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ε-SIMULTANEOUS APPROXIMATIONS OF

DOWNWARD SETS

H. ALIZADEH, SH. REZAPOUR∗ AND S. M. VAEZPOUR

Communicated by Behzad Djafari-Rouhani

Abstract. We prove some results on characterization of ε-simultaneous
approximations of downward sets in vector lattice Banach spaces.
Also, we give some results about simultaneous approximations of
normal sets.

1. Introduction

The theory of best simultaneous approximation has been studied by
many authors (for example, [2, 9]). Singer [8] introduced the concept
of ε-simultaneous approximation. Best simultaneous approximation is a
generalization of best approximation and ε-simultaneous approximation
in a sense is a generalization of best simultaneous approximation. Most
studies about best simultaneous approximation have been done on con-
vex sets. However, convexity is sometimes a very restrictive assumption.
Here, we shall prove some results on characterization of ε-simultaneous
approximations of downward sets in vector lattice Banach spaces.

There are many spaces along with an order ≤. The Lp and C(X)
spaces are some examples. The notion of an order in a vector space
facilitates the study of the spaces in an abstract setting. First, let us
give some basic preliminaries concerning vector lattices (see [1, 3]).
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Definition 1.1. A lattice (L,≤) is said to be conditionally complete if
it satisfies one of the following equivalent conditions:

(1) Every non-empty lower bounded set admits an infimum.
(2) Every non-empty upper bounded set admits an supremum.
(3) There exists a complete lattice L̄ := L∪{⊥,>}, which we call the

minimal completion of L, with bottom element ⊥ and top element
>, such that L is a sublattice of L̄, infL = ⊥ and supL = >.

A (real) vector lattice (X,≤,+, .) is a set X endowed with a par-
tial order ≤ such that (X,≤) is a lattice, with a binary operation +
and a scalar product. A vector lattice (X,≤,+, .) such that (X,≤) is
a conditionally complete lattice is called conditionally complete vector
lattice. A conditionally complete lattice Banach space X is a real Ba-
nach space that is a conditionally complete vector lattice and |x| ≤ |y|
implies ‖x‖ ≤ ‖y‖, for all x, y ∈ X.

Let X be a normed space. For a non-empty subset W of X and a non-
empty bounded set S in X, define d(S,W ) = infw∈W sups∈ S ‖s − w‖.
An element w0 ∈ W is called a best simultaneous approximation to S
from W , if d(S,W ) = sups∈ S ‖s−w0‖. The set of all best simultaneous
approximation to S from W will be denoted by SW (S).

Definition 1.2. Let X be a normed space, W a subset of X and S a
bounded set in X. An element w0 ∈W is called ε-simultaneous approx-
imation, if

sup
s∈ S
‖s− w0‖ ≤ d(S,W ) + ε.

The set of all ε-simultaneous approximations to S from W will be de-
noted by SW,ε(S).

One advantage of considering the set SW,ε(S), instead of the set
SW (S), is that the set SW,ε(S) is always nonempty, for all ε > 0.

If for each bounded set S in X there exists at least one best simul-
taneous approximation to S from W , then W is called a simultaneous
proximinal subset of X. If for each bounded set S in X there exists a
unique best simultaneous approximation to S from W , then W is called
a simultaneous Chebyshev subset of X.

Here, we study best simultaneous approximations in conditionally
complete lattice Banach spaces with a strong unit 1. Recall that an
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element 1 ∈ X is called a strong unit, if for each x ∈ X there exists
λ > 0 such that x ≤ λ1 (see [1]). We assume that X contains a strong
unit 1. By using the strong unit 1, we can define a norm on X by
‖x‖ = inf{λ > 0 : |x| ≤ λ1}, for all x ∈ X. Also, we define

(1.1) B(S, r) := {y ∈ X : supS − r1 ≤ y ≤ infS + r1},

where r > 0 and S is a bounded set in X. It is clear that B(S, r) is a
closed convex subset of X. We also have

(1.2) |x| ≤ ‖x‖1, for all x ∈ X.

It is well known that X equipped with this norm is a conditionally
complete lattice Banach space. Recall that a subset W of an ordered
set X is said to be downward whenever for each w ∈W and x ∈ X with
x ≤ w, we can conclude that x ∈ W . For each subset W of a normed
space X, define the polar set of W by

W 0 := {f ∈ X∗ : f(w) ≤ 0, for all w ∈W},

where X∗ is the dual space of X. If X is a lattice and there exists the
least element of W , then we denote it by minW . Let ϕ : X ×X −→ R
be a function defined by

(1.3) ϕ(x, y) := sup{λ ∈ R : λ1 ≤ x+ y, } for all x, y ∈ X.

