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EXTENSION FUNCTORS OF LOCAL COHOMOLOGY

MODULES

M. AGHAPOURNAHR, A. J. TAHERIZADEH∗ AND A. VAHIDI

Communicated by Siamak Yassemi

Abstract. Let R be a commutative Noetherian ring with non-
zero identity, a an ideal of R, and X an R–module. Here, for
fixed integers s, t and a finite a–torsion R–module N , we first study
the membership of Ext s+t

R (N,X) and Ext s
R(N,Ht

a(X)) in the Serre
subcategories of the category of R–modules. Then, we present some
conditions which ensure the existence of an isomorphism between
them. Finally, we introduce the concept of the Serre cofiniteness as
a generalization of cofiniteness and study this property for certain
local cohomology modules.

1. Introduction

Throughout, R will denote a commutative Noetherian ring with non-
zero identity and a an ideal of R. Also, N will be a finite a–torsion
module and X an R–module. For unexplained terminology from homo-
logical and commutative algebra, we refer the reader to [10] and [11].

The following conjecture is due to Grothendieck [19].

Conjecture 1.1. For any ideal a and finite R–module X, the module
Hom R(R/a, Hn

a (X)) is finite, for all n ≥ 0.
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This conjecture is false, in general, as shown by Hartshorne [21]. How-
ever, he defined an R–module X to be a–cofinite if Supp R(X) ⊆ V (a)
and Ext i

R(R/a, X) is finite, for each i, and he asked the following ques-
tion.

Question 1.2. If a is an ideal of R and X is a finite R–module, when

is Ext i
R(R/a, Hj

a (X)) finite for every i and j?

There are some attempts to show that under some conditions, for
fixed integers s and t, the R–module Ext s

R(R/a, Ht
a(X)) is finite; for

example, see [3, Theorem 3.3], [16, Theorems A and B], [17, Theorem
6.3.9] and [24, Theorem 3.3].

Recently, the first author and Melkersson in [1] and [2], and As-
gharzadeh and Tousi in [5] approached the study of local cohomology
modules by means of the Serre subcategories, and it is noteworthy that
their approach enables us to deal with several important problems on
local cohomology modules comprehensively. For more information, we
refer the reader to [23] to see a survey of some important problems on
finiteness, vanishing, Artinianness, and finiteness of associated primes
of local cohomology modules.

Here, we study some properties of extension functors of local cohomol-
ogy modules by using the Serre classes. Recall that a class of R–modules
is a Serre subcategory of the category of R–modules when it is closed un-
der taking submodules, quotients and extensions. Always, S stands for
a Serre subcategory of the category of R–modules.

The crucial points of Section 2 are Theorems 2.1 and 2.3 which show
that when R–modules Ext s+t

R (N,X) and Ext s
R(N,Ht

a(X)) belong to S.
These two theorems, which are frequently used through the paper, en-
able us to demonstrate some new facts and improve some older facts
about the extension functors of local cohomology modules. We find the
weakest possible conditions for finiteness of associated primes of local
cohomology modules, and improve and give a new proof for [24, The-
orem 3.3] in Corollaries 2.5 and 2.7. The relation between R–modules
Ext s+t

R (N,X) and Ext s
R(N,Ht

a(X)) to be in a Serre subcategory of the
category of R–modules is shown in Corollary 2.8.

In Section 3, we first introduce the class of Melkersson subcategory
as a special case of the Serre classes and next investigate the extension
functors of local cohomology modules in these subcategories. In Propo-
sitions 3.2, 3.3 and 3.4, we give new proofs for [1, Theorems 2.9 and 2.13]
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and study the membership of the local cohomology modules of an R–
module X with respect to different ideals in Melkersson subcategories.
Our main result in this section is Theorem 3.5 which provides an iso-
morphism between the R–modules Ext s+t

R (N,X) and Ext s
R(N,Ht

a(X)).
Corollaries 3.6 through 3.9 are some applications of this theorem.

In Section 4, we present a generalization of the concept of cofiniteness
with respect to an ideal to the Serre subcategories of the category of R–
modules. Theorems 4.2, 4.4 and 4.6 generalize [26, Proposition 2.5], [27,
Proposition 3.11], [14, Theorem 3.1], [16, Theorems A and B] and [13,
Corollary 2.7]. The change of ring principle for the Serre cofiniteness is
presented in Theorem 4.8. We also give a proposition about a–cofinite
minimax local cohomology modules in Proposition 4.10. Corollaries 4.11
and 4.12 are immediate results of this proposition, where Corollary 4.11
improves [6, Theorem 2.3].

