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HYPERSURFACES WITH CONSTANT MEAN
CURVATURE IN A LORENTZIAN SPACE FORM

S. SHU* AND A. YI HAN

Communicated by Karsten Grove

Abstract. We give some characterizations of n dimensional (n ≥
2) hyperbolic cylinder, spherical cylinder or Euclidean cylinder in
a Lorentzian space form. We show that the hyperbolic cylinder,
spherical cylinder or Euclidean cylinder is the only complete space-
like hypersurface in an (n+1) dimensional Lorentzian space form
Mn+1

1 (c) with non-zero constant mean curvature and two distinct
principal curvatures one of which is simple, if the norm square of the
second fundamental form of Mn satisfies some pinching conditions,
respectively.

1. Introduction

By an (n + 1) dimensional Lorentzian space form Mn+1
1 (c) we mean

a Minkowski space Rn+1
1 , a de Sitter space Sn+1

1 (c) or an anti-de Sitter
space Hn+1

1 (c), according to c > 0, c = 0 or c < 0, respectively. That is,
a Lorentzian space form Mn+1

1 (c) is a complete connected (n+1) dimen-
sional Lorentzian manifold with constant curvature c. A hypersurface
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in a Lorentzian manifold is said to be space-like if the induced metric
on the hypersurface is positive definite.

In connection with the negative settlement of the Bernstein problem
due to Calabi [3], Cheng and Yau [4], and Chouque-Bruhat et al. [5]
proved the following theorem independently.

Theorem 1.1 ([4, 5] ). Let Mn be a complete space-like hypersurface
in an (n+1) dimensional Lorentzian space form Mn+1

1 (c), c ≥ 0. If Mn

is maximal, then it is totally geodesic.
Ishihara [7] also proved the following well-known result.

Theorem 1.2 ([7]). If Mn is an n dimensional (n ≥ 2) complete
maximal space-like hypersurface in anti-de Sitter space Hn+1

1 (−1), then,

(1.1) S ≤ n,

and S = n if and only if Mn = Hm(− n
m) × Hn−m(− n

n−m),(1 ≤ m ≤
n−1), where S denotes the norm square of the second fundamental form
of M .

As a generalization of Theorem 1.1, complete space-like hypersurfaces
with constant mean curvature in a Lorentz manifold have been investi-
gated by many mathematicians; see [2,6,8,10,12 ,13]. Ki et al. [9] proved
the following result.

Theorem 1.3 ([9]). Let Mn be a complete space-like hypersurface with
constant mean curvature in an (n+1) dimensional Lorentzian space form
Mn+1

1 (c). If Mn satisfies one of the following properties,
(1) c ≤ 0,
(2) c > 0, n ≥ 3 and n2H2 ≥ 4(n− 1)c,
(3) c > 0, n = 2 and H2 > c,

then,

(1.2) S ≤ −nc+
n3H2

2(n− 1)
+
n(n− 2)
2(n− 1)

√
n2H4 − 4(n− 1)cH2,

where S denotes the norm square of the second fundamental form of M .
From Ki et al. [9], we know that the well-known standard mod-

els of complete space-like hypersurfaces with non-zero constant mean
curvature in an (n+1) dimensional Lorentzian space form Mn+1

1 (c) are
the totally umbilical space-like hypersurfaces and the following product
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manifolds:

Hk(c1)×Rn−k

= {(x, y) ∈ Rn+1
1 = Rk+1

1 ×Rn−k : |x|2 = − 1
c1
> 0},

where c1 < 0 and k = 1, · · · , n − 1. We note that Hk(c1) × Rn−k in
Rn+1

1 has two distinct principal curvatures
√
−c1 with multiplicity k

and 0 with multiplicity n− k and S = 1
kn

2H2,

Hk(c1)× Sn−k(c2) = {(x, y) ∈ Sn+1
1 (c)

⊂ Rn+2
1 = Rk+1

1 ×Rn−k+1 : |x|2 = − 1
c1
, |y|2 =

1
c2
},

where 1
c1

+ 1
c2

= 1
c , c1 < 0, c2 > 0 and k = 1, · · · , n − 1. We note

that Hk(c1)×Sn−k(c2) in Sn+1
1 (c) has two distinct principal curvatures√

c− c1 with multiplicity k and
√
c− c2 with multiplicity n− k and

S = −nc+
n3H2

2k(n− k)
± n(n− 2k)

