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Abstract. Let G be a group. A subset X of G is a set of pair-
wise non-commuting elements if xy 6= yx for any two distinct el-
ements x and y in X. If |X| ≥ |Y | for any other set of pairwise
non-commuting elements, Y in G, then X is said to be a maximal
subset of pairwise non-commuting elements. Here, we determine
the cardinality of a maximal subset of pairwise non-commuting el-
ements in any non-abelian p-groups with central quotient of order
less than or equal to p3 for any prime number p. As an immediate
consequence, we give this cardinality for any non-abelian group of
order p4.

1. Introduction

Let G be a non-abelian group and let X be a maximal subset of
pairwise non-commuting elements of G. The cardinality of such a subset
is denoted by ω(G). Also, ω(G) is the maximal clique size in the non-
commuting graph of a group G. Let Z(G) be the center of G. The
non-commuting graph of a group G is a graph with G\Z(G) as the
vertices and join two distinct vertices x and y, whenever xy 6= yx. By
a famous result of Neumann [7], answering a question of Erdös, the
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finiteness of ω(G) in G is equivalent to the finiteness of the factor group
G/Z(G). Pyber [8] has shown that there is a constant c such that

|G : Z(G)| ≤ cω(G). Chin [4] obtained upper and lower bounds for ω(G)
for an extra-special p-group G, where p is an odd prime number. For
p = 2, Isaacs (see [3], p. 40) showed that ω(G) = 2n + 1 for any extra-
special group G of order 22n+1. Also, in [1, Lemma 4.4], it was proved
that ω(GL(2, q)) = q2 + q + 1. Furthermore, in [2, Theorem 1.1], it was
shown that ω(GL(3, q)) = q6 + q5 + 3q4 + 3q3 + q2 − q − 1, for q ≥ 4,
ω(GL(3, 2)) = 56 and ω(GL(3, 3)) = 1067.
Here, we show that ω(G) = p + 1, for any finite p-group G with central
quotient of order p2, where p is a prime number (Lemma 3.1). Also,
we find ω(G), for any finite p-group G with central quotient of order p3

(Theorem 3.3). As an immediate consequence, we determine ω(G) for
any non-abelian group of order p4.

Throughout this paper, we use the following notation: p denotes a
prime number, CG(x) is the centralizer of an element x in a group G,
the nilpotency class of a group G is shown by cl(G), and a p-group of
maximal class is a non-abelian group G of order pn with cl(G) = n− 1.

2. Basic results

In this section, we give some basic results needed for are main results.

Lemma 2.1. Let G be a finite group. Then,

(i) for any subgroup H of G, ω(H) ≤ ω(G), and
(ii) for any normal subgroup N of G, ω(G/N) ≤ ω(G).

Proof. This is evident. �

A group G is called an AC-group, if the centralizer of every non-
central element of G is abelian.

Lemma 2.2. The followings on a group G are equivalent.

(i) G is an AC-group.
(ii) If [x, y] = 1, then CG(x) = CG(y), where x, y ∈ G\Z(G).
(iii) If [x, y] = [x, z] = 1, then [y, z] = 1, where x ∈ G\Z(G).
(iv) If A and B are subgroups of G and Z(G) < CG(A) ≤ CG(B) < G,

then CG(A) = CG(B).

Proof. This is straightforward. See also [9], Lemma 3.2. �

Lemma 2.3. Let G be an AC-group.
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(i) If a, b ∈ G\Z(G) with distinct centralizers, then CG(a)∩CG(b) =
Z(G).

(ii) If G = ∪ki=1CG(ai), where CG(ai) and CG(aj) are distinct for
1 ≤ i < j ≤ k, then {a1 . . . ak} is a maximal set of pairwise
non-commuting elements.

Proof. (i) We see that Z(G) ≤ CG(a) ∩ CG(b). If Z(G) < CG(a) ∩ CG(b),
then there exists an element x in CG(a) ∩ CG(b) such that x /∈ Z(G).
This means that CG(a) = CG(x) and CG(b) = CG(x), by Lemma 2.2 (ii),
which is impossible.
(ii) By Lemma 2.2 (ii), {a1, a2, . . . ak} is a set of pairwise non-commuting
elements. Suppose to the contrary that {b1, b2, . . . , bt} is another set of
non-commuting elements of G with t > k. Then, we see that there exist
positive integers r, s and i with r 6= s, 1 ≤ r, s ≤ t and 1 ≤ i ≤ k, such
that br, bs ∈ CG(ai). This yields that CG(br) = CG(bs), by Lemma 2.2
(ii), or equivalently brbs = bsbr, which is a contradiction. �

3. Main results

In this section, we determine the cardinality of a maximal subset of
pairwise non-commuting elements in any p-groups with central quotient
of order less than or equal to p3. Then, we give this cardinality for any
non-abelian group of order p4.