2. Local Cohomology Modules and Serre Subcategories

Let a be an ideal of R, N a finite a–torsion module and s, t non-
negative integers. In this section, we present sufficient conditions which
convince us that the R–modules Ext t

R(N,X) and Ext s
R(N,Ht

a(X)) are
in a Serre subcategory of the category of R–modules. Even though we
can provide elementary proofs by using induction for our main theorems,
to shorten the proofs, we use spectral sequences argument.

Theorem 2.1. Let X be an R–module and t be a non-negative inte-
ger such that Ext t−r

R (N,Hr
a (X)) is in S for all r, 0 ≤ r ≤ t. Then,

Ext t
R(N,X) is in S.

Proof. By [29, Theorem 11.38], there is a Grothendieck spectral sequence

Ep,q
2 := Ext p

R(N,Hq
a (X))=⇒

p
Ext p+q

R (N,X).

For all r, 0 ≤ r ≤ t, we have Et−r,r
∞ = Et−r,r

t+2 since Et−r−i,r+i−1
i = 0 =

Et−r+i,r+1−i
i for all i ≥ t + 2, so that Et−r,r

∞ is in S from the fact that

Et−r,r
t+2 is a subquotient of Et−r,r

2 , which is in S by assumption. There
exists a finite filtration

0 = φt+1Ht ⊆ φtHt ⊆ · · · ⊆ φ1Ht ⊆ φ0Ht = Ext t
R(N,X)
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such that Et−r,r
∞ = φt−rHt/φt−r+1Ht, for all r, 0 ≤ r ≤ t. Now, the

exact sequences

0 −→ φt−r+1Ht −→ φt−rHt −→ Et−r,r
∞ −→ 0,

for all r, 0 ≤ r ≤ t, yield the assertion. �

Recall that an R–module X is said to be weakly Laskerian if the set of
associated primes of any quotient module of X is finite (see [13, Defini-
tion 2.1]). Also, we say that X is a–weakly cofinite if Supp R(X) ⊆ V (a)
and Ext i

R(R/a, X) is weakly Laskerian, for all i ≥ 0 (see [14, Definition
2.4]). We denote the category of R–modules (respectively the category
of finite R–modules, the category of weakly Laskerian R–modules) by
C(R) (respectively Cf.g(R), Cw.l(R)).

Corollary 2.2. (cf. [17, Theorem 6.3.9(i)]) Let X be an R–module
and n be a non-negative integer such that Ext n−r

R (N,Hr
a (X)) is weakly

Laskerian (respectively finite) for all r, 0 ≤ r ≤ n. Then, Ext n
R(N,X)

is weakly Laskerian (respectively finite) and so Ass R(ExtnR(N,X)) is
finite.

The next theorem is related to the R–module Ext s
R(N,Ht

a(X)) to be
in a Serre subcategory of the category of R–modules.

Theorem 2.3. Let X be an R–module, and s and t be non-negative
integers such that

(i) Ext s+t
R (N,X) is in S,

(ii) Ext s+t+1−i
R (N,H i

a(X)) is in S, for all i, 0 ≤ i < t, and

(iii) Ext s+t−1−i
R (N,H i

a(X)) is in S, for all i, t+ 1 ≤ i < s+ t.

Then, Ext s
R(N,Ht

a(X)) is in S.

Proof. Consider the Grothendieck spectral sequence:

Ep,q
2 := Ext p

R(N,Hq
a (X))=⇒

p
Ext p+q

R (N,X).

Let Zs,t
r = ker(Es,t

r −→ Es+r,t+1−r
r ), and

Bs,t
r = Im (Es−r,t+r−1

r −→ Es,t
r ), for all r ≥ 2. We have the exact

sequences:

0 −→ Zs,t
r −→ Es,t

r −→ Es,t
r /Zs,t

r −→ 0
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and
0 −→ Bs,t

r −→ Zs,t
r −→ Es,t

r+1 −→ 0.

Since, by assumptions (ii) and (iii), Es+r,t+1−r
2 and Es−r,t+r−1

2 are in S,

Es+r,t+1−r
r and Es−r,t+r−1

r are also in S, and so Es,t
r /Zs,t

r and Bs,t
r are

in S. It shows that Es,t
r is in S, whenever Es,t

r+1 is in S.

