ε-SIMULTANEOUS APPROXIMATIONS OF DOWNWARD SETS

H. ALIZADEH, SH. REZAPOUR* AND S. M. VAEZPOUR

Communicated by Behzad Djafari-Rouhani

Abstract

We prove some results on characterization of ε-simultaneous approximations of downward sets in vector lattice Banach spaces. Also, we give some results about simultaneous approximations of normal sets.

1. Introduction

The theory of best simultaneous approximation has been studied by many authors (for example, $[2,9]$). Singer $[8]$ introduced the concept of ε-simultaneous approximation. Best simultaneous approximation is a generalization of best approximation and ε-simultaneous approximation in a sense is a generalization of best simultaneous approximation. Most studies about best simultaneous approximation have been done on convex sets. However, convexity is sometimes a very restrictive assumption. Here, we shall prove some results on characterization of ε-simultaneous approximations of downward sets in vector lattice Banach spaces.

There are many spaces along with an order \leq. The L^{p} and $C(X)$ spaces are some examples. The notion of an order in a vector space facilitates the study of the spaces in an abstract setting. First, let us give some basic preliminaries concerning vector lattices (see [1, 3]).

[^0]Definition 1.1. A lattice (L, \leq) is said to be conditionally complete if it satisfies one of the following equivalent conditions:
(1) Every non-empty lower bounded set admits an infimum.
(2) Every non-empty upper bounded set admits an supremum.
(3) There exists a complete lattice $\bar{L}:=L \cup\{\perp, \top\}$, which we call the minimal completion of L, with bottom element \perp and top element \top, such that L is a sublattice of \bar{L}, infL $=\perp$ and $\sup L=\top$.

A (real) vector lattice $(X, \leq,+,$.$) is a set X$ endowed with a partial order \leq such that (X, \leq) is a lattice, with a binary operation + and a scalar product. A vector lattice $(X, \leq,+$, .) such that (X, \leq) is a conditionally complete lattice is called conditionally complete vector lattice. A conditionally complete lattice Banach space X is a real Banach space that is a conditionally complete vector lattice and $|x| \leq|y|$ implies $\|x\| \leq\|y\|$, for all $x, y \in X$.

Let X be a normed space. For a non-empty subset W of X and a nonempty bounded set S in X, define $d(S, W)=\inf _{w \in W} \sup _{s \in S}\|s-w\|$. An element $w_{0} \in W$ is called a best simultaneous approximation to S from W, if $d(S, W)=\sup _{s \in S}\left\|s-w_{0}\right\|$. The set of all best simultaneous approximation to S from W will be denoted by $S_{W}(S)$.
Definition 1.2. Let X be a normed space, W a subset of X and S a bounded set in X. An element $w_{0} \in W$ is called ε-simultaneous approximation, if

$$
\sup _{s \in S}\left\|s-w_{0}\right\| \leq d(S, W)+\varepsilon
$$

The set of all ε-simultaneous approximations to S from W will be denoted by $S_{W, \varepsilon}(S)$.

One advantage of considering the set $S_{W, \varepsilon}(S)$, instead of the set $S_{W}(S)$, is that the set $S_{W, \epsilon}(S)$ is always nonempty, for all $\varepsilon>0$.

If for each bounded set S in X there exists at least one best simultaneous approximation to S from W, then W is called a simultaneous proximinal subset of X. If for each bounded set S in X there exists a unique best simultaneous approximation to S from W, then W is called a simultaneous Chebyshev subset of X.

Here, we study best simultaneous approximations in conditionally complete lattice Banach spaces with a strong unit 1. Recall that an
element $\mathbf{1} \in X$ is called a strong unit, if for each $x \in X$ there exists $\lambda>0$ such that $x \leq \lambda \mathbf{1}$ (see [1]). We assume that X contains a strong unit 1. By using the strong unit 1, we can define a norm on X by $\|x\|=\inf \{\lambda>0:|x| \leq \lambda \mathbf{1}\}$, for all $x \in X$. Also, we define

$$
\begin{equation*}
B(S, r):=\{y \in X: \sup S-r \mathbf{1} \leq y \leq i n f S+r \mathbf{1}\}, \tag{1.1}
\end{equation*}
$$

where $r>0$ and S is a bounded set in X. It is clear that $B(S, r)$ is a closed convex subset of X. We also have

$$
\begin{equation*}
|x| \leq\|x\| \mathbf{1}, \text { for all } x \in X \tag{1.2}
\end{equation*}
$$