Since 1 is a strong unit, the set {λ ∈ R : λ1 ≤ x+ y} is non-empty and
bounded from above by ‖x + y‖. Clearly, this set is closed. It follows
from the definition of ϕ that the function enjoys the following properties:

−∞ < ϕ(x, y) ≤ ‖x+ y‖, for all x, y ∈ X(1.4)

ϕ(x, y)1 ≤ x+ y, for all x, y ∈ X(1.5)

ϕ(x, y) = ϕ(y, x), for all x, y ∈ X(1.6)

ϕ(x,−x) = sup{λ ∈ R : λ1 ≤ x− x = 0} = 0, for all x ∈ X.(1.7)

For each y ∈ X, define the function ϕy : X → R by

(1.8) ϕy(x) := ϕ(x, y), for all x ∈ X.

A functionf : X → R is called topical if it is increasing. The function
ϕy defined by (1.8) is topical and Lipschitz continuous (see [5]). In fact,
we have

(1.9) |ϕy(x)− ϕy(z)| ≤ ‖x− z‖, for all x, z ∈ X.

Also, the function ϕ, defined by (1.3), is continuous.
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2. ε-simultaneous approximations of downward sets

Let X be a conditionally complete lattice Banach space with a strong
unit 1. In this section, we prove some results about ε-simultaneous
approximation of downward sets. We start with the following results for
easy citation.

Lemma 2.1. [4] Let W be a downward subset of X and x ∈ X. Then,
the following statements are true:

(1) If x ∈W , then x− ε1 ∈ intW, for all ε > 0,
(2) We have intW = {x ∈ X : x+ ε1 ∈W, for some ε > 0}.

Lemma 2.2. [4] Let W be a downward subset of X and S be an arbitrary
bounded subset of X. If r = d(S,W ), then w0 = supS−r1 ∈ SW (S) and
is the least element of SW (S). Thus, W is a simultaneous proximinal
subset of X.

Lemma 2.3. [5] Let W be a closed downward subset of X, y0 ∈ bdW
and ϕ be the function defined by (1.3). Then, ϕ(w,−y0) ≤ 0, for all
w ∈W .

Let W be a closed subset of X and S be a bounded subset of X such
that S ∩W = φ. In addition, suppose that w0 ∈ intW ∩SW,ε(S). Thus,
there exists α > 0 such that

V = {y ∈ X : ‖y − w0‖ < α} ⊂W.

Lemma 2.4. Let α be as above. Then, α ≤ ε.

Proof. Assume that r = d(S,W ) and ε < α. Let ε0 = α
r+α , s ∈ S and

ws = w0 + ε0(s− w0).

Note that ‖ws − w0‖ = ε0‖s − w0‖ ≤ ε0(r + ε) = α r+ε
r+α < α, because

r+ε
r+α < 1 and sups∈ S ‖s− w0‖ ≤ r + ε. Then, ws ∈ V , for all s ∈ S and

r = d(S,W ) ≤ sup
t∈S
‖t− ws‖, for all s ∈ S.

Thus, r ≤ infs∈S supt∈S ‖t− ws‖. On the other hand, we have

‖t− ws‖ = ‖(t− w0)− ε0(s− w0)‖, for all t, s ∈ S.
This implies that

r ≤ inf
s∈S

sup
t∈S
‖t− ws‖ = inf

s∈S
sup
t∈S
‖(t− w0)− ε0(s− w0)‖
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≤ sup
t∈S
‖(t−w0)−ε0(t−w0)‖ = (1−ε0) sup

t∈S
‖t−w0‖ ≤ (1−ε0)(r+ε) < r.

This contradiction completes the proof. �

By using Lemma 2.4, it is easy to prove the following result.

Proposition 2.5. Let W be a closed subset of X and S be a bounded
subset of X such that S ∩ W = φ. Then, SW,ε(S) ⊂ V = {w −
α1 : for some w ∈ bdW and 0 ≤ α ≤ ε}.

Corollary 2.6. Let W be a closed subset of X and S be a bounded
subset of X such that S ∩W = φ. Then, SW (S) ⊂ bdW .

Proposition 2.7. Let W be a closed downward subset of X, and S
be a bounded subset of X. Then, there exists the least element w0 :=
minSW,ε(S).