We have Es−r,t+r−1
r = 0 = Es+r,t+1−r

r , for all r, r ≥ t+ s+ 2. There-
fore, we obtain Es,t

t+s+2 = Es,t
∞ . To complete the proof, it is enough to

show that Es,t
∞ is in S. There exists a finite filtration

0 = φs+t+1Hs+t ⊆ φs+tHs+t ⊆ · · · ⊆ φ1Hs+t ⊆ φ0Hs+t = Ext s+t
R (N,X)

such that Es+t−j,j
∞ = φs+t−jHs+t/φs+t−j+1Hs+t, for all j, 0 ≤ j ≤

s + t. Since Ext s+t
R (N,X) is in S, φsHs+t is in S, and so Es,t

∞ =
φsHs+t/φs+1Hs+t is in S, as desired. �

Corollary 2.4. (cf. [5, Theorem 2.2]) Suppose that X is an R–module
and n is a non-negative integer such that

(i) Ext n
R(N,X) is in S, and

(ii) Ext n+1−i
R (N,H i

a(X)) is in S, for all i, 0 ≤ i < n.

Then, Hom R(N,Hn
a (X)) is in S.

Proof. Apply Theorem 2.3 with s = 0 and t = n. �

We can deduce from the above corollary the main results of [25, The-
orem B], [9, Theorem 2.2], [28, Theorem 5.6], [13, Corollary 2.7], [17,
Theorem 6.3.9(ii)], [7, Theorem 2.3], [15, Corollary 3.2], [8, Corollary
2.3] and [6, Lemma 2.2] concerning the finiteness of associated primes
of local cohomology modules. We just state the weakest possible condi-
tions which yield the finiteness of associated primes of local cohomology
modules in the next corollary.

Corollary 2.5. Suppose that X is an R–module and n is a non-negative
integer such that

(i) Ext n
R(R/a, X) is weakly Laskerian, and

(ii) Ext n+1−i
R (R/a, H i

a(X)) is weakly Laskerian, for all i, 0 ≤ i < n.

Then Hom R(R/a, Hn
a (X)) is weakly Laskerian, and so Ass R(Hn

a (X)) is
finite.
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Proof. Apply Corollary 2.4 with N = R/a and S = Cw.l(R), and note
that we have Ass R(Hom R(R/a, Hn

a (X))) = V (a) ∩ Ass R(Hn
a (X)) =

Ass R(Hn
a (X)). �

It is easy to see that if R is a local ring and S is a non-zero Serre
subcategory of the category of R–modules, then every R–module with
finite length belongs to S.

Corollary 2.6. (cf. [5, Theorem 2.12]) Let R be a local ring with max-
imal ideal m and X be an R–module. Assume also that S is a non-zero
Serre subcategory of C(R) and n is a non-negative integer such that

(i) Ext n
R(R/m, X) is finite, and

(ii) Ext n+1−i
R (R/m, H i

a(X)) is in S, for all i, 0 ≤ i < n.

Then, Hom R(R/m, Hn
a (X)) is in S.

Proof. Since S 6= 0, Ext n
R(R/m, X) is in S. Now, the assertion follows

from Corollary 2.4. �

Khashayarmanesh, in [24, Theorem 3.3], by using the concept of a–
filter regular sequence, proved the following corollary with stronger as-
sumptions. His assumptions were that X was a finite R–module with
finite Krull dimension and N = R/b, where b is an ideal of R contain-
ing a, while it was a simple conclusion of Theorem 2.3 for an arbitrary
R–module X and a finite a–torsion module N.

Corollary 2.7. (cf. [24, Theorem 3.3]) Suppose that X is an R–module
and s, t are non-negative integers such that

(i) Ext s+t
R (N,X) is finite,

(ii) Ext s+t+1−i
R (N,H i

a(X)) is finite, for all i, 0 ≤ i < t, and

(iii) Ext s+t−1−i
R (N,H i

a(X)) is finite, for all i, t+ 1 ≤ i < s+ t.

Then, Ext s
R(N,Ht

a(X)) is finite.

Proof. Apply Theorem 2.3 for S = Cf.g(R). �

Theorem 2.1 in conjunction with Theorem 2.3 lead to the following
corollary.
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Corollary 2.8. Let X be an R–module and n,m be non-negative inte-
gers such that n ≤ m. Assume also that H i

a(X) is in S, for all i, i 6= n
(respectively 0 ≤ i ≤ n − 1 or n + 1 ≤ i ≤ m). Then, for all i, i ≥ 0
(respectively 0 ≤ i ≤ m − n), Ext i

R(N,Hn
a (X)) is in S if and only if

Ext i+n
R (N,X) is in S.

In the course of the remaining parts of our work, by cd S(a, X) (S–
cohomological dimension of X with respect to a), we mean the largest
integer i in which H i

a(X) is not in S (see [5, Definition 3.4] or [1, Defi-
nition 3.5]). Note that if S = 0, then cd S(a, X) = cd (a, X), as in [20].

Corollary 2.9. Let X be an R–module and n be a non-negative integer.
Then, the following statements hold true.

