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NON-LINEAR ERGODIC THEOREMS IN COMPLETE

NON-POSITIVE CURVATURE METRIC SPACES

B. AHMADI KAKAVANDI AND M. AMINI∗

Communicated by Tony Lau

Abstract. Hadamard (or complete CAT (0)) spaces are complete,
non-positive curvature, metric spaces. Here, we prove a nonlinear
ergodic theorem for continuous non-expansive semigroup in these
spaces as well as a strong convergence theorem for the commutative
case. Our results extend the standard non-linear ergodic theorems
for non-expansive maps on real Hilbert spaces, to non-expansive
maps on Hadamard spaces, which include for example (possibly
infinite-dimensional) complete simply connected Riemannian man-
ifolds with non-positive sectional curvature.

1. Introduction

The study of spaces of non-positive curvature originated with the dis-
covery of hyperbolic spaces, and flourished by pioneering works of J.
Hadamard and E. Cartan in first decades of the twentieth century. The
idea of non-positive curvature geodesic metric spaces could be traced
back to the work of H. Busemann and A.D. Alexandrov in the 50’s.
Later, M. Gromov restated features of global Riemannian geometry
solely based on the so-called CAT(0) inequality. Here, the letters C,
A and T stand for Cartan, Alexandrov and Toponogov respectively.
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A metric space X is said to be a CAT(0) space if it is geodesically
connected and if every geodesic triangle in X is at least as thin as its
comparison triangle in the Euclidean plane. This latter property, which
is what we referred to as the CAT(0) inequality, enables one to define
the concept of non-positive curvature in this situation, generalizing the
same concept in Riemannian geometry. Complete CAT(0) spaces (often
called Hadamard spaces) have a remarkable geometric structures. In
particular, in Hadamard spaces the distance function is convex, and it
is possible to define orthogonal projection onto convex subsets. Also,
the non-expansive mappings arise naturally in the study of isometries or
more generally, local isometries. For more details on Hadamard spaces,
we refer the reader to [4, 6, 7, 11, 14, 16]. Some aspects of the analysis
on Hadamard spaces could be found in [1, 10, 13, 15, 16, 20].

On the other hand, as noticed by Reich and Shafrir [19] and Kirk [16],
a class of hyperbolic metric spaces may be an appropriate background
for the study of non-linear operator theory, in general, and of iterative
processes for non-expansive mappings in particular ; e.g., see [10, 13, 15,
16, 19].

Our work here devoted to ergodic theorems on Hadamard spaces.
Throughout the over this paper, every Hilbert space is areal real Hilbert
space. The first non-linear ergodic theorem for non-expansive mappings
in a Hilbert space was proved by Baillon [3]. Let C be a non-empty
closed convex subset of a Hilbert space H and T be a non-expansive
mapping of C into itself. If the set F (T ), of fixed points of T is non-

empty, then for each x ∈ C, the Cesáro mean Sn(x) = 1
n

∑n−1
k=0 T

kx
converges weakly to a point Px of F (T ), as n → ∞. In this case, P is
a non-expansive retraction of C onto F (T ) such that PT = TP = P
and Px ∈ clco{Tnx : n = 0, 1, 2, ...}, for each x ∈ C, where clcoA is
the norm closure of the convex hull of A. The analogous results and
various generalizations for non-expansive semi-groups of mappings on
C could be found in many references; e.g., [2, 5, 12, 18]. If X is a
Hadamard space which could not be embedded in any Hilbert space
by isometries, then the classical nonlinear ergodic theorems fail. Here,
we prove some nonlinear ergodic theorems for action of semigroups on
Hadamard spaces. Our main results are Theorem 3.3 and Theorem
4.2 which generalize the well-known ergodic theorems for the actions of
amenable and commutative semigroups of nonexpansive mappings on
Hilbert spaces to Hadamard spaces.
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2. Preliminiaries

Among many equivalent definitions for a Hadamard space, a Hadamard
space is a complete metric space (X, d) which is satisfied in the following
condition (see [8, Lemma 2.4]):

CAT(0)-inequality: For every two points x0, x1 ∈ X and for every
0 < t < 1, there exists some xt ∈ X such that

(2.1) d2(y, xt) ≤ (1−t)d2(y, x0)+td2(y, x1)−t(1−t)d2(x0, x1) (y ∈ X).