Proof. Put r := d(S,W ) and w0 = supS − (r + ε)1 ≤ supS − r1. By
Lemma 2.2, supS − r1 ∈ W . Since W is a downward set, supS − (r +
ε)1 ∈ W . Therefore, w0 ∈ SW,ε(S), and so sups∈S ‖s − w0‖ ≤ r + ε.
Thus, w ≤ w0, for all w ∈ SW,ε(S). Hence, w0 := minSW,ε(S). �

Proposition 2.8. Let W be a closed downward subset of X, S be a
bounded subset of X such that S ∩W = φ, w0 ∈ Sw,ε(S) and ϕ be the
function defined by (1.3). Then, ϕ(w,−w0) ≤ ε, for all w ∈W .

Proof. By Proposition 2.5, there exist y0 ∈ bdW and 0 ≤ α ≤ ε such
that w0 = y0 − α1. By Lemma 2.3, we have

ϕ(w,−w0) = ϕ(w,α1− y0)
= sup{λ ∈ R : λ1 ≤ w + α1− y0}
= sup{λ ∈ R : (λ− α)1 ≤ w − y0}
= sup{β + α ∈ R : β1 ≤ w − y0}
= sup{β ∈ R : β1 ≤ w − y0}+ α

= ϕ(w,−y0) + α ≤ ε.

This completes the proof. �

Theorem 2.9. Let W be a closed downward subset of X, S be a bounded
subset of X such that S ∩W = φ, y0 ∈ W , r0 = sups∈S ‖s − y0‖ and
ϕ be the function defined by (1.3). Then, the following statements are
equivalent:
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(1) y0 ∈ SW,ε(S).
(2) There exists l ∈ X such that

(2.1) ϕ(w, l) ≤ ε ≤ ϕ(y, l), for all w ∈W, y ∈ B(S, r0).

Moreover, if (2.1) holds with l = −y0, then y0 = minSW,ε(S).

Proof. (1) =⇒ (2). Suppose that y0 ∈ SW,ε(S). Then, r0 = sups∈S ‖s−
y0‖ ≤ r + ε, where r = d(S,W ). Since W is a closed downward subset
of X, by Lemma 2.2, the least element supS − r1 of SW (S) exists. Let
w0 := supS − (r0 + ε)1. Note that

r ≤ r0 ⇒ (−r0 − ε)1 ≤ −r01 ≤ −r1⇒ supS − (r0 + ε)1 ≤ supS − r1.
By Lemma 2.2, we get w0 ∈ W . Let l = −w0 and y ∈ B(S, r0) be
arbitrary. Thus, by using (1.1), we have −r01 ≤ y− supS. This implies

−r0 ∈ {α ∈ R : α1 ≤ y − supS}.
Hence, we obtain

ϕ(y, l) = sup{λ ∈ R : λ1 ≤ y + l}
= sup{λ ∈ R : λ1 ≤ y − w0}
= sup{λ ∈ R : λ1 ≤ y − (supS − (r0 + ε)1)}
= sup{λ ∈ R : (λ− r0 − ε)1 ≤ y − supS}
= sup{α+ r0 + ε ∈ R : α1 ≤ y − supS}
= sup{α ∈ R : α1 ≤ y − supS}+ r0 + ε

≥ −r0 + ε+ r0 = ε.

On the other hand, since w0 ∈ SW,ε(S), by using Proposition 2.8, we get
ϕ(w,−w0) ≤ ε, for all w ∈W . Therefore, ϕ(w, l) ≤ ε.

(2) =⇒ (1). Assume that there exists l ∈ X such that ϕ(w, l) ≤ ε ≤
ϕ(y, l), for all w ∈ W and y ∈ B(S, r0). Since B(S, r0) = {y ∈ X :
supS − r01 ≤ y ≤ infS + r01}, supS − r01 ∈ B(S, r0). Thus, we get
ϕ(supS − r01, l) ≥ ε ≥ 0. By definition of ϕ, we have ϕ(supS, l) ≥ r0.
Hence, by using (1.5), we have

(2.2) r01 ≤ ϕ(supS, l)1 ≤ supS + l.

Therefore, − supS ≤ l−r01. Now, let w ∈W and tw = ϕ(w,− supS)1+
supS ∈ X. By (1.5), ϕ(w,− supS)1 ≤ w − supS. Since W is a down-
ward set and w ∈ W , tw ∈ W and so ϕ(tw, l) ≤ ε. Since ϕ(tw, .) is
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topical, by using (2.2), we have

ϕ(tw,− supS) ≤ ϕ(tw, l − r01) = ϕ(tw, l)− r0 ≤ ε− r0.
Since ϕ(.,− supS) is topical and tw = ϕ(w,− supS)1+supS, from (1.7)
we get

ε− r0 ≥ ϕ(tw,− supS) = ϕ(ϕ(w,− supS)1 + supS,− supS)

= ϕ(w,− supS) + ϕ(supS,− supS) = ϕ(w,− supS).