2k(n− k)
H

√
n2H2 − 4k(n− k)c,

Hk(c1)×Hn−k(c2) = {(x, y) ∈ Hn+1
1 (c)

⊂ Rn+2
2 = Rk+1

1 ×Rn−k+1
1 : |x|2 = − 1

c1
, |y|2 = − 1

c2
},

where 1
c1

+ 1
c2

= 1
c , c1 < 0, c2 < 0 and k = 1, · · · , n − 1. We note that

Hk(c1) × Hn−k(c2) in Hn+1
1 (c) has two distinct principal curvatures

±
√
c− c1 with multiplicity k and ∓

√
c− c2 with multiplicity n− k and

S = −nc+
n3H2

2k(n− k)
± n(n− 2k)

2k(n− k)
H

√
n2H2 − 4k(n− k)c.

From Ki et al. [9], H1(c1) × Sn−1(c2), H1(c1) × Rn−1 or H1(c1) ×
Hn−1(c2) is, in particular, called a hyperbolic cylinder in Sn+1

1 (c), Rn+1
1

or Hn+1
1 (c); Hn−1(c1)×S1(c2) or Hn−1(c1)×R1 is also called a spherical

cylinder or Euclidean cylinder in Sn+1
1 (c) or Rn+1

1 . The norm square of
the second fundamental form of a hyperbolic cylinder H1(c1)×Rn−1 or
Euclidean cylinder Hn−1(c1)×R1 in Rn+1

1 satisfies:

(1.3) S = n2H2, or S =
n2H2

n− 1
;
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the norm square of the second fundamental form of a hyperbolic cylinder
H1(c1)×Sn−1(c2) or spherical cylinder Hn−1(c1)×S1(c2) in Sn+1

1 (c) or
a hyperbolic cylinder H1(c1)×Hn−1(c2) in Hn+1

1 (c) satisfies:

(1.4) S = −nc+
n3H2

2(n− 1)
± n(n− 2)

2(n− 1)
H

√
n2H2 − 4(n− 1)c.

Denote by PH(t) the following polynomial,

(1.5) PH(t) = (n− 1)t2 − nHt+ c.

By a direct calculation, we know that (1.5) has two real roots:

t1 =
nH −

√
n2H2 − 4(n− 1)c
2(n− 1)

, t2 =
nH +

√
n2H2 − 4(n− 1)c
2(n− 1)

.

For c = 0, t1 = 0 and t2 > 0; for c < 0, t1 < 0 and t2 > 0; for c > 0 and
H2 ≥ c (which implies n2H2 ≥ 4(n−1)c), t1 > 0 and t2 > 0. Therefore,
we realize that (1.3) and (1.4) may be rewritten as follows:

(1.6) S = n2H2, or S = (n− 1)t22, for c = 0,

(1.7)
S = (n− 1)t21 + c2t−2

1 , or S = (n− 1)t22 + c2t−2
2 , for c < 0 and c > 0,

and

(1.8) (n− 1)t22 + c2t−2
2 ≤ (n− 1)t21 + c2t−2

1 .

Here, we investigate complete hypersurfaces with constant mean cur-
vatures in a Lorentzian space form Mn+1

1 (c) and give some characteri-
zation of n dimensional (n ≥ 2) hyperbolic cylinder H1(c1)× Sn−1(c2),
H1(c1)×Rn−1 or H1(c1)×Hn−1(c2) in Mn+1

1 (c) and spherical cylinder
Hn−1(c1) × S1(c2) or Euclidean cylinder Hn−1(c1) × R1 in Sn+1

1 (c) or
Rn+1

1 . More precisely, we obtain the following result.