For other definitions and important properties, one can see the stan-
dard texts such as [4, 6, 7, 14]. Now, let {xα; α ∈ I} be a bounded net
in the Hadamard space (X, d). For x ∈ X, set

r(x, {xα; α ∈ I}) = lim sup
α

d(x, xα).

The asymptotic radius of {xα; α ∈ I} is given by

r({xα; α ∈ I}) = inf{r(x, {xα; α ∈ I});x ∈ X},

and the asymptotic center of {xα; α ∈ I} is the set

A({xα; α ∈ I}) = {x ∈ X; r(x, {xα; α ∈ I}) = r({xα; α ∈ I})}.

It is known that in a Hadamard space, A({xα; α ∈ I}) consists of exactly
one point (see e.g., [17]).

As in the Hilbert space case, one can show that the asymptotic center
belongs to the clco{xα; α ∈ I}, the closed convex hull of the net {xα; α ∈
I}. In fact, if z is the nearest point of clco{xα; α ∈ I} to the unique
asymptotic center x0 of {xα; α ∈ I}, then d(z, y) ≤ d(x0, y), for all y in
clco{xα; α ∈ I}. Hence,

lim sup
α

d(z, xα) ≤ lim sup
α

d(x0, xα) = r({xα; α ∈ I}).

Since the asymptotic center is unique, we have x0 = z ∈ clco{xα; α ∈ I}.
Recall that a semigroup S is called a semitopological semigroup if S

is a Hausdorff topological space such that the maps s 7→ st, (s ∈ S)
and s 7→ ts, (s ∈ S) are continuous maps for any t ∈ S. If S is a
semitopological semigroup and CR(S) is the Banach space of all bounded
real-valued maps on S with the supremum norm, a continuous and linear
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functional µ ∈ CR(S)∗ is called a mean, if ‖µ‖ = µ(1) = 1. For any
f ∈ CR(S), we use the following notations:

µ(f) = µs(f(s)) =

∫
S
f(s)dµ(s).

If, moreoverther, for all f ∈ CR(S) and s ∈ S, we have
∫
S f(ts)dµ(t) =∫

S f(st)dµ(t), we say µ is an invariant mean. We call S to be an
amenable semigroup, if CR(S) admits an invariant mean. It is well-
known that every abelian semigroup is amenable.

Lemma 2.1. If µ is a mean on S and u : S → X is a continuous
and bounded map into a Hadamard space X, then the map ϕ : X → R,
defined by ϕ(x) =

∫
d2(u(s), x) dµ(s), for x ∈ X, attains its unique

minimum at a point of Cu := clco{u(s)|s ∈ S}, the closed convex hull of
u(S).

Proof. It can be easily verified that the map ϕ is a continuous and strictly
convex function. More precisely,

ϕ(
x+ y

2
) ≤ 1

2
ϕ(x) +

1

2
ϕ(y)− 1

4
d2(x, y), ∀x, y ∈ X.

Hence, it attains its unique minimum at a point x0 ∈ X [20, Prop. 1.7].
If x0 does not belong to Cu, then we have

d2(u(s), x0) > d
2(u(s), πx0) + d2(πx0, x0),

for each s ∈ S, where π : X → Cu is the nearest point projection map
[6, pp. 176-177]. But, by definition of x0, we have∫

S
d2(u(s), x0) dµ(s) 6

∫
S
d2(u(s), πx0) dµ(s),

and hence d2(πx0, x0) = 0 and so x0 = πx0 ∈ Cu, which is a contradic-
tion.

Now, we can define the mean of u by

(2.2) µs(u(s)) := argmin{x 7→
∫
d2(u(s), x)dµ(s)}.

By Lemma 2.1, when u : S → X is continuous and bounded, the mean
value µs(u(s)) is well defined and belongs to Cu = clco{u(s)|s ∈ S}. �
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3. Nonlinear Ergodic Theorems for Amenable Semigroups of
Nonexpansive Mappings

All over this section, X is a Hadamard space, S is a semitopological
semigroup such that the space CR(S) of continuous bounded real-valued
functions on S has an invariant mean µ. We say that the set S := {Ts :
X → X|s ∈ S} is a continuous nonexpansive semigroup (compare to [9,
Theorem 4.4]) if

(i) Tts x = Tt Ts x, for all s, t ∈ S and for all x ∈ X,
(ii) the map s 7→ Tsx is a continuous map from S to X, for all x ∈ X,
(iii) d(Tsx, Tsy) 6 d(x, y), for all s ∈ S and for all x, y ∈ X.