Now, by using (1.7) and Lipschitz continuity of ϕ− supS := ϕ(.,− supS),
we obtain

ε+ r0 ≤ |ϕ(w,− supS)|
= |ϕ(supS,− supS)− ϕ(w,− supS)|
≤ ‖ supS − w‖.

Thus, −ε + r0 ≤ | supS − w‖ ≤ sups∈S |s − w‖, for all w ∈ W and
so we obtain −ε + r0 ≤ r = d(S,W ). Consequently, r0 ≤ r + ε and
y0 ∈ SW,ε(S). Finally, suppose that (2.1) holds with l = −y0. Then, by
the implication (1) =⇒ (2), we have y0 ∈ SW,ε(S). Let w1 ∈ SW,ε(S) be
arbitrary. If r1 = sups∈S ‖s − w1‖, then by the implication (1) =⇒ (2)
we have ϕ(w, l) ≤ ε ≤ ϕ(y, l), for all w ∈ W and y ∈ B(S, r1), where
l = − supS + (r1 + ε)1. Since y0 ∈ W , ϕ(y0, l) = ϕ(y0,− supS + (r1 +
ε)1) ≤ ε. Thus, from definition of ϕ, we get y0− supS+ (r1 + ε)1 ≤ ε1.
Hence, y0 ≤ supS − r11. Therefore, supS − r11 ≤ w1 and so y0 ≤ w1.
Thus, y0 = minSW,ε(S). �

Here, we recall that a downward set W is called strictly downward,
if for each boundary point w0 of W , the inequality w0 < w implies
w /∈ W . For example, the level sets of a continuous strictly increasing
real function give rise to strictly downward sets ([5, 6, 7]).

Theorem 2.10. Let W be a closed downward subset of X and S be a
bounded subset of X such that S∩W = φ. Then, the following statements
are equivalent:

(1) W is a strictly downward subset of X.
(2) W is a simultaneous Chebyshev subset of X.

Proof. (1) ⇒ (2). Since W is downward set, by using Lemma 2.2, W
is simultaneous proximinal. We claim SW (S) = {supS − r′1}, where
r′ = d(S,W ). Let there exist w0 ∈ SW (S) such that w0 6= supS − r′1.
In this case, by Corollary 2.6, supS − r′1 ∈ bdW . Also, by Lemma
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2.2, supS − r′1 < w0. Since W is a strictly downward set, this implies
that w0 /∈ W , which is a contradiction. Therefore, W is a simultaneous
Chebyshev set of X.

(2)⇒ (1). Let W be a simultaneous Chebyshev subset of X. If W is
not a strictly downward, then there exists w0 ∈ bdW , such that w0 < w,
for all w ∈W . Let r ≥ ‖w − w0‖ > 0. It follows from (1.2) that

w − w0 ≤ |w − w0| ≤ ‖w − w0‖1 ≤ r1,
and so w ≤ w0 + r1. Let S = {w0 + r1}. Then, sups∈S ‖s − w0‖ =
‖r1‖ = r. We claim that d(S,W ) = r. Suppose that this does not
hold. Then, there exists y ∈ W such that ‖w0 + r1 − y‖ < r (note
that w0 + r1 6= y, because if w0 + r1 = y ∈ W , then by Lemma 2.1,
w0 ∈ intW , which is a contradiction). Thus, there exists r0 ∈ (0, r) such
that ‖w0+r1−y‖ ≤ r0. Hence, by using (1.2), we have w0+r1 ≤ y+r01,
and so

w0 + λ01 ≤ y, where λ0 = (r − r0) > 0.

Since W is a downward set and y ∈ W , w0 + λ01 ∈ W . Hence, by
Lemma 2.1, w0 ∈ intW . This is a contradiction. Therefore, d(S,W ) =
r = sups∈S ‖s− w0‖, that is, w0 ∈ SW (S). On the other hand, we have
w < w0+r1. Since w0 < w, we have 0 ≤ (w0+r1)−w < w0+r1−w0 =
r1. Hence,

sup
s∈S
‖s− w‖ = ‖w0 + r1− w‖ ≤ ‖r1‖ = r = d(S,W ) ≤ sup

s∈S
‖s− w‖.