Main Theorem. Let Mn be an n dimensional (n ≥ 2) complete
space-like hypersurface in an (n+1) dimensional Lorentzian space form
Mn+1

1 (c) with non-zero constant mean curvature and two distinct prin-
cipal curvatures, one of which λ is simple and lims→∞ λ 6= H. Then,

(1) for c = 0, (i) Mn is isometric to the Euclidean cylinder Hn−1(c1)×
R1, c1 < 0, if S ≤ (n− 1)t22, and (ii) Mn is isometric to the hyperbolic
cylinder H1(c1)×Rn−1 or Euclidean cylinder Hn−1(c1)×R1, c1 < 0 if
(n− 1)t22 ≤ S ≤ n2H2,
where t2 is the positive real root of (1.5).
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(2) For c < 0, Mn is isometric to the hyperbolic cylinder H1(c1) ×
Hn−1(c2), 1

c1
+ 1

c2
= 1

c , c1 < 0, c2 < 0 if one of the following conditions
is satisfied:

(i) S ≤ (n− 1)t22 + c2t−2
2 , or

(ii) (n− 1)t22 + c2t−2
2 ≤ S ≤ (n− 1)t21 + c2t−2

1 ,
where t1 is the negative real root and t2 the positive real root of (1.5).

(3) For c > 0 and H2 ≥ c, Mn is isometric to the hyperbolic cylinder
H1(c1)×Sn−1(c2) or spherical cylinder Hn−1(c1)×S1(c2), 1

c1
+ 1

c2
= 1

c ,
c1 < 0, c2 > 0 if one of the following conditions is satisfied:

(i) S ≤ (n− 1)t22 + c2t−2
2 , or

(ii) (n− 1)t22 + c2t−2
2 ≤ S ≤ (n− 1)t21 + c2t−2

1 ,
where t1 and t2 are the two positive real roots of (1.5).

2. Preliminaries

Let Mn be an n dimensional space-like hypersurface in an (n+1) di-
mensional Lorentzian space form Mn+1

1 (c). We choose a local field of
semi-Riemannian orthonormal frames {e1, · · · , en+1} in Mn+1

1 (c) such
that at each point of Mn, {e1, · · · , en} span the tangent space of Mn

and form an orthonormal frame there. We use the following convention
on the range of indices:

1 ≤ A,B,C, · · · ≤ n+ 1, 1 ≤ i, j, k, · · · ≤ n.

Let {ω1, · · · , ωn+1} be the dual frame field so that the semi-Riemannian
metric of Mn+1

1 (c) is given by: ds̄2 =
∑
i
ω2

i − ω2
n+1 =

∑
A

εAω
2
A, where

εi = 1 and εn+1 = −1.
The structure equations of Mn+1

1 (c) are given by

(2.1) dωA =
∑
B

εBωAB ∧ ωB, ωAB + ωBA = 0,

(2.2) dωAB =
∑
C

εCωAC ∧ ωCB + ΩAB,

where,

(2.3) ΩAB = −1
2

∑
C,D

KABCDωC ∧ ωD,

(2.4) KABCD = εAεBc(δACδBD − δADδBC).
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Restricting these forms to Mn, we have,

(2.5) ωn+1 = 0.

Cartan’s Lemma implies:

(2.6) ωn+1,i =
∑

j

hijωj , hij = hji.

The structure equations of Mn are:

(2.7) dωi =
∑

j

ωij ∧ ωj , ωij + ωji = 0,

(2.8) dωij =
∑

k

ωik ∧ ωkj −
1
2

∑
k,l

Rijklωk ∧ ωl,

(2.9) Rijkl = c(δikδjl − δilδjk)− (hikhjl − hilhjk),

where the Rijkl are the components of the curvature tensor of M and

(2.10) h =
∑
i,j

hijωi ⊗ ωj

is the second fundamental form of M .
From the above equation, we have,

(2.11) n(n− 1)(R− c) = S − n2H2,

where n(n− 1)R is the scalar curvature of M,H is the mean curvature,
and S =

∑
i,j
h2

ij is the norm square of the second fundamental form of

Mn.
We choose e1, · · · , en such that hij = λiδij . From (2.6), we have,

(2.12) ωn+1,i = λiωi, i = 1, 2, · · · , n.
Hence, we have from the structure equations of Mn,

(2.13)
dωn+1,i = dλi ∧ ωi + λidωi

= dλi ∧ ωi + λi
∑
j
ωij ∧ ωj .