It is well known that X equipped with this norm is a conditionally complete lattice Banach space. Recall that a subset W of an ordered set X is said to be downward whenever for each $w \in W$ and $x \in X$ with $x \leq w$, we can conclude that $x \in W$. For each subset W of a normed space X, define the polar set of W by

$$
W^{0}:=\left\{f \in X^{*}: f(w) \leq 0, \text { for all } w \in W\right\}
$$

where X^{*} is the dual space of X. If X is a lattice and there exists the least element of W, then we denote it by $\min W$. Let $\varphi: X \times X \longrightarrow \mathbb{R}$ be a function defined by

$$
\begin{equation*}
\varphi(x, y):=\sup \{\lambda \in \mathbb{R}: \lambda \mathbf{1} \leq x+y,\} \text { for all } x, y \in X \tag{1.3}
\end{equation*}
$$

Since $\mathbf{1}$ is a strong unit, the set $\{\lambda \in \mathbb{R}: \lambda \mathbf{1} \leq x+y\}$ is non-empty and bounded from above by $\|x+y\|$. Clearly, this set is closed. It follows from the definition of φ that the function enjoys the following properties:

$$
\begin{equation*}
-\infty<\varphi(x, y) \leq\|x+y\|, \text { for all } x, y \in X \tag{1.4}
\end{equation*}
$$

(1.5) $\varphi(x, y) \mathbf{1} \leq x+y$, for all $x, y \in X$
(1.6) $\varphi(x, y)=\varphi(y, x)$, for all $x, y \in X$
$(1.7) \varphi(x,-x)=\sup \{\lambda \in \mathbb{R}: \lambda \mathbf{1} \leq x-x=0\}=0$, for all $x \in X$.
For each $y \in X$, define the function $\varphi_{y}: X \rightarrow \mathbb{R}$ by

$$
\begin{equation*}
\varphi_{y}(x):=\varphi(x, y), \text { for all } x \in X \tag{1.8}
\end{equation*}
$$

A function $f: X \rightarrow \mathbb{R}$ is called topical if it is increasing. The function φ_{y} defined by (1.8) is topical and Lipschitz continuous (see [5]). In fact, we have

$$
\begin{equation*}
\left|\varphi_{y}(x)-\varphi_{y}(z)\right| \leq\|x-z\|, \text { for all } x, z \in X \tag{1.9}
\end{equation*}
$$

Also, the function φ, defined by (1.3), is continuous.

2. ε-simultaneous approximations of downward sets

Let X be a conditionally complete lattice Banach space with a strong unit 1. In this section, we prove some results about ε-simultaneous approximation of downward sets. We start with the following results for easy citation.

Lemma 2.1. [4] Let W be a downward subset of X and $x \in X$. Then, the following statements are true:
(1) If $x \in W$, then $x-\epsilon \mathbf{1} \in \operatorname{int} W$, for all $\varepsilon>0$,
(2) We have int $W=\{x \in X: x+\varepsilon \mathbf{1} \in W$, for some $\varepsilon>0\}$.

Lemma 2.2. [4] Let W be a downward subset of X and S be an arbitrary bounded subset of X. If $r=d(S, W)$, then $w_{0}=\sup S-r 1 \in S_{W}(S)$ and is the least element of $S_{W}(S)$. Thus, W is a simultaneous proximinal subset of X.

Lemma 2.3. [5] Let W be a closed downward subset of $X, y_{0} \in b d W$ and φ be the function defined by (1.3). Then, $\varphi\left(w,-y_{0}\right) \leq 0$, for all $w \in W$.