Let F(S) := {x ∈ X| Tsx = x, (s ∈ S)} be the set of all common
fixed points of S. According to the following lemma, it is an empty set
or a Hadamard space.

Lemma 3.1. If (X, d) is a Hadamard space and T : X → X is a
nonexpansive map, then the subset F(T ) = {x ∈ X;Tx = x} of X is a
closed and convex subset.

Proof. By continuity of T , it is obvious that F(T ) is closed. For con-
vexity, let x, y ∈ F(T ). Then,

d(T (
x+ y

2
), T (x)) ≤ d(

x+ y

2
, x) =

1

2
d(x, y)

and

d(T (
x+ y

2
), T (y)) ≤ d(

x+ y

2
, y) =

1

2
d(x, y).

But, T (x) = x and T (y) = y, and so by triangular inequality,

d(x, y) ≤ d(T (
x+ y

2
), x) + d(T (

x+ y

2
), y) ≤ d(x, y).

Therefore, all of the above inequalities are in fact equality, that is,

d(T (
x+ y

2
), x) = d(T (

x+ y

2
), y) =

1

2
d(x, y),

and this yields T (x+y2 ) = x+y
2 , by the uniqueness of the midpoint. �
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By Lemma 3.1, F(S) =
⋂
s∈S
F(Ts) is a closed convex subset of the

Hadamard space (X, d), and therefore, when it is not an empty set, the
nearest projection map π : X → F(S) exists and it is well-defined (e.g.,
see [6], p.176). Let S(x) := {Tsx| s ∈ S} be the orbit of x ∈ X.

Proposition 3.2. The followings are equivalent:
(i) S(x) is bounded, for some x ∈ X.
(ii) S(x) is bounded, for all x ∈ X.
(iii) F(S) is non-empty.

Proof. (i⇒ iii) Let x ∈ X and S(x) be bounded, and consider the map
s 7→ Tsx . This is a continuous and bounded map and so it has a mean
value µs(Tsx) as in (2.2). Since S is nonexpansive and µ is invariant,∫

S
d2(Trx, Ttµs(Tsx)) dµ(r) =

∫
S
d2(Ttrx, Ttµs(Tsx)) dµ(r)

6
∫
S
d2(Trx, µs(Tsx)) dµ(r),

for each t ∈ S. By uniqueness of argmin in (2.2), we deduce that
Tt µs(Tsx) = µs(Tsx), for each t ∈ S, which means that µs(Tsx) ∈ F(S).

(iii⇒ ii) Let x0 ∈ F(S). Then, for each x ∈ X and s ∈ S, we have

d (Ts x, x0) = d (Ts x, Tsx0) 6 d (x, x0),

and so S(x) is bounded.
(ii⇒ i) This is straight forward. �

Now, we can prove a nonlinear ergodic theorem for amenable semi-
groups.

Theorem 3.3. Let S := {Ts : X → X|s ∈ S} be a nonexpansive
semigroup with F(S) 6= ∅. Then, there exists a retraction P : X −→
F(S) with the following properties:

(i) Ts P = P Ts = P 2 = P , for all s ∈ S,
(ii) Px ∈

⋂
t∈S clco{Tstx : s ∈ S}

⋂
F(S), for all x ∈ X.

Proof. For any x ∈ X, let Px = µs(Tsx). (i) It is clear that P 2 = P .
Also, we have already proved that P maps X into F(S) (Proposition
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3.2, (i) ⇒ (iii), and hence Ts P = P , for each s ∈ S. Now, for x ∈ X,
put

ϕx(y) :=

∫
d2(Tsx, y)dµ(s).

Then,

ϕx(y) =

∫
d2(Tstx, y)dµ(s)

=

∫
d2(Ts(Ttx), y)dµ(s)

= ϕTtx(y),

for each t ∈ S and y ∈ X. But, P (x) = argminy∈Xϕx(y) and P (Ttx) =
argminy∈XϕTtx(y). Hence, P = PTt.