On the other hand, we have on the curvature forms of Mn+1
1 (c),

(2.14)

Ωn+1,i = −1
2

∑
C,D

Kn+1iCDωC ∧ ωD

= 1
2

∑
C,D

c(δn+1CδiD − δn+1DδiC)ωC ∧ ωD

= cωn+1 ∧ ωi = 0.
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Therefore, from the structure equations of Mn+1
1 (c), we have,

(2.15)
dωn+1,i =

∑
j
ωn+1j ∧ ωji − ωn+1n+1 ∧ ωn+1i + Ωn+1i

=
∑
j
λjωij ∧ ωj .

From (2.13) and (2.15), we obtain:

(2.16) dλi ∧ ωi +
∑

j

(λi − λj)ωij ∧ ωj = 0.

Letting

(2.17) ψij = (λi − λj)ωij ,

we have ψij = ψji. Equation (2.16) can be written as:

(2.18)
∑

j

(ψij + δijdλj) ∧ ωj = 0.

By Cartan’s Lemma, we get

(2.19) ψij + δijdλj =
∑

k

Qijkωk,

where the Qijk are uniquely determined functions such that

(2.20) Qijk = Qikj .

3. Proof of Main Theorem

We firstly state a proposition which can be proved by making use of
the similar method due to Otsuki [11] for Riemannian space forms.

Proposition 3.1. Let M be a hypersurface in an (n+1) dimensional
Lorentzian space form Mn+1

1 (c) such that the multiplicities of the prin-
cipal curvatures are constant. Then, the distribution of the space of the
principal vectors corresponding to each principal curvature is completely
integrable. In particular, if the multiplicity of a principal curvature is
greater than 1, then this principal curvature is constant on each inte-
gral submanifold of the corresponding distribution of the space of the
principal vectors.
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LetMn be an n dimensional complete oriented space-like hypersurface
with non-zero constant mean curvature and with two distinct principal
curvatures, one of which is simple. We can choose an orientation for Mn

such that H > 0. Without loss of generality, we may assume,

λ1 = λ2 = · · · = λn−1 = λ, λn = µ,

where λi for i = 1, 2, · · · , n are the principal curvatures of Mn. There-
fore, we know that

(3.1) (n− 1)λ+ µ = nH, S = (n− 1)λ2 + µ2.

We have,

(3.2) µ = nH − (n− 1)λ.

From
λ− µ = n(λ−H) 6= 0,

we get λ−H 6= 0.
Let$ = |λ−H|−

1
n . We denote the integral submanifold through x ∈Mn

corresponding to λ by Mn−1
1 (x). Let

(3.3) dλ =
n∑

k=1

λ,k ωk, dµ =
n∑

k=1

µ,k ωk.

From Proposition 3.1, we have,

(3.4) λ,1 = λ,2 = · · · = λ,n−1 = 0 on Mn−1
1 (x).

From (3.2), we have,

(3.5) dµ = −(n− 1)dλ.

Hence, we also have,

(3.6) µ,1 = µ,2 = · · · = µ,n−1 = 0 on Mn−1
1 (x).

In this case, we may locally consider λ to be a function of the arc length s
of the integral curve of the principal vector field en corresponding to the
principal curvature µ. From (2.19) and (3.4), we have, for 1 ≤ j ≤ n−1,

(3.7)
dλ = dλj =

n∑
k=1

Qjjkωk

=
n−1∑
k=1

Qjjkωk +Qjjnωn = λ,n ωn.
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Therefore, we have,

(3.8) Qjjk = 0, 1 ≤ k ≤ n− 1, and Qjjn = λ,n .

By (2.19) and (3.6), we have,

(3.9)
dµ = dλn =

n∑
k=1

Qnnkωk

=
n−1∑
k=1

Qnnkωk +Qnnnωn =
n∑

i=1
µ,i ωi = µ,n ωn.

Hence, we obtain:

(3.10) Qnnk = 0, 1 ≤ k ≤ n− 1, and Qnnn = µ,n .

From (3.5), we get

(3.11) Qnnn = µ,n = −(n− 1)λ,n .

From the definition of ψij , if i 6= j, we have ψij = 0, for 1 ≤ i ≤ n − 1,
and 1 ≤ j ≤ n − 1. Therefore, from (2.19), if i 6= j, 1 ≤ i ≤ n − 1 and
1 ≤ j ≤ n− 1, we have,

(3.12) Qijk = 0, for any k.