Let W be a closed subset of X and S be a bounded subset of X such that $S \cap W=\phi$. In addition, suppose that $w_{0} \in \operatorname{int} W \cap S_{W, \varepsilon}(S)$. Thus, there exists $\alpha>0$ such that

$$
V=\left\{y \in X:\left\|y-w_{0}\right\|<\alpha\right\} \subset W
$$

Lemma 2.4. Let α be as above. Then, $\alpha \leq \varepsilon$.
Proof. Assume that $r=d(S, W)$ and $\varepsilon<\alpha$. Let $\varepsilon_{0}=\frac{\alpha}{r+\alpha}, s \in S$ and

$$
w_{s}=w_{0}+\varepsilon_{0}\left(s-w_{0}\right)
$$

Note that $\left\|w_{s}-w_{0}\right\|=\varepsilon_{0}\left\|s-w_{0}\right\| \leq \varepsilon_{0}(r+\varepsilon)=\alpha \frac{r+\varepsilon}{r+\alpha}<\alpha$, because $\frac{r+\varepsilon}{r+\alpha}<1$ and $\sup _{s \in S}\left\|s-w_{0}\right\| \leq r+\varepsilon$. Then, $w_{s} \in V$, for all $s \in S$ and

$$
r=d(S, W) \leq \sup _{t \in S}\left\|t-w_{s}\right\|, \text { for all } s \in S
$$

Thus, $r \leq \inf _{s \in S} \sup _{t \in S}\left\|t-w_{s}\right\|$. On the other hand, we have

$$
\left\|t-w_{s}\right\|=\left\|\left(t-w_{0}\right)-\varepsilon_{0}\left(s-w_{0}\right)\right\|, \text { for all } t, s \in S
$$

This implies that

$$
r \leq \inf _{s \in S} \sup _{t \in S}\left\|t-w_{s}\right\|=\inf _{s \in S} \sup _{t \in S}\left\|\left(t-w_{0}\right)-\varepsilon_{0}\left(s-w_{0}\right)\right\|
$$

ε-simultaneous approximations of downward sets
$\leq \sup _{t \in S}\left\|\left(t-w_{0}\right)-\varepsilon_{0}\left(t-w_{0}\right)\right\|=\left(1-\varepsilon_{0}\right) \sup _{t \in S}\left\|t-w_{0}\right\| \leq\left(1-\varepsilon_{0}\right)(r+\varepsilon)<r$.
This contradiction completes the proof.
By using Lemma 2.4, it is easy to prove the following result.
Proposition 2.5. Let W be a closed subset of X and S be a bounded subset of X such that $S \cap W=\phi$. Then, $S_{W, \varepsilon}(S) \subset V=\{w-$ $\alpha \mathbf{1}$: for some $w \in b d W$ and $0 \leq \alpha \leq \varepsilon\}$.
Corollary 2.6. Let W be a closed subset of X and S be a bounded subset of X such that $S \cap W=\phi$. Then, $S_{W}(S) \subset b d W$.

Proposition 2.7. Let W be a closed downward subset of X, and S be a bounded subset of X. Then, there exists the least element $w_{0}:=$ $\min S_{W, \varepsilon}(S)$.

Proof. Put $r:=d(S, W)$ and $w_{0}=\sup S-(r+\varepsilon) \mathbf{1} \leq \sup S-r \mathbf{1}$. By Lemma 2.2, $\sup S-r \mathbf{1} \in W$. Since W is a downward set, $\sup S-(r+$ $\epsilon) \mathbf{1} \in W$. Therefore, $w_{0} \in S_{W, \varepsilon}(S)$, and so $\sup _{s \in S}\left\|s-w_{0}\right\| \leq r+\varepsilon$. Thus, $w \leq w_{0}$, for all $w \in S_{W, \varepsilon}(S)$. Hence, $w_{0}:=\min S_{W, \varepsilon}(S)$.
Proposition 2.8. Let W be a closed downward subset of X, S be a bounded subset of X such that $S \cap W=\phi, w_{0} \in S_{w, \varepsilon}(S)$ and φ be the function defined by (1.3). Then, $\varphi\left(w,-w_{0}\right) \leq \varepsilon$, for all $w \in W$.