Lemma 3.1. Let G be a group of order pn with the central quotient of
order p2, where p is a prime number. Then, ω(G) = p + 1.

Proof. First, we show that G ia an AC-group. Suppose that a is a
non-central element of G. So, Z(G) < CG(a). Therefore, |CG(a)| =
pn−1. Since CG(a) = 〈Z(G), a〉, we see that CG(a) is abelian and so G
is an AC-group. Now, since G is finite, we may write G = ∪ki=1CG(ai),
where CG(ai) and CG(aj) are distinct for 1 ≤ i < j ≤ k. Therefore,
X = {a1, a2, . . . , ak} is a maximal subset of pairwise non-commuting
elements of G, by Lemma 2.3 (ii). Thus, by Lemma 2.3 (i),

|G| =
k∑

i=1

(|CG(ai)| − |Z(G)|) + |Z(G)|.

This yields that pn = k × (pn−1 − pn−2) + pn−2, and so k = p + 1. �

Lemma 3.2. Let G be a group of order pn with the central quotient of
order p3, where p is a prime number.
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(i) G is an AC-group.
(ii) If G possesses an abelian maximal subgroup, then there exists

an element x in G\Z(G) such that CG(x) is of order pn−1 and
CG(x) is uniquely determined.

Proof. (i) Let x ∈ G \ Z(G). Then, Z(G) < Z(CG(x)) ≤ CG(x) < G.
This yields that |CG(x) : Z(CG(x))| divides p, and so CG(x) is abelian.
(ii) Let M be an abelian maximal subgroup of G and x ∈M \Z(G). We
see that CG(x) = M , since M ≤ CG(x) < G. Now, if CG(y) is of order
pn−1 with CG(x) 6= CG(y) , then CG(x) ∩ CG(y) = Z(G), by Lemma 2.3
(i). Moreover, |G : CG(x) ∩ CG(y)| ≤ |G : CG(x)||G : CG(y)| = p2, which
is impossible. �

Theorem 3.3. Let G be a group of order pn with the central quotient
of order p3, where p is a prime number.

(i) If G possesses no abelian maximal subgroup, then ω(G) = p2 +
p + 1.

(ii) If G possesses an abelian maximal subgroup, then ω(G) = p2 +1.

Proof. (i) For any non-central element x in G, we have Z(G) < CG(x) <
G. Therefore, |CG(x)| = pn−2, since G is an AC-group. Now, we may
write
G = ∪ki=1CG(ai), where CG(ai) and CG(aj) are distinct, for 1 ≤ i < j ≤ k.
Therefore, X = {a1, a2, . . . , ak} is a maximal subset of pairwise non-
commuting elements of G, by Lemma 2.3 (ii). Thus, by Lemma 2.3(i),

|G| =
k∑

i=1

(|CG(ai)| − |Z(G)|) + |Z(G)|.

This yields that pn = k × (pn−2 − pn−3) + pn−3, and so k = p2 + p + 1.
(ii) By Lemma 3.2 (ii), there exists a ∈ G \ Z(G) such that CG(a) is
of order pn−1 and this is the only centralizer of order pn−1. Now, we
may write G = ∪ki=1CG(bi) such that the elements of the union are
distinct. Since a ∈ G, there exists 1 ≤ i ≤ k such that a ∈ CG(bi),
and so abi = bia. Therefore, CG(bi) = CG(a), by Lemma 2.2 (ii). This
means that CG(a) is one of the elements of the union. We may assume
that CG(a) = CG(b1). Hence, G = CG(a) ∪ CG(b2) ∪ · · · ∪ CG(bk), where
|CG(bi)| = pn−2, for 2 ≤ i ≤ k. So, by using Lemma 2.3 (i), we deduce

that |G| = |CG(a)|+
∑k

i=2(|CG(bi)|−|Z(G)|), or equivalently pn = pn−1+
(k − 1)(pn−2 − pn−3), and hence k = p2 + 1. �
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Corollary 3.4. Let G be a non-abelian group of order p4.

(i) If G is of maximal class, then ω(G) = 1 + p2.
(ii) If G is of class two, then ω(G) = 1 + p.

Proof. (i) By Lemma 3.2, we see that G is an AC-group, since |Z(G)| =
p. Now, by considering class equation, there exists x ∈ G \ Z(G) such
that |CG(x)| = p3. The rest follows from Theorem 3.3 (ii).
(ii) We claim that |Z(G)| = p2. For otherwise, |Z(G)| = p, and so, by
[6, Lemma 04], we have exp(G/Z(G)) = exp(G′) = p. Therefore, G is
an extra special group, which is a contradiction, by [10, Theorem 4.18].
Now, we can complete the proof by Lemma 3.1. �
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