(i) If cd S(a, X) = 0, then Ext n
R(N,Γa(X)) is in S if and only if

Ext n
R(N,X) is in S.

(ii) If cd S(a, X) = 1, then Ext n
R(N,H1

a (X)) is in S if and only if
Ext n+1

R (N,X/Γa(X)) is in S.
(iii) If cd S(a, X) = 2, then Ext n

R(N,H2
a (X)) is in S if and only if

Ext n+2
R (N,Da(X)) is in S.

Proof. (i) This is clear from Corollary 2.8.
(ii) For all i 6= 1, H i

a(X/Γa(X)) is in S by assumption. Now, the
assertion follows from Corollary 2.8.

(iii) By [10, Corollary 2.2.8], H i
a(Da(X)) is in S, for all i 6= 2. Again,

use Corollary 2.8. �

3. Special Serre Subcategories

Here, we study the extension functors of local cohomology modules
in some special Serre subcategories of the category of R–modules. We
begin with a definition.

Definition 3.1. (see [1, Definition 2.1]) LetM be a Serre subcategory of
the category of R–modules. We say that M is a Melkersson subcategory
with respect to the ideal a if for any a–torsion R–module X, 0 :X a is in
M implies that X is in M. M is called Melkersson subcategory, when
it is a Melkersson subcategory with respect to all ideals of R.



124 Aghapournahr, Taherizadeh and Vahidi

In honour of Melkersson who proved this property for Artinian cate-
gory (see [10, Theorem 7.1.2]) and Artinian a–cofinite category (see [27,
Proposition 4.1]), we name the above subcategory as Melkersson sub-
category. To see some examples of Melkersson subcategories, we refer
the reader to [1, Examples 2.4 and 2.5].

The next two propositions show that how properties of Melkersson
subcategories behave similarly at the initial points of Ext and local co-
homology modules. These propositions give new proofs for [1, Theorems
2.9 and 2.13] based on theorems 2.1 and 2.3.

Proposition 3.2. (see [1, Theorem 2.13]) Let X be an R–module, M
be a Melkersson subcategory with respect to the ideal a, and n be a non-

negative integer such that Ext j−i
R (R/a, H i

a(X)) is inM, for all i, j, with
0 ≤ i ≤ n − 1 and j = n, n + 1. Then, the following statements are
equivalent.

(i) Ext n
R(R/a, X) is in M.

(ii) Hn
a (X) is in M.

Proof. (i) ⇒ (ii). Apply Theorem 2.3 with s = 0 and t = n. It shows
that Hom R(R/a, Hn

a (X)) is in M. Thus, Hn
a (X) is in M.

(ii) ⇒ (i). Apply Theorem 2.1 with t = n. �

Proposition 3.3. (see [1, Theorem 2.9]) Let X be an R–module, M be
a Melkersson subcategory with respect to the ideal a, and n be a non-
negative integer. Then, the following statements are equivalent.

(i) H i
a(X) is in M, for all i, 0 ≤ i ≤ n.

(ii) Ext i
R(R/a, X) is in M, for all i, 0 ≤ i ≤ n.

Proof. (i) ⇒ (ii). Let 0 ≤ t ≤ n. Since Hr
a (X) is in M, for all r,

0 ≤ r ≤ t, Ext t−r
R (R/a, Hr

a (X)) is in M, for all r, 0 ≤ r ≤ t. Hence,
Ext t

R(R/a, X) is in M by Theorem 2.1.
(ii) ⇒ (i). We prove by using induction on n. Let n = 0 and

consider the isomorphism Hom R(R/a, X) ∼= Hom R(R/a,Γa(X)). Since
Hom R(R/a, X) is in M, Hom R(R/a,Γa(X)) is in M. Thus, Γa(X) is
in M.

Now, suppose that n > 0 and that n−1 is settled. Since Ext i
R(R/a, X)

is inM, for all i, 0 ≤ i ≤ n− 1, H i
a(X) is inM, for all i, 0 ≤ i ≤ n− 1,

by the induction hypothesis. Now, by the above proposition, Hn
a (X) is

in M. �
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In the next proposition, we study the membership of the local coho-
mology modules of an R–module X with respect to different ideals in
Melkersson subcategories which, among other things, shows
cdM(b, X) ≤ cdM(a, X) + ara(b/a), where M is a Melkersson subcat-
egory of C(R) and b is an ideal of R containing a.