Proof. By Proposition 2.5, there exist $y_{0} \in b d W$ and $0 \leq \alpha \leq \varepsilon$ such that $w_{0}=y_{0}-\alpha \mathbf{1}$. By Lemma 2.3, we have

$$
\begin{aligned}
\varphi\left(w,-w_{0}\right) & =\varphi\left(w, \alpha \mathbf{1}-y_{0}\right) \\
& =\sup \left\{\lambda \in \mathbb{R}: \lambda \mathbf{1} \leq w+\alpha \mathbf{1}-y_{0}\right\} \\
& =\sup \left\{\lambda \in \mathbb{R}:(\lambda-\alpha) \mathbf{1} \leq w-y_{0}\right\} \\
& =\sup \left\{\beta+\alpha \in \mathbb{R}: \beta \mathbf{1} \leq w-y_{0}\right\} \\
& =\sup \left\{\beta \in \mathbb{R}: \beta \mathbf{1} \leq w-y_{0}\right\}+\alpha \\
& =\varphi\left(w,-y_{0}\right)+\alpha \leq \varepsilon
\end{aligned}
$$

This completes the proof.
Theorem 2.9. Let W be a closed downward subset of X, S be a bounded subset of X such that $S \cap W=\phi, y_{0} \in W, r_{0}=\sup _{s \in S}\left\|s-y_{0}\right\|$ and φ be the function defined by (1.3). Then, the following statements are equivalent:
(1) $y_{0} \in S_{W, \varepsilon}(S)$.
(2) There exists $l \in X$ such that

$$
\begin{equation*}
\varphi(w, l) \leq \varepsilon \leq \varphi(y, l), \text { for all } w \in W, y \in B\left(S, r_{0}\right) \tag{2.1}
\end{equation*}
$$

Moreover, if (2.1) holds with $l=-y_{0}$, then $y_{0}=\min S_{W, \varepsilon}(S)$.
Proof. (1) $\Longrightarrow(2)$. Suppose that $y_{0} \in S_{W, \epsilon}(S)$. Then, $r_{0}=\sup _{s \in S} \| s-$ $y_{0} \| \leq r+\epsilon$, where $r=d(S, W)$. Since W is a closed downward subset of X, by Lemma 2.2, the least element $\sup S-r \mathbf{1}$ of $S_{W}(S)$ exists. Let $w_{0}:=\sup S-\left(r_{0}+\varepsilon\right) \mathbf{1}$. Note that $r \leq r_{0} \Rightarrow\left(-r_{0}-\varepsilon\right) \mathbf{1} \leq-r_{0} \mathbf{1} \leq-r \mathbf{1} \Rightarrow \sup S-\left(r_{0}+\varepsilon\right) \mathbf{1} \leq \sup S-r \mathbf{1}$.
By Lemma 2.2, we get $w_{0} \in W$. Let $l=-w_{0}$ and $y \in B\left(S, r_{0}\right)$ be arbitrary. Thus, by using (1.1), we have $-r_{0} \mathbf{1} \leq y-\sup S$. This implies

$$
-r_{0} \in\{\alpha \in \mathbb{R}: \alpha \mathbf{1} \leq y-\sup S\}
$$

Hence, we obtain

$$
\begin{aligned}
\varphi(y, l) & =\sup \{\lambda \in \mathbb{R}: \lambda \mathbf{1} \leq y+l\} \\
& =\sup \left\{\lambda \in \mathbb{R}: \lambda \mathbf{1} \leq y-w_{0}\right\} \\
& =\sup \left\{\lambda \in \mathbb{R}: \lambda \mathbf{1} \leq y-\left(\sup S-\left(r_{0}+\varepsilon\right) \mathbf{1}\right)\right\} \\
& =\sup \left\{\lambda \in \mathbb{R}:\left(\lambda-r_{0}-\varepsilon\right) \mathbf{1} \leq y-\sup S\right\} \\
& =\sup \left\{\alpha+r_{0}+\varepsilon \in \mathbb{R}: \alpha \mathbf{1} \leq y-\sup S\right\} \\
& =\sup \{\alpha \in \mathbb{R}: \alpha \mathbf{1} \leq y-\sup S\}+r_{0}+\varepsilon \\
& \geq-r_{0}+\varepsilon+r_{0}=\varepsilon
\end{aligned}
$$