By (2.19),(3.8),(3.10),(3.11) and (3.12), we get

(3.13)
ψjn =

n∑
k=1

Qjnkωk

= Qjjnωj +Qjnnωn = λ,n ωj .

From (2.19),(3.2)and (3.13), we have,

(3.14) ωjn =
ψjn

λ− µ
=

λ,n
λ− µ

ωj =
λ,n

n(λ−H)
ωj .

Therefore, from the structure equations of Mn, we have,

dωn =
n−1∑
k=1

ωk ∧ ωkn + ωnn ∧ ωn = 0.

Therefore, we may put ωn = ds. By (3.7) and (3.9), we get

dλ = λ,n ds, λ,n =
dλ

ds
,

and

dµ = µ,n ds, µ,n =
dµ

ds
.
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Then, we have,

(3.15) ωjn =
dλ
ds

n(λ−H)
ωj =

d{log |λ−H|
1
n }

ds
ωj .

Equation (3.15) shows that the integral submanifold Mn−1
1 (x) corre-

sponding to λ and s is umbilical in Mn and Mn+1
1 (c).

From (3.15) and the structure equations of Mn+1
1 (c), we have,

dωjn =
n−1∑
k=1

ωjk ∧ ωkn + ωjn ∧ ωnn − ωjn+1 ∧ ωn+1n + Ωjn

=
n−1∑
k=1

ωjk ∧ ωkn − ωjn+1 ∧ ωn+1n − cωj ∧ ωn

=
d{log |λ−H|

1
n }

ds

n−1∑
k=1

ωjk ∧ ωk − (c− λµ)ωj ∧ ds.

From (3.15), we have,

dωjn =
d2{log |λ−H|

1
n }

ds2
ds ∧ ωj +

d{log |λ−H|
1
n }

ds
dωj

=
d2{log |λ−H|

1
n }

ds2
ds ∧ ωj +

d{log |λ−H|
1
n }

ds

n∑
k=1

ωjk ∧ ωk

= {−d
2{log |λ−H|

1
n }

ds2
+ [

d{log |λ−H|
1
n }

ds
]2}ωj ∧ ds

+
d{log |λ−H|

1
n }

ds

n−1∑
k=1

ωjk ∧ ωk.

From the above two equalities, we have,

(3.16)
d2{log |λ−H|

1
n }

ds2
− {d{log |λ−H|

1
n }

ds
}2 − (c− λµ) = 0.

From (3.2), we get
(3.17)
d2{log |λ−H|

1
n }

ds2
− {d{log |λ−H|

1
n }

ds
}2 − {(n− 1)λ2 − nHλ+ c} = 0.
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Since we define $ = |λ − H|−
1
n , then we obtain from the above

equation,

(3.18)
d2$

ds2
+${(n− 1)λ2 − nHλ+ c} = 0.

We can now prove the following lemmas.

Lemma 3.2. Let

PH(t) = (n− 1)t2 − nHt+ c.

Then, for c ≤ 0 or c > 0 and H2 ≥ c, PH(t) has two real roots t1 and
t2 and

(i) if t ≥ H, then t ≥ t2 holds if and only if PH(t) ≥ 0 and t ≤ t2
holds if and only if PH(t) ≤ 0.

(2) If t ≤ H, then t ≥ t1 holds if and only if PH(t) ≤ 0 and t ≤ t1
holds if and only if PH(t) ≥ 0, where for c = 0, t1 = 0 and t2 > 0, for
c < 0, t1 < 0 and t2 > 0, for c > 0 and H2 ≥ c, t1 > 0 and t2 > 0.

Proof. We have,
dPH(t)
dt

= 2(n− 1)t− nH.

It follows that the solution of dPH(t)
dt = 0 is t0 = nH

2(n−1) > 0. Therefore,
we know that t ≤ t0 if and only if PH(t) is a decreasing function, t ≥ t0 if
and only if PH(t) is an increasing function and PH(t) obtain its minimum
at t = t0.