Proposition 3.4. Let X be an R–module and b be an ideal of R such
that a ⊆ b. Assume also that M is a Melkersson subcategory of C(R)
and n is a non-negative integer such that H i

a(X) is in M, for all i,
0 ≤ i ≤ n (respectively i ≥ n). Then, H i

b(X) is inM, for all i, 0 ≤ i ≤ n
(respectively i ≥ n+ ara(b/a)).

Proof. Let r = ara(b/a). There exist x1, ..., xr ∈ R such that√
b =

√
a + (x1, ..., xr). We can, and do, assume that b = a + c, where,

c = (x1, ..., xr). By [29, Theorem 11.38], there is a Grothendieck spectral
sequence

Ep,q
2 := Hp

c (Hq
a (X))=⇒

p
Hp+q

b (X).

Assume that t is a non-negative integer such that 0 ≤ t ≤ n (resp.

t ≥ n+ r). For all i, 0 ≤ i ≤ t, Et−i,i
∞ = Et−i,i

t+2 , since Et−i−j,i+j−1
j = 0 =

Et−i+j,i−j+1
j , for all j ≥ t + 2. Therefore, Et−i,i

∞ is in M from the fact

that E−i,it+2 is a subquotient of Et−i,i
2 = Ht−i

c (H i
a(X)), which belongs to

M by assumption and Proposition 3.3. There exists a finite filtration

0 = φt+1Ht ⊆ φtHt ⊆ · · · ⊆ φ1Ht ⊆ φ0Ht = Ht
b(X)

such that Et−i,i
∞ = φt−iHt/φt−i+1Ht, for all i, 0 ≤ i ≤ t. Now, the exact

sequences

0 −→ φt−i+1Ht −→ φt−iHt −→ Et−i,i
∞ −→ 0,

for all i, 0 ≤ i ≤ t, show that Ht
b(X) is in M. �

Let a be an ideal of R, N be a finite a–torsion module and s, t be non-
negative integers. In the following theorem, we find some sufficient con-
ditions for validity of the isomorphism Ext s+t

R (N,X) ∼= Ext s
R(N,Ht

a(X)),
which concerns to the case S = 0.

Theorem 3.5. Let X be an R–module and s, t be non-negative integers
such that

(i) Ext s+t−i
R (N,H i

a(X)) = 0, for all i, 0 ≤ i < t or t < i ≤ s+ t,
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(ii) Ext s+t+1−i
R (N,H i

a(X)) = 0, for all i, 0 ≤ i < t, and

(iii) Ext s+t−1−i
R (N,H i

a(X)) = 0, for all i, t+ 1 ≤ i < s+ t.

Then, we have Ext s
R(N,Ht

a(X)) ∼= Ext s+t
R (N,X).

Proof. Consider the Grothendieck spectral sequence

Ep,q
2 := Ext p

R(N,Hq
a (X))=⇒

p
Ext p+q

R (N,X)

and, for all r ≥ 2, the exact sequences

0→ Bs,t
r → Zs,t

r → Es,t
r+1 → 0 and 0→ Zs,t

r → Es,t
r → Es,t

r /Zs,t
r → 0,

as used in Theorem 2.3. Since Es+r,t+1−r
2 = 0 = Es−r,t+r−1

2 holds,

Es+r,t+1−r
r = 0 = Es−r,t+r−1

r . Therefore, Es,t
r /Zs,t

r = 0 = Bs,t
r , which

shows that Es,t
r = Es,t

r+1. Hence, we have

Ext s
R(N,Ht

a(X)) = Es,t
2 = Es,t

3 = · · · = Es,t
s+t+1 = Es,t

s+t+2 = Es,t
∞ .

There is a finite filtration

0 = φs+t+1Hs+t ⊆ φs+tHs+t ⊆ · · · ⊆ φ1Hs+t ⊆ φ0Hs+t = Ext s+t
R (N,X)

such that Es+t−j,j
∞ = φs+t−jHs+t/φs+t−j+1Hs+t, for all j, 0 ≤ j ≤ s+ t.

Note that for each j, 0 ≤ j ≤ t− 1 or t+ 1 ≤ j ≤ s+ t, by assumption

(i), we have Es+t−j,j
∞ = 0. Therefore, we get

0 = φs+t+1Hs+t = φs+tHs+t = · · · = φs+2Hs+t = φs+1Hs+t

and

φsHs+t = φs−1Hs+t = · · · = φ1Hs+t = φ0Hs+t = Ext s+t
R (N,X).

Thus, Ext s
R(N,Ht

a(X)) = Es,t
∞ = φsHs+t/φs+1Hs+t = Ext s+t

R (N,X),
as desired. �

The following corollaries are immediate applications of the above the-
orem which give us some useful isomorphisms and equalities about the
extension functors and the Bass numbers of local cohomology modules,
respectively.

