcal{C}_G(x) \cap \mathcal{C}_G(y) = Z(G)$, by Lemma 2.3 (i). Moreover, $|G:\mathcal{C}_G(x)\cap\mathcal{C}_G(y)| \le |G:\mathcal{C}_G(x)||G:\mathcal{C}_G(y)| = p^2$, which is impossible.

Theorem 3.3. Let G be a group of order p^n with the central quotient of order p^3 , where p is a prime number.

- (i) If G possesses no abelian maximal subgroup, then $\omega(G) = p^2 + p + 1$.
- (ii) If G possesses an abelian maximal subgroup, then $\omega(G) = p^2 + 1$.

Proof. (i) For any non-central element x in G, we have $Z(G) < C_G(x) < G$. Therefore, $|C_G(x)| = p^{n-2}$, since G is an AC-group. Now, we may write

 $G = \bigcup_{i=1}^k \mathcal{C}_G(a_i)$, where $\mathcal{C}_G(a_i)$ and $\mathcal{C}_G(a_j)$ are distinct, for $1 \leq i < j \leq k$. Therefore, $X = \{a_1, a_2, \ldots, a_k\}$ is a maximal subset of pairwise non-commuting elements of G, by Lemma 2.3 (ii). Thus, by Lemma 2.3(i),

$$|G| = \sum_{i=1}^{k} (|\mathcal{C}_G(a_i)| - |Z(G)|) + |Z(G)|.$$

This yields that $p^n = k \times (p^{n-2} - p^{n-3}) + p^{n-3}$, and so $k = p^2 + p + 1$. (ii) By Lemma 3.2 (ii), there exists $a \in G \setminus Z(G)$ such that $\mathcal{C}_G(a)$ is of order p^{n-1} and this is the only centralizer of order p^{n-1} . Now, we may write $G = \bigcup_{i=1}^k \mathcal{C}_G(b_i)$ such that the elements of the union are distinct. Since $a \in G$, there exists $1 \leq i \leq k$ such that $a \in \mathcal{C}_G(b_i)$, and so $ab_i = b_i a$. Therefore, $\mathcal{C}_G(b_i) = \mathcal{C}_G(a)$, by Lemma 2.2 (ii). This means that $\mathcal{C}_G(a)$ is one of the elements of the union. We may assume that $\mathcal{C}_G(a) = \mathcal{C}_G(b_1)$. Hence, $G = \mathcal{C}_G(a) \cup \mathcal{C}_G(b_2) \cup \cdots \cup \mathcal{C}_G(b_k)$, where $|\mathcal{C}_G(b_i)| = p^{n-2}$, for $2 \leq i \leq k$. So, by using Lemma 2.3 (i), we deduce that $|G| = |\mathcal{C}_G(a)| + \sum_{i=2}^k (|\mathcal{C}_G(b_i)| - |Z(G)|)$, or equivalently $p^n = p^{n-1} + (k-1)(p^{n-2} - p^{n-3})$, and hence $k = p^2 + 1$.

Corollary 3.4. Let G be a non-abelian group of order p^4 .

- (i) If G is of maximal class, then $\omega(G) = 1 + p^2$.
- (ii) If G is of class two, then $\omega(G) = 1 + p$.

Proof. (i) By Lemma 3.2, we see that G is an AC-group, since |Z(G)| = p. Now, by considering class equation, there exists $x \in G \setminus Z(G)$ such that $|\mathcal{C}_G(x)| = p^3$. The rest follows from Theorem 3.3 (ii).

(ii) We claim that $|Z(G)| = p^2$. For otherwise, |Z(G)| = p, and so, by [6, Lemma 04], we have $\exp(G/Z(G)) = \exp(G') = p$. Therefore, G is an extra special group, which is a contradiction, by [10, Theorem 4.18]. Now, we can complete the proof by Lemma 3.1.

References

- [1] A. Abdollahi, A. Akbari and H. R. Maimani, Non-commuting graph of a group, J. Algebra 298 (2006), no. 2, 468–492.
- [2] A. Azad and Cheryl E. Praeger, Maximal subsets of pairwise noncommuting elements of three-dimensional general linear groups, *Bull. Aust. Math. Soc.* **80** (2009), no. 1, 91–104.
- [3] E. A. Bertram, Some applications of graph theory to finite groups, *Discrete Math.* **44** (1983), no. 1, 31–43.
- [4] A. M. Y. Chin, On non-commuting sets in an extraspecial p-group, J. Group Theory 8 (2005), no. 2, 189–194.
- [5] B. Huppert, Endliche Gruppen, Springer-Verlag, Berlin-New York, 1967.
- [6] M. Morigi, On the minimal number of generators of finite non-abelian p-groups having an abelian automorphism group, Comm. Algebra 23 (1995), no. 6, 2045– 2065.
- [7] B. H. Neumann, A problem of Paul Erdös on groups, J. Austral. Math. Soc. Ser. A 21 (1976), no. 4, 467–472.
- [8] L. Pyber, The number of pairwise noncommuting elements and the index of the centre in a finite group, J. London Math. Soc. (2) 35 (1987), no. 2, 287–295.
- [9] D. M. Rocke, P-groups with abelian centralizers, Proc. London Math. Soc. (3) **30** (1975) 55–57.
- [10] M. Suzuki, Group Theory, Springer-Verlag, New York, 1986.

A. Azad

Department of Mathematics, Faculty of Sciences, Arak University, Arak 38156-8-8349, Iran

Email: a_azad@araku.ac.ir

S. Fouladi

Faculty of Mathematical Sciences and Computer, Kharazmi University, 50 Taleghani Ave., Tehran 1561836314, Iran

Email: s_fouladi@khu.ac.ir

R. Orfi

Department of Mathematics, Faculty of Sciences, Arak University, Arak 38156-8-8349, Iran

Email: r_orfi@araku.ac.ir