On the other hand, since $w_{0} \in S_{W, \varepsilon}(S)$, by using Proposition 2.8, we get $\varphi\left(w,-w_{0}\right) \leq \varepsilon$, for all $w \in W$. Therefore, $\varphi(w, l) \leq \varepsilon$.
$(2) \Longrightarrow(1)$. Assume that there exists $l \in X$ such that $\varphi(w, l) \leq \varepsilon \leq$ $\varphi(y, l)$, for all $w \in W$ and $y \in B\left(S, r_{0}\right)$. Since $B\left(S, r_{0}\right)=\{y \in X$: $\left.\sup S-r_{0} \mathbf{1} \leq y \leq \inf S+r_{0} \mathbf{1}\right\}$, sup $S-r_{0} \mathbf{1} \in B\left(S, r_{0}\right)$. Thus, we get $\varphi\left(\sup S-r_{0} \mathbf{1}, l\right) \geq \varepsilon \geq 0$. By definition of φ, we have $\varphi(\sup S, l) \geq r_{0}$. Hence, by using (1.5), we have

$$
\begin{equation*}
r_{0} \mathbf{1} \leq \varphi(\sup S, l) \mathbf{1} \leq \sup S+l \tag{2.2}
\end{equation*}
$$

Therefore, $-\sup S \leq l-r_{0} \mathbf{1}$. Now, let $w \in W$ and $t_{w}=\varphi(w,-\sup S) \mathbf{1}+$ $\sup S \in X$. By (1.5), $\varphi(w,-\sup S) \mathbf{1} \leq w-\sup S$. Since W is a downward set and $w \in W, t_{w} \in W$ and so $\varphi\left(t_{w}, l\right) \leq \varepsilon$. Since $\varphi\left(t_{w},.\right)$ is
topical, by using (2.2), we have

$$
\varphi\left(t_{w},-\sup S\right) \leq \varphi\left(t_{w}, l-r_{0} \mathbf{1}\right)=\varphi\left(t_{w}, l\right)-r_{0} \leq \varepsilon-r_{0} .
$$

Since $\varphi(.,-\sup S)$ is topical and $t_{w}=\varphi(w,-\sup S) \mathbf{1}+\sup S$, from (1.7) we get

$$
\begin{gathered}
\varepsilon-r_{0} \geq \varphi\left(t_{w},-\sup S\right)=\varphi(\varphi(w,-\sup S) \mathbf{1}+\sup S,-\sup S) \\
\quad=\varphi(w,-\sup S)+\varphi(\sup S,-\sup S)=\varphi(w,-\sup S)
\end{gathered}
$$

Now, by using (1.7) and Lipschitz continuity of $\varphi_{-\sup S}:=\varphi(.,-\sup S)$, we obtain

$$
\begin{aligned}
\varepsilon+r_{0} \leq & |\varphi(w,-\sup S)| \\
& =|\varphi(\sup S,-\sup S)-\varphi(w,-\sup S)| \\
& \leq\|\sup S-w\|
\end{aligned}
$$

Thus, $-\varepsilon+r_{0} \leq|\sup S-w|\left|\leq \sup _{s \in S}\right| s-w \mid$, for all $w \in W$ and so we obtain $-\varepsilon+r_{0} \leq r=d(S, W)$. Consequently, $r_{0} \leq r+\varepsilon$ and $y_{0} \in S_{W, \varepsilon}(S)$. Finally, suppose that (2.1) holds with $l=-y_{0}$. Then, by the implication $(1) \Longrightarrow(2)$, we have $y_{0} \in S_{W, \varepsilon}(S)$. Let $w_{1} \in S_{W, \varepsilon}(S)$ be arbitrary. If $r_{1}=\sup _{s \in S}\left\|s-w_{1}\right\|$, then by the implication $(1) \Longrightarrow$ (2) we have $\varphi(w, l) \leq \varepsilon \leq \varphi(y, l)$, for all $w \in W$ and $y \in B\left(S, r_{1}\right)$, where $l=-\sup S+\left(r_{1}+\varepsilon\right) \mathbf{1}$. Since $y_{0} \in W, \varphi\left(y_{0}, l\right)=\varphi\left(y_{0},-\sup S+\left(r_{1}+\right.\right.$ $\varepsilon) \mathbf{1}) \leq \varepsilon$. Thus, from definition of φ, we get $y_{0}-\sup S+\left(r_{1}+\varepsilon\right) \mathbf{1} \leq \varepsilon \mathbf{1}$. Hence, $y_{0} \leq \sup S-r_{1} \mathbf{1}$. Therefore, $\sup S-r_{1} \mathbf{1} \leq w_{1}$ and so $y_{0} \leq w_{1}$. Thus, $y_{0}=\min S_{W, \varepsilon}(S)$.