Corollary 3.6. (cf. [2, Corollary 4.2.(c)]) Let X be an R–module and n
be a non-negative integer. Then, the isomorphism Hom R(N,Hn

a (X)) ∼=
Ext n

R(N,X) holds in either of the following cases:

(i) Ext j−i
R (N,H i

a(X)) = 0, for all i, j with 0 ≤ i ≤ n − 1 and
j = n, n+ 1;
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(ii) Ext i
R(R/a, X) = 0, for all i, 0 ≤ i ≤ n− 1.

Proof. (i) Apply Theorem 3.5 with s = 0 and t = n.
(ii) By Proposition 3.3, H i

a(X) = 0, for all i, 0 ≤ i ≤ n− 1. Now, use
case (i). �

Corollary 3.7. Let X be an R–module and n and m be non-negative
integers such that n ≤ m. Assume also that H i

a(X) = 0 for all i,
i 6= n (respectively 0 ≤ i ≤ n − 1 or n + 1 ≤ i ≤ m). Then, we
have Ext i

R(N,Hn
a (X)) ∼= Ext i+n

R (N,X), for all i, i ≥ 0 (respectively
0 ≤ i ≤ m− n).

Proof. For all i, i ≥ 0 (respectively 0 ≤ i ≤ m− n), apply Theorem 3.5
with s = i and t = n. �

Corollary 3.8. (cf. [18, Proposition 3.1]) Let X be an R–module and
n be a non-negative integer such that H i

a(X) = 0, for all i, i 6= n. Then,
we have µi(p, Hn

a (X)) = µi+n(p, X), for all i ≥ 0 and all p ∈ V (a).

Proof. Let p ∈ V (a). By assumption, H i
aRp

(Xp) = 0, for all i, i 6= n, so

that Ext i
Rp

(Rp/pRp, H
n
aRp

(Xp)) ∼= Ext i+n
Rp

(Rp/pRp, Xp), for all i ≥ 0 by

Corollary 3.7. Hence, µi(p, Hn
a (X)) = µi+n(p, X), for all i ≥ 0. �

Corollary 3.9. For an arbitrary R–module X, the following statements
hold true.

(i) If cd (a, X) = 0, then Ext i
R(N,Γa(X)) ∼= Ext i

R(N,X), for all
i ≥ 0.

(ii) If cd (a, X) = 1, then Ext i
R(N,H1

a (X)) ∼= Ext i+1
R (N,X/Γa(X)),

for all i ≥ 0.
(iii) If cd (a, X) = 2, then Ext i

R(N,H2
a (X)) ∼= Ext i+2

R (N,Da(X)),
for all i ≥ 0.

Proof. By considering Corollary 3.7, the proof is similar to that of Corol-
lary 2.9. �



128 Aghapournahr, Taherizadeh and Vahidi

4. Cofinite Modules

We first introduce the class of cofinite modules with respect to an
ideal and a Serre subcategory of the category of R-modules.

Definition 4.1. Let a be an ideal of R, X be an R–module and S be
a Serre subcategory of C(R). We say that X is S–cofinite with respect
to the ideal a, if Supp R(X) ⊆ V (a) and Ext i

R(R/a, X) is in S, for all
i ≥ 0. We will denote this concept by (S, a)–cofinite.

Note that when S is Cf.g(R) (respectively Cw.l(R)), X is (S, a)–cofinite
exactly when X is a–cofinite (respectively a–weakly cofinite).

Theorem 4.2. Let X be an R–module and n be a non-negative integer
such that H i

a(X) is (S, a)–cofinite, for all i, i 6= n. Then, the following
statements are equivalent.

(i) Ext i
R(R/a, X) is in S, for all i ≥ 0.

(ii) Ext i
R(R/a, X) is in S, for all i ≥ n.

(iii) Hn
a (X) is (S, a)–cofinite.

Proof. (i) ⇒ (ii). This is clear.
(ii) ⇒ (iii). For all i ≥ 0, apply Theorem 2.3 with N = R/a, s = i

and t = n.
(iii) ⇒ (i). Apply Theorem 2.1 with N = R/a. �

As an immediate result, the following corollary recovers and improves
[26, Proposition 2.5], [27, Proposition 3.11] and [14, Theorem 3.1].

Corollary 4.3. (cf. [26, Proposition 2.5], [27, Proposition 3.11] and [14,
Theorem 3.1]) Let X be an R–module and n be a non-negative integer
such that H i

a(X) is a–cofinite (respectively a–weakly cofinite), for all i,
i 6= n. Then, the following statements are equivalent.