(ii) Given x ∈ X and t ∈ S, define u : S → X by u(s) = Tstx, for
s ∈ S. Then,

Px = argmin{y 7→
∫
S
d2(Ttx, y) dµ(t)}

= argmin{y 7→
∫
S
d2(Tstx, y) dµ(t)}

= argmin{y 7→
∫
S
d2(u(s), y) dµ(t)}.

Therefore, Px ∈ Cu = clco{u(s), s ∈ S} by Lemma 2.1, and we are
done. �

4. Nonlinear Ergodic Theorems for Commutative Semigroups
of Nonexpansive Mappings

In this section, suppose that S as a commutative semigroup. We
prove that in this case the map P must be a nonexpansive retraction
(Theorem 4.2). It is well-known that the following is a partial order on
S:

s ≥ t if and only if there exists u ∈ S satisfying s = ut.

Now, by the method employed in [3], one can prove the following
proposition.
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Proposition 4.1. Let (X, d) be a Hadamard space, S = {Ts; s ∈ S} be a
commutative semigroup of nonexpansive mappings on X with F(S) 6= ∅.
Then, for any s ∈ S, the net {πTsx}s∈S converges to a point in F(S),
where π : X → F(S) is the nearest point projection. Moreover, Px :=
lim
s
πTsx is the unique asymptotic center of the net S(x) := {Tsx; s ∈

S}.

Proof. By Lemma 3.1, the map π is well-defined. Now, let x ∈ X and
s, t ∈ S, with s ≥ t. Then, there exists some u ∈ S such that s = ut.

By the CAT(0)-inequality and definition of π, we have

d2(πTsx, Tsx) ≤ d2(πTtx+ πTsx

2
, Tsx)

≤ 1

2
d2(πTtx, Tsx) +

1

2
d2(πTsx, Tsx)− 1

4
d2(πTtx, πTsx).

But
d(πTtx, Tsx) = d(TuπTtx, TuTtx) ≤ d(πTtx, Ttx),

and hence

1

2
d2(πTtx, πTsx) ≤ d2(πTtx, Ttx)− d2(πTsx, Tsx),

for any s, t ∈ S with s ≥ t.
Therefore, the net {d(πTsx, Tsx); s ∈ S} is a decreasing net, and thus

converges to a real number and this implies that {πTsx}s∈S is a Cauchy
net in the closed subset F(S) of the complete metric space X. Hence,
it converges to some point Px ∈ F(S).

Since S is an amenable semigroup and F(S) 6= ∅, by Proposition 3.2,
S(x) is a bounded set. So, let P0x be its asymptotic center. By the
property of π, we have

d(Px, Tsx) ≤ d(Px, πTsx) + d(πTsx, Tsx)

≤ d(Px, πTsx) + d(P0x, Tsx),

for any s ∈ S. But, lim
s
d(Px, πTsx) = 0, and therefore,

lim sup
s

d(Px, Tsx) ≤ lim sup
s

d(P0x, Tsx).

Since the asymptotic center is unique, Px = P0x. �

Finally, we can prove the following ergodic theorem for commutative
semigroups of nonexpansive mappings on a Hadamard space.
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Theorem 4.2. Let (X, d) be a Hadamard space, S := {Ts; s ∈ S} be a
commutative semigroup of nonexpansive mappings on X with F(S) 6= ∅.
Then, there exists a nonexpansive retraction P : X −→ F(S) which has
the following properties:

(i) Ts P = P Ts = P 2 = P , for all s ∈ S,
(ii) Px ∈ clco{Tsx; s ∈ S} for all x ∈ X.

Proof. For any x ∈ X, let Px = lim
s
πTsx as before.

(i) In Proposition 4.1, we have proved that Px ∈ F(S), and hence
TsPx = Px and

PTsx = lim
t
πTtTsx = lim

t
πTtsx = lim

t
πTtx = Px,

and
P 2x = lim

s
πTsPx = πPx = Px

for any s ∈ S.
(ii) We saw in Proposition 4.1 that Px is the asymptotic center of

S(x), and so Px ∈ clcoS(x).
Finally, we shall prove that P is nonexpansive. Since the projection

map π is nonexpansive, we have

d(Px, Py) = lim
s
d(πTsx, πTsy)

≤ lim
s
d(Tsx, Tsy) ≤ d(x, y)

for any x, y ∈ X. �
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