Since PH(t) is continuous and PH(t0) = c− n2H2

4(n−1) < 0, then we infer
that PH(t) has two distinct real roots t1 and t2 with t1 < t0 < t2. From
PH(0) = c, we infer that for c = 0, t1 = 0 and t2 > 0, for c < 0, t1 < 0
and t2 > 0, for c > 0 and H2 ≥ c, t1 > 0 and t2 > 0.

Since t0 ≤ H and PH(H) = c −H2 ≤ 0, then we know that H ≤ t2.
In fact, if H > t2, then from the increasing property of PH(t), we have
PH(H) > PH(t2) = 0, which is a contraction.

Now, we prove the second part of Lemma 3.2. If t ≥ H, then from the
increasing property of PH(t), we obtain that t ≥ t2 holds if and only if
PH(t) ≥ PH(t2) = 0 and t ≤ t2 holds if and only if PH(t) ≤ PH(t2) = 0.

If t ≤ H, then from the decreasing property of PH(t), we directly
obtain that t ≤ t1 holds if and only if PH(t) ≥ PH(t1) = 0.

Now, we consider the case t ≤ H and t ≥ t1. From t ≥ t1, we have
t ∈ [t1, t0] or t ∈ [t0,H]. If t ∈ [t1, t0], then from the decreasing property
of PH(t), we infer that PH(t) ≤ PH(t1) = 0; if t ∈ [t0,H], then from
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the increasing property of PH(t), we infer that PH(t) ≤ PH(H) ≤ 0.
Hence, if t ≥ t1, then PH(t) ≤ 0. On the other hand, if PH(t) ≤ 0,
then by t ≤ H, we can prove t ≥ t1. In fact, if t < t1, then from
the decreasing property of PH(t), we infer that PH(t) > PH(t1) = 0,
which is a contradiction to having PH(t) ≤ 0. Therefore, if t ≤ H, then
t ≥ t1 holds if and only if PH(t) ≤ 0. The proof of the lemma is now
complete. �

Lemma 3.3. Let

S(t) = (n− 1)t2 + [nH − (n− 1)t]2.

(i) If t ≥ H, then t ≥ t2 holds if and only if S(t) ≥ S(t2) and t ≤ t2
holds if and only if S(t) ≤ S(t2).

(ii) If t ≤ H, then t ≥ t1 holds if and only if S(t) ≤ S(t1) and t ≤ t1
holds if and only if S(t) ≥ S(t1), where t1 and t2 are the two distinct
real roots of PH(t) and t1 < t2.

Proof. We have,
dS(t)
dt

= 2n(n− 1)(t−H).

It follows that the solution of dS(t)
dt = 0 is t = H. Therefore, t ≤ H if

and only if S(t) is a decreasing function, t ≥ H if and only if S(t) is an
increasing function and S(t) obtain its minimum at t = H.

From the proof of Lemma 3.2, we know that t1 < H ≤ t2. Since
t ≥ H if and only if S(t) is an increasing function, then we infer that if
t ≥ H, then t ≥ t2 holds if and only if S(t) ≥ S(t2) and t ≤ t2 holds if
and only if S(t) ≤ S(t2).

If t ≤ H, then from the decreasing property of S(t), we directly have
t ≥ t1 holds if and only if S(t) ≤ S(t1) and t ≤ t1 holds if and only if
S(t) ≥ S(t1). The proof of the lemma is now complete. �

Proof of Main Theorem. Putting t = λ, from (3.18), we have,

(3.19)
d2$

ds2
+$PH(t) = 0.

Since
λ− µ = n(t−H) 6= 0,

then we have, t−H 6= 0.
(1) For c = 0,

(i) if S ≤ (n− 1)t22, then we consider two cases t > H and t < H:
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Case t > H: Since S(t2) = (n − 1)t22, then from Lemma 3.2, Lemma
3.3 and (3.19), we have S(t) ≤ (n − 1)t22 = S(t2) holds if and only if
t ≤ t2 if and only if PH(t) ≤ 0 and if and only if d2$

ds2 ≥ 0. Thus,
d$
ds is a monotonic function of s ∈ (−∞,+∞). Therefore, by the similar
assertion in Wei [14], we have that $(s) must is monotonic when s tends
to infinity. From the definition of $(s) and lims→∞ λ 6= H, we infer
that the positive function $(s) is bounded. Since $(s) is bounded and
monotonic, when s tends to infinity, we know that both lims→−∞$(s)
and lims→+∞$(s) exist and then we get

lim
s→−∞

d$(s)
ds

= lim
s→+∞

d$(s)
ds

= 0.