(i) Ext i
R(R/a, X) is finite (respectively weakly Laskerian), for all

i ≥ 0.
(ii) Ext i

R(R/a, X) is finite (respectively weakly Laskerian), for all
i ≥ n.

(iii) Hn
a (X) is a–cofinite (respectively a–weakly cofinite).
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Theorem 4.4. Suppose that X is an R–module and n is a non-negative
integer such that

(i) H i
a(X) is (S, a)–cofinite, for all i, 0 ≤ i ≤ n− 1, and

(ii) Ext 1+n
R (N,X) is in S.

Then, Ext 1
R(N,Hn

a (X)) is in S.

Proof. Consider [22, Proposition 3.4] and apply Theorem 2.3 with s = 1
and t = n. �

The following result is an application of the above theorem.

Corollary 4.5. (cf. [16, Theorem A] and [13, Corollary 2.7]) Let X be
an R–module and n be a non-negative integer. Assume also that

(i) H i
a(X) is a–cofinite (respectively a–weakly cofinite), for all i, 0 ≤

i ≤ n− 1, and
(ii) Ext 1+n

R (N,X) is finite (respectively weakly Laskerian).

Then, Ext 1
R(N,Hn

a (X)) is finite (resp. weakly Laskerian).

Theorem 4.6. Let X be an R–module and n be a non-negative integer
such that Ext n+1

R (N,X) and Ext n+2
R (N,X) are in S, and H i

a(X) is
(S, a)–cofinite, for all i, 0 ≤ i < n. Then, the following statements are
equivalent.

(i) Hom R(N,Hn+1
a (X)) is in S.

(ii) Ext 2
R(N,Hn

a (X)) is in S.

Proof. (i) ⇒ (ii). Consider [22, Proposition 3.4] and apply Theorem 2.3
with s = 2 and t = n.

(ii) ⇒ (i). Again consider [22, Proposition 3.4] and apply Theorem
2.3 with s = 0 and t = n+ 1. �

Asadollahi and Schenzel [4] proved that over local ring (R,m), if X
is Cohen-Macaulay and t = grade (a, X) then, Hom R(R/a, Ht+1

a (X)) is
finite if and only if Ext 2

R(R/a, Ht
a(X)) is finite (see [4, Theorem 1.2]).

Dibaei and Yassemi [16] generalized this result with weaker assumptions
on R and X. As an immediate consequence of Theorem 4.6, the follow-
ing is a generalization of [16, Theorem B].
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Corollary 4.7. (cf. [16, Theorem B]) Let X be an R–module and n be a
non-negative integer. Assume also that Ext n+1

R (N,X) and Ext n+2
R (N,X)

are finite (resp. weakly Laskerian), and H i
a(X) is a–cofinite (resp. a–

weakly cofinite), for all i, 0 ≤ i < n. Then, the following statements are
equivalent.

(i) Hom R(N,Hn+1
a (X)) is finite (respectively weakly Laskerian).

(ii) Ext 2
R(N,Hn

a (X)) is finite (respectively weakly Laskerian).

In [12, Proposition 2], Delfino and Marley proved the change of ring
principle for cofiniteness. In the following theorem, we prove it for the
Serre cofiniteness. The proof is an adaptation of the proof of [12, Propo-
sition 2].

Theorem 4.8. Let φ : A −→ B be a homomorphism between Noetherian
rings such that B is a finite A–module, a be an ideal of A and X be a
B–module. Let S and T be the Serre subcategories of C(A) and C(B),
respectively. Assume also that for any B–module Y , Y is in T exactly
when Y is in S (as an A–module). Then, X is (T , aB)–cofinite if and
only if X is (S, a)–cofinite (as an A–module).

Proof. By [29, Theorem 11.65], there is a Grothendieck spectral sequence

Ep,q
2 := Ext p

B(Tor A
q (B,A/a), X)=⇒

p
Ext p+q

A (A/a, X).

(⇒). For all p and q, by [22, Proposition 3.4], Ep,q
2 is in S. Therefore,

Ep,q
∞ belongs to S, since, Ep,q

∞ = Ep,q
p+q+2 and Ep,q

p+q+2 is a subquotient of

Ep,q
2 . Let n be a non-negative integer. There exists a finite filtration

0 = φn+1Hn ⊆ φnHn ⊆ · · · ⊆ φ1Hn ⊆ φ0Hn = Ext n
A(A/a, X)

such that En−i,i
∞ = φn−iHn/φn−i+1Hn, for all i, 0 ≤ i ≤ n. Now, by the

exact sequences

0 −→ φn−i+1Hn −→ φn−iHn −→ En−i,i
∞ −→ 0,

for all i, 0 ≤ i ≤ n, Ext n
A(A/a, X) is in S.

