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SOME OPTIMAL CODES FROM DESIGNS
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ABSTRACT. The binary and ternary codes spanned by the rows of
the point by block incidence matrices of some 2-designs and their
complementary and orthogonal designs are studied. A new method
is also introduced to study optimal codes.

1. Introduction

Let t,v,k and A be positive integers such that v > k > ¢ and let V
be a set of size v. The elements of V' are called points and the k-subsets
of V are called blocks. A t-(v,k,\) design D (in short a t-design) is
a pair (V,B), where B is a collection of blocks with the property that
every t-subset of V occurs in exactly A blocks of B. A t-design is called
simple if it contains no repeated blocks. It is well known that any ¢-
design is also a j-design, for 0 < j < t. The complementary design
of a t-(v,k, \) design D, denoted by D¢, is the pair (V,B'), where B’
= {V\B; B € B}. Note that D¢ is a t-(v,v — k, A\°) design, where
A = (/) = i (0 (/6.

The incidence matrix of a t-(v, k, \) design D = (V, B) is the matrix

D, where the rows are indexed by points, the columns by blocks and
D(P,B)=1 if and only if P € B; see [3].
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Let n and k be two positive integers. A g-ray linear [n, k] code C of
length n is a k-dimensional subspace of an n-dimensional vector space
over finite field GF(q). The elements of C are called codewords. Let
x=(x1,...,2,) and y = (y1,...,Yyn) be two codewords. The Hamming
distance d(x,y) of x and y is given by

The minimum distance of C is defined by
d=d(C) =min{d(z,y) : x,y € C,x # y}.

The weight of a codeword x € C is defined by w(z) = d(z,0). In
linear codes, the minimum distance and the minimum weight are equal.
A linear [n, k| code with minimum distance d is denoted by [n,k,d]. A
linear [n, k, d] code is said to be optimal if d has the maximum possible
value for fixed n and k [!]. In other words, a linear [n,k,d] code is
optimal if there is no [n, k,d ] linear code for d > d. Let Lb(n, k) and
Ub(n, k) denote the lower and upper bounds for the maximum distance
d of an [n, k, d] optimal code, respectively. Clearly, a linear [n, k, d] code
is optimal if and only if Lb(n,k) = d = Ub(n, k). For a given (n, k), we
abbreviate Lb(n, k) and Ub(n, k) to Lb and Ub, respectively. We use the
list of known Lb and Ub as they appear in [4, 5].

Let D be the incidence matrix of a t-design D. The vector space
spanned by the rows of D over GF(2) is a linear code C. The rows of
D have equal weight «, which is called the row-weight of D. The linear
code spanned by the row space of D¢ is denoted by C¢. Note that since
the repeated blocks in a design do not affect the parameters of the code
obtained from its incidence matrix, it is more natural to study only
simple designs; see [2].

The dual or orthogonal code of a linear [n, k| code C, denoted by ct,
is the set of all vectors which are orthogonal to all codewords of C. In
other words,

Ct={u:uwv=0foralveC}.

It is known that C* is a linear [n,n — k] code. Let D be a t-(v, k, \)
design. Then, the row space of D is a [b, z] linear code C, where b is the
number of blocks of D and z < v. The row-weight v of D is r, where r is
the number of blocks containing a given fixed point. The dual code C* is
a [b,b— ] linear code. The complementary design D¢ with the incidence
matrix D¢ also gives two linear codes C¢ and C*" with the parameters
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[b,y] and [b, b — y], respectively, where y < v. The row-weight v¢ of D¢
isb—r.

2. A Useful Method

Intuitively a greater minimum distance may be achieved if the row-
weight of the incidence matrix of design is as large as possible. The
following lemma guides us to start with a design and switch to its com-
plementary design to generate a better code. We will see in tables 1-3
that some optimal codes are obtained by this method.

Lemma 2.1. Let D be the incidence matriz of a t-(v,k,\) design D,
and suppose that k < v/2. Then, the row-weight of the incidence matriz
of design D¢ is greater than the row-weight of the incidence matrix of
design D.

Proof. Let b and r be the number of blocks and the number of blocks

through a given fixed point of design D, respectively. If v and ~¢ are

the row-weights of D and D¢, respectively, then k < v/2 implies that
bk v—k k

=b—r>b——=»> >b—=r=n1.
v v v

O

The method is to apply the above lemma to obtain codes with higher
minimum weights. As we shall see in some cases, this process leads us
to optimal codes. Note that this method is useful only if the minimum
weight of the code is the row-weight of its incidence matrix. These
kinds of codes are also studied in [6]. As an example, suppose that
D is a 2-(15,3,1) design. So, b = 35 and r = 7. There are 80 non-
isomorphic designs with these parameters and the rank(D) over GF(2)
is one of the numbers 11, 13, 14 and 15 [10]. In all these 4 cases, d = 7,
while we have Lb(35,11) = Ub(35,11) = 12, Lb(35,13) = Ub(35,13) =
11, Lb(35,14) = Ub(35,14) = 10 and Lb(35,15) = Ub(35,15) = 9. Now,
if we utilize the above lemma and take the complementary design, then
in all these cases the rank(D¢) over GF(2) is equal to 10 and d = 12,
while Lb(35,10) = 12 and Ub(35,10) = 13. In other words, we get a
linear code spanned by the row space of D¢, that is a candidate to be
an optimal code.
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3. The Results