Here, we recall that a downward set W is called strictly downward, if for each boundary point w_{0} of W, the inequality $w_{0}<w$ implies $w \notin W$. For example, the level sets of a continuous strictly increasing real function give rise to strictly downward sets ([5, 6, 7]).

Theorem 2.10. Let W be a closed downward subset of X and S be a bounded subset of X such that $S \cap W=\phi$. Then, the following statements are equivalent:
(1) W is a strictly downward subset of X.
(2) W is a simultaneous Chebyshev subset of X.

Proof. (1) \Rightarrow (2). Since W is downward set, by using Lemma 2.2, W is simultaneous proximinal. We claim $S_{W}(S)=\left\{\sup S-r^{\prime} \mathbf{1}\right\}$, where $r^{\prime}=d(S, W)$. Let there exist $w_{0} \in S_{W}(S)$ such that $w_{0} \neq \sup S-r^{\prime} \mathbf{1}$. In this case, by Corollary 2.6, $\sup S-r^{\prime} \mathbf{1} \in b d W$. Also, by Lemma
$2.2, \sup S-r^{\prime} \mathbf{1}<w_{0}$. Since W is a strictly downward set, this implies that $w_{0} \notin W$, which is a contradiction. Therefore, W is a simultaneous Chebyshev set of X.
$(2) \Rightarrow(1)$. Let W be a simultaneous Chebyshev subset of X. If W is not a strictly downward, then there exists $w_{0} \in b d W$, such that $w_{0}<w$, for all $w \in W$. Let $r \geq\left\|w-w_{0}\right\|>0$. It follows from (1.2) that

$$
w-w_{0} \leq\left|w-w_{0}\right| \leq\left\|w-w_{0}\right\| \mathbf{1} \leq r \mathbf{1}
$$

and so $w \leq w_{0}+r \mathbf{1}$. Let $S=\left\{w_{0}+r \mathbf{1}\right\}$. Then, $\sup _{s \in S}\left\|s-w_{0}\right\|=$ $\|r \mathbf{1}\|=r$. We claim that $d(S, W)=r$. Suppose that this does not hold. Then, there exists $y \in W$ such that $\left\|w_{0}+r \mathbf{1}-y\right\|<r$ (note that $w_{0}+r \mathbf{1} \neq y$, because if $w_{0}+r \mathbf{1}=y \in W$, then by Lemma 2.1, $w_{0} \in$ int W, which is a contradiction). Thus, there exists $r_{0} \in(0, r)$ such that $\left\|w_{0}+r \mathbf{1}-y\right\| \leq r_{0}$. Hence, by using (1.2), we have $w_{0}+r \mathbf{1} \leq y+r_{0} \mathbf{1}$, and so

$$
w_{0}+\lambda_{0} \mathbf{1} \leq y, \text { where } \lambda_{0}=\left(r-r_{0}\right)>0
$$

Since W is a downward set and $y \in W, w_{0}+\lambda_{0} \mathbf{1} \in W$. Hence, by Lemma 2.1, $w_{0} \in \operatorname{int} W$. This is a contradiction. Therefore, $d(S, W)=$ $r=\sup _{s \in S}\left\|s-w_{0}\right\|$, that is, $w_{0} \in S_{W}(S)$. On the other hand, we have $w<w_{0}+r \mathbf{1}$. Since $w_{0}<w$, we have $0 \leq\left(w_{0}+r \mathbf{1}\right)-w<w_{0}+r \mathbf{1}-w_{0}=$ r 1. Hence,

$$
\sup _{s \in S}\|s-w\|=\left\|w_{0}+r \mathbf{1}-w\right\| \leq\|r \mathbf{1}\|=r=d(S, W) \leq \sup _{s \in S}\|s-w\| .
$$