(⇐). By using induction on n, we show that En,0
2 = Ext n

B(B/aB,X)
is in T , for all n ≥ 0. The case n = 0 is clear from the isomorphism
Hom B(B/aB,X) ∼= Hom A(A/a, X). Assume that n > 0 and that Ep,0

2

is in T , for all p, 0 ≤ p ≤ n − 1. For all r ≥ 2, we have En,0
r+1
∼=

En,0
r /Im (En−r,r−1

r −→ En,0
r ). Thus, En,0

r is in T , whenever En,0
r+1 is



Extension functors of local cohomology modules 131

in T , because En−r,r−1
r is in T by the induction hypotheses and [22,

Proposition 3.4]. Since En,0
∞ = En,0

n+2, to complete the proof, it is enough

to show that En,0
∞ is in T . By assumption, Ext n

A(A/a, X) is in T and

hence φnHn is in T . That is, En,0
∞ belongs to T , as desired. �

Definition 4.9. (see [30]) The R–module X is a minimax module if it
has a finite submodule X ′ such that X/X ′ is Artinian.

The class of minimax modules thus includes all finite and all Artinian
modules. Note that the category of minimax modules and the category
of a–cofinite minimax modules are two Serre subcategories of the cate-
gory of R–modules (see [27, Corollary 4.4]).

Proposition 4.10. Let X be an R–module and n and m be non-negative
integers such that n ≤ m. Assume also that

(i) H i
a(X) is a–cofinite, for all i, 0 ≤ i ≤ n− 1,

(ii) Ext i
R(R/a, X) is finite, for all i, n ≤ i ≤ m, and

(iii) H i
a(X) is minimax, for all i, n ≤ i ≤ m.

Then, H i
a(X) is a–cofinite, for all i, 0 ≤ i ≤ m.

Proof. Apply Theorem 2.3 with s = 0 and t = n for N = R/a and
S = Cf.g(R). It shows that Hom R(R/a, Hn

a (X)) is finite. Thus, Hn
a (X)

is a–cofinite, from [27, Proposition 4.3]. �

Corollary 4.11. (cf. [6, Theorem 2.3]) Let X be an R–module and n
be a non-negative integer such that

(i) H i
a(X) is minimax, for all i, 0 ≤ i ≤ n− 1, and

(ii) Ext i
R(R/a, X) is finite, for all i, 0 ≤ i ≤ n.

Then, Hom R(R/a, Hn
a (X)) is finite.

Proof. By [27, Proposition 4.3], Γa(X) is a–cofinite. Hence, H i
a(X) is

a–cofinite, for all i, 0 ≤ i ≤ n − 1, from Proposition 4.10. Thus, by
Theorem 2.3, Hom R(R/a, Hn

a (X)) is finite. �

Corollary 4.12. Suppose that X is an R–module and that n is a non-
negative integer. Then, the following statements are equivalent.

(i) H i
a(X) is Artinian a–cofinite, for all i, 0 ≤ i ≤ n.

(ii) Ext i
R(R/a, X) has finite length, for all i, 0 ≤ i ≤ n.
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Proof. (i) ⇒ (ii). Let 0 ≤ t ≤ n. Since Ext t−i
R (R/a, H i

a(X)) has a finite
length for all i, 0 ≤ i ≤ t, Ext t

R(R/a, X) has also a finite length, by
Theorem 2.1.

(ii) ⇒ (i). By Proposition 3.3, H i
a(X) is Artinian, for all i, 0 ≤

i ≤ n. Let 0 ≤ t ≤ n and consider Corollary 4.11. It shows that
Hom R(R/a, Ht

a(X)) is finite and so has a finite length. Now, the asser-
tion follows from [27, Proposition 4.3]. �
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[30] H. Zöschinger, Minimax-Moduln, (German) [Minimax modules] J. Algebra 102
(1986) 1-32.

Moharram Aghapournahr
Department of Mathematics, Faculty of Science, Arak University, Arak 38156-8-8349,
IRAN
Email: m-aghapour@araku.ac.ir

Abdoljavad Taherizadeh
Department of Mathematical Sciences and Computer, Tarbiat Moallem University,
43 Mofateh Ave., Tehran, I. R of IRAN
Email: taheri@saba.tmu.ac.ir



134 Aghapournahr, Taherizadeh and Vahidi

Alireza Vahidi
Department of Mathematics, Payame Noor University, I. R of IRAN
Email: vahidi.ar@gmail.com


	1. Introduction
	2. Local Cohomology Modules and Serre Subcategories
	3. Special Serre Subcategories
	4. Cofinite Modules
	References