We applied our algorithm above on a selected number of designs and
presented our obtained codes in tables 1-3. All designs in these tables are
selected from the CRC handbook or the references therein [9]. In each
case, we considered all non-isomorphic designs to build their incidence
matrices and then computed their corresponding [b, x] linear code. In the
final step, for fixed b and x, we computed and listed all the codes with the
highest minimum distance. For example, we considered all the 332 non-
isomorphic simple 2-(9,3,3) designs [3]. All generated codes from these
designs are [36,8] codes and the best minimum distance (over GF'(2)) is
d = 8. These codes and the codes obtained from their complementary
design, over GF'(2) and GF(3), are listed in row 8 of Table 1 and rows
3 and 4 of Table 2. The codes spanned from all 80 non-isomorphic
simple 2-(15,3,1) designs and their complementary designs are listed in
row 12 of Table 1 and rows 1 and 2 of Table 2. In Table 2, we studied
three designs 2-(15,3,1), 2-(9,3,3) and 2-(9,3,4) with the complementary
designs 2-(15,12,22), 2-(9,6,15) and 2-(9,6,20), respectively (see also [7]).
They are arranged in successive rows. The column Type in each table
shows the type of the computed codes in each row, from the given design.
In Table 3, we considered five different designs all of which are optimal
codes. In Table 1, the codes and the optimal codes arising from some
selected triple systems are listed. As seen, our method generates a good
number of optimal codes. Data in column (Lb, Ub) are taken from some
on-line database servers [1, 5].
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Table 1. Codes and optimal codes arising from some selected triple systems.

Design Codes over GF(2) (Lb,Ub) | Codes over GF(3) | (Lb,Ub)
Parameters | Type Parameters | Type
2-(6,3,2) | [10,6,3] C,C¢ |optimal | [10,5,5] | C,Ct | optimal

[10,4,4] | C*,C | optimal | [10,5,5] | C¢ Ct | optimal
2-(7,3,1) [7,4,3] C,C¢ |optimal [ [7,6,2] C optimal
[7,3,4] ce,Cct | optimal [7,71] ce optimal
2-(7,32) | [14,7.4] C,Ct |optimal | [14,6,6] C | optimal
[14,8,5] C optimal
2-(7,3,3) | [21,7,8] C optimal | [21,15,4] ¢t | optimal
[21,14,4] Ct | optimal
2-(7,3,4) | [28,7,11] C (12,12) | [28,6,11] C (15,15)
[28,6,11] ce (12,12) | [28,7,11] ce (15,15)
2-(9,3,1) [12,9,2] C optimal | [12,6,4] C (6,6)
[12,3,6] Ct |optimal | [12,6,5] ce (6.6)
2-(9.3,2) | [24,16,4] Ct | optimal
[24,15,4] Ct | optimal
[24,8,8] C optimal
2-(9,3,3) | [36,8,8] C (16,16) | [36,8,12] C (18,19)
[36,8,14] ce (16,16) | [36,8,15] ce (18,19)
2-(9,3,4) | [48,9,16] C (22,22) | [48,8,16] C (26,27)
[48,8,20] ce (22,22) | [48,8,23] ce (26,27)
2-(9,3,5) | [60,9,20] C (22,26) | [60,8,20] C (33,36)
[60,8,25] ce (27,27) | [60,8,28] ce (33,36)
2-(9,3,6) | [72,9,24] C (32,32) | [72,8,24] C (42,44)
[72,8,32] ce optimal | [72,8,36] ce (42,44)
2-(15,3,1) | [35,11,7] C (12,12) | [35,14,7] C (12,15)
[35,13,7] C (11,11) | [35,14,10] ce (12,15)
[35,14,7] C (10,10)
[35,15,7] C (9,9)
35,10,12] ce (12,13)
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Table 2. Codes from some selected designs and their complements.

Design Type | Codes over GF(2) | (Lb,Ub) | Codes over GF(3) | (Lb,Ub)
2-(15,3,1) C (35,11, 7] (12,12) (35,14, 7] (12,15)

[35,13,7] (11,11)

(35,14, 7] (10,10)

(35,15, 7] (9,9)

2-(15,12,22) | C¢ [35,10,12] (12,13) [35, 14, 10] (12,15)
2-(9,3,3) C (36, 8, 8] (16,16) (36, 8, 12] (18,19)
2-(9,6,15) Ce 36, 8, 14] (16,16) (36, 8, 15] (18,19)
2-(9,3,4) C 48,9, 16] (22,22) [48, 8, 16] (26,27)
2-(9, 6, 20) ce 48,8, 20] (22,22) 48,8, 23] (26,27)

Table 3. Optimal codes arising from some other designs

Design | Codes over GF'(2) | Codes over GF(3)
Parameters | Type | Parameters | Type
2-(8,4,3) | [14,10,3] | ct [14,6, 6] ct
[14,8, 5] C
2-(9,4,3) 18,9, 6] ct
2-(15,7,3) | [15,8,4] ct
[15,9,4] ct
[15,10,4] | Cc*
[15,5,7] C
2-(16,6,2) | [16,10,4] | C*+ | [16,15,2] C
[16,9, 4] ct
[16, 6, 6] C
2-(19,9,4) (19,18, 2] C
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