Thus, $\sup _{s \in S}\|s-w\|=d(S, W)$, and so $w \in S_{W}(S)$, where $w \neq w_{0}$. This is impossible, because W is a simultaneous Chebyshev subset of X.

3. Downward hulls and simultaneous approximation

As known, the downward hull U_{*} of the set $U \subseteq X$ is the intersection of all downward sets containing U. Recall that a subset G of the positive cone

$$
X^{+}=\{x \in X: x \geq 0\}
$$

is called normal whenever $g \in G, x \in X^{+}$and $x \leq g$ imply that $x \in G$. For a subset A, we shall use the notation $A^{+}=\left\{a^{+}: a \in A\right\}$, where $a^{+}=\sup (a, 0)$. We also use the notation $a^{-}=-\inf (a, 0)$.

Remark 3.1. Let W be a downward set, S be a bounded subset such that $S \cap W=\phi, w \in W$ and $s \in S$. If $0 \leq w-s$, then $s<w$, and so
$s \in W$, which is a contradiction. After here, we suppose that $0 \leq s-w$, for all $w \in W$ and $s \in S$.

We start with the following result for easy citation.
Proposition 3.2. [4] Let G be a a normal subset of X^{+}and $G_{*} \subset X$ be the downward hull of G. Then, the following statements hold:
(1) $G_{*}=\left\{x \in X: x^{+} \in G\right\}$.
(2) $G=G_{*} \cap X^{+}$.
(3) G is closed if and only if G_{*} is closed.
(4) $\left(G_{*}\right)^{+}=G$.

Proposition 3.3. Let S be a bounded set of X, G be a normal subset of X^{+}and G_{*} be the downward hull of the set G. If $S \cap G_{*}=\phi$, then, for each $g \in G_{*}$, we have

$$
\sup _{s \in S}\left\|s-g^{+}\right\| \leq \sup _{s \in S}\|s-g\| .
$$

Proof. Let $s \in S$ and $g=g^{+}-g^{-}$. Then, $s-g^{+} \leq s-g$ and by Remark 3.1, $s-g^{+} \geq 0$. Therefore, $s-g^{+}=\left|s-g^{+}\right| \leq|s-g|$. It follow that $\left\|s-g^{+}\right\| \leq\|s-g\|$, for all $s \in S$. Hence, for each $g \in G_{*}$, we obtain $\sup _{s \in S}\left\|s-g^{+}\right\| \leq \sup _{s \in S}\|s-g\|$.
Proposition 3.4. Let G be a normal subset of X^{+}. Then, G is a simultaneous proximinal subsets of X.

Proof. By Lemma 2.2, G_{*} is simultaneous proximinal. Thus, $S_{G_{*}}(S) \neq \phi$ for all bounded subsets S with $S \cap G_{*}=\phi$. If $g_{0} \in S_{G_{*}}(S)$, then $g_{0} \in G_{*}$ and $g_{0}^{+} \in G$, by Proposition 3.2. By using Proposition 3.3, for each $g \in G_{*}$, we have

$$
\sup _{s \in S}\left\|s-g_{0}^{+}\right\| \leq \sup _{s \in S}\left\|s-g_{0}\right\| \leq \sup _{s \in S}\|s-g\| .
$$

Since $g_{0} \in S_{G_{*}}(S)$ and $G \subset G_{*}, \sup _{s \in S}\left\|s-g_{0}^{+}\right\| \leq \sup _{s \in S}\|s-g\|$, for all $g \in G$. Therefore, $g_{0}^{+} \in S_{G}(S)$.

In the following corollaries, G is a normal subset of X^{+}, S is a bounded subset of X such that $S \cap G_{*}=\phi$, where G_{*} is the downward hull of G.