Thus, sups∈S ‖s − w‖ = d(S,W ), and so w ∈ SW (S), where w 6= w0.
This is impossible, because W is a simultaneous Chebyshev subset of
X. �

3. Downward hulls and simultaneous approximation

As known, the downward hull U∗ of the set U ⊆ X is the intersection
of all downward sets containing U . Recall that a subset G of the positive
cone

X+ = {x ∈ X : x ≥ 0}
is called normal whenever g ∈ G, x ∈ X+ and x ≤ g imply that x ∈ G.
For a subset A, we shall use the notation A+ = {a+ : a ∈ A}, where
a+ = sup(a, 0). We also use the notation a− = − inf(a, 0).

Remark 3.1. Let W be a downward set, S be a bounded subset such
that S ∩W = φ, w ∈ W and s ∈ S. If 0 ≤ w − s, then s < w, and so
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s ∈W , which is a contradiction. After here, we suppose that 0 ≤ s−w,
for all w ∈W and s ∈ S.

We start with the following result for easy citation.

Proposition 3.2. [4] Let G be a a normal subset of X+ and G∗ ⊂ X
be the downward hull of G. Then, the following statements hold:

(1) G∗ = {x ∈ X : x+ ∈ G}.
(2) G = G∗ ∩X+.
(3) G is closed if and only if G∗ is closed.
(4) (G∗)

+ = G.

Proposition 3.3. Let S be a bounded set of X, G be a normal subset
of X+ and G∗ be the downward hull of the set G. If S ∩G∗ = φ, then,
for each g ∈ G∗, we have

sup
s∈S
‖s− g+‖ ≤ sup

s∈S
‖s− g‖.

Proof. Let s ∈ S and g = g+−g−. Then, s−g+ ≤ s−g and by Remark
3.1, s − g+ ≥ 0. Therefore, s − g+ = |s − g+| ≤ |s − g|. It follow that
‖s − g+‖ ≤ ‖s − g‖, for all s ∈ S. Hence, for each g ∈ G∗, we obtain
sups∈S ‖s− g+‖ ≤ sups∈S ‖s− g‖. �

Proposition 3.4. Let G be a normal subset of X+. Then, G is a
simultaneous proximinal subsets of X.

Proof. By Lemma 2.2, G∗ is simultaneous proximinal. Thus, SG∗(S) 6= φ
for all bounded subsets S with S∩G∗ = φ. If g0 ∈ SG∗(S), then g0 ∈ G∗
and g+0 ∈ G, by Proposition 3.2. By using Proposition 3.3, for each
g ∈ G∗, we have

sup
s∈S
‖s− g+0 ‖ ≤ sup

s∈S
‖s− g0‖ ≤ sup

s∈S
‖s− g‖.

Since g0 ∈ SG∗(S) and G ⊂ G∗, sups∈S ‖s − g+0 ‖ ≤ sups∈S ‖s − g‖, for
all g ∈ G. Therefore, g+0 ∈ SG(S). �

In the following corollaries, G is a normal subset ofX+, S is a bounded
subset of X such that S ∩G∗ = φ, where G∗ is the downward hull of G.

Corollary 3.5. SG∗(S) = SG(S).

Proof. Let g ∈ SG∗(S). By Proposition 3.3, sups∈S ‖s−g+‖ ≤ sups∈S ‖s−
g‖, for all g ∈ G∗. Since G ⊆ G∗, by using Proposition 3.2, we have
g+ ∈ G∗. Thus, again by using Proposition 3.2, g+ = g, and so
SG∗(S) ⊆ SG(S). Now, let g0 ∈ G∗ and g0 /∈ SG∗(S). Then, there
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exists g ∈ G∗ such that sups∈S ‖s − g‖ ≤ sups∈S ‖s − g0‖. By using
Proposition 3.3, we obtain sups∈S ‖s− g+‖ ≤ sups∈S ‖s− g‖. Hence, we
get sups∈S ‖s− g+‖ ≤ sups∈S ‖s− g0‖. Since g+ ∈ G, g0 /∈ SG(S). �

Corollary 3.6. d(S,G∗) = d(S,G).

Proof. Since G ⊆ G∗, d(S,G∗) ≤ d(S,G). The equality holds by Propo-
sition 3.3. �

Corollary 3.7. minSG∗(S) = minSG(S).

Proof. By Lemma 2.2, w0 = minSG∗(S) exists. Now, the equality fol-
lows from Corollary 3.5. �

Corollary 3.8. G is simultaneous proximinal.

Proof. The result follows from Lemma 2.2 and Corollary 3.5. �
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