Corollary 3.5. $S_{G_{*}}(S)=S_{G}(S)$.
Proof. Let $g \in S_{G_{*}}(S)$. By Proposition 3.3, $\sup _{s \in S}\left\|s-g^{+}\right\| \leq \sup _{s \in S} \| s-$ $g \|$, for all $g \in G_{*}$. Since $G \subseteq G_{*}$, by using Proposition 3.2, we have $g^{+} \in G_{*}$. Thus, again by using Proposition 3.2, $g^{+}=g$, and so $S_{G_{*}}(S) \subseteq S_{G}(S)$. Now, let $g_{0} \in G_{*}$ and $g_{0} \notin S_{G_{*}}(S)$. Then, there
exists $g \in G_{*}$ such that $\sup _{s \in S}\|s-g\| \leq \sup _{s \in S}\left\|s-g_{0}\right\|$. By using Proposition 3.3, we obtain $\sup _{s \in S}\left\|s-g^{+}\right\| \leq \sup _{s \in S}\|s-g\|$. Hence, we get $\sup _{s \in S}\left\|s-g^{+}\right\| \leq \sup _{s \in S}\left\|s-g_{0}\right\|$. Since $g^{+} \in G, g_{0} \notin S_{G}(S)$.

Corollary 3.6. $d\left(S, G_{*}\right)=d(S, G)$.
Proof. Since $G \subseteq G_{*}, d\left(S, G_{*}\right) \leq d(S, G)$. The equality holds by Proposition 3.3.

Corollary 3.7. $\min S_{G_{*}}(S)=\min S_{G}(S)$.
Proof. By Lemma 2.2, $w_{0}=\min S_{G_{*}}(S)$ exists. Now, the equality follows from Corollary 3.5.
Corollary 3.8. G is simultaneous proximinal.
Proof. The result follows from Lemma 2.2 and Corollary 3.5.

References

[1] G. Birkhoff, Lattice Theory, Amer. Math. Soc., Providence, R.I., 1979.
[2] L. Chong and G. A. Watson, On best simultaneous approximation, J. Approx. Theory 91 (1997), no. 3, 332-348.
[3] G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. Mislove and D. S. Scott, Continuous Lattices and Domains, Encyclopedia of Mathematics and its Applications, 93, Cambridge University Press, Cambridge, 2003.
[4] H. Mohebi, Downward sets and their best simultaneous approximation properties with applications, Numer. Funct. Anal. Optim. 25 (2004), no. 7-8, 685-705.
[5] H. Mohebi and A. M. Rubinov, Best approximation by downward sets with applications, Anal. Theory Appl. 22 (2006), no. 1, 20-40.
[6] A. M. Rubinov and I. Singer, Best approximation by normal and conormal sets, J. Approx. Theory 107 (2000), no. 2, 212-243.
[7] A. M. Rubinov and A. J. Zaslavski, Two porosity results in monotonic analysis, Numer. Funct. Anal. Optim. 23 (2002), no. 5-6, 651-668.
[8] I. Singer, Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces, Publishing House of the Academy of the Socialist Republic of Romania, Bucharest, Springer-Verlag, New York-Berlin, 1970.
[9] S. Tanimoto, A characterization of best simultaneous approximations, J. Approx. Theory 59 (1989), no. 3, 359-361.

H. Alizadeh

Department of Mathematics, Islamic Aazad University, Marand, Iran
Email: halizadeh@marandiau.ac.ir

Sh. Rezapour
Department of Mathematics, Azarbaidjan University of Tarbiat Moallem, Azarshahr, Tabriz, Iran
Email: sh.rezapour@azaruniv.edu
S. M. Vaezpour

Department of Mathematics, Amirkabir University of Technology, Tehran, Iran Email: vaez@aut.ac.ir

[^0]: MSC(2010): Primary: 41A50; Secondary: 41A65, 46B50.
 Keywords: ε-simultaneous approximation, downward set, lattice Banach space.
 Received: 20 May 2011, Accepted: 07 October 2011.
 *Corresponding author
 (c) 2013 Iranian Mathematical Society.