From the monotonicity of d$(s)
ds , we have d$(s)

ds ≡ 0 and $(s) =constant.
From $ = |λ−H|−

1
n and (3.1), we have λ and µ are constants; that is,

Mn is isoparametric. Therefore, by the congruence Theorem of Abe et
al. [1], Mn is isometric to the Euclidean cylinder Hn−1(c1)×R1, where
c1 < 0.

Case t < H: Since S(t2) = (n − 1)t22 = n2H2

n−1 ≤ n2H2 = S(t1), then
we have S ≤ S(t1). From Lemma 3.2, Lemma 3.3 and (3.19), we have
S(t) ≤ S(t1) holds if and only if t ≥ t1 if and only if PH(t) ≤ 0 and if and
only if d2$

ds2 ≥ 0. Thus, d$
ds is a monotonic function of s ∈ (−∞,+∞).

By the same assertion as above, we know that Mn is isometric to the
Euclidean cylinder Hn−1(c1)×R1, where c1 < 0.

(ii) If (n − 1)t22 ≤ S ≤ n2H2, we also consider two cases t > H and
t < H.

Case t > H: Since S ≥ (n − 1)t22 = S(t2), then from Lemma 3.2,
Lemma 3.3 and (3.19), we have S(t) ≥ S(t2) holds if and only if t ≥ t2
if and only if PH(t) ≥ 0 and if and only if d2$

ds2 ≤ 0. Thus, d$
ds is a

monotonic function of s ∈ (−∞,+∞). Combining d2$
ds2 ≤ 0 with the

boundedness of $(s), similar to the proof of (i), we know that $(s), λ
and µ are constants, that is, Mn is isoparametric. By the congruence
Theorem of Abe et al. [1], we know that Mn is isometric to the hyper-
bolic cylinder H1(c1)×Rn−1 or the Euclidean cylinder Hn−1(c1)×R1,
where c1 < 0.

Case t < H: Since S ≤ n2H2 = S(t1), from Lemma 3.2, Lemma 3.3
and (3.19), we have S(t) ≤ S(t1) holds if and only if t ≥ t1 if and only if
PH(t) ≤ 0 and if and only if d2$

ds2 ≥ 0. Thus, d$
ds is a monotonic function

of s ∈ (−∞,+∞). By the same assertion as above, we know that Mn
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is isometric to the hyperbolic cylinder H1(c1) × Rn−1 or the Euclidean
cylinder Hn−1(c1)×R1, where c1 < 0.

(2) For c < 0, (i) if S ≤ (n−1)t22 +c2t−2
2 , we consider two cases t > H

and t < H.
Case t > H: Since

S(t2) = (n− 1)t22 + [nH − (n− 1)t2]2

= (n− 1)t22 + [nH − (n− 1)t2 −
c

t2
+
c

t2
]2

= (n− 1)t22 + {−1
t2

[(n− 1)t22 − nHt2 + c] +
c

t2
}2

= (n− 1)t22 + {−1
t2
PH(t2) +

c

t2
}2

= (n− 1)t22 + c2t−2
2 ,

Then from Lemma 3.2, Lemma 3.3 and (3.19), we have S(t) ≤ S(t2)
holds if and only if t ≤ t2 if and only if PH(t) ≤ 0 and if and only if
d2$
ds2 ≥ 0. Thus, d$

ds is a monotonic function of s ∈ (−∞,+∞). By
the same assertion in the proof of (1), we know that $(s), λ and µ are
constants; that is, Mn is isoparametric. By the congruence Theorem of
Abe et al. [1], we know that Mn is isometric to the hyperbolic cylinder
H1(c1)×Hn−1(c2), where 1

c1
+ 1

c2
= 1

c , c1 < 0, c2 < 0.
Case t < H: By a direct calculation, we have S(t1) = (n−1)t21+c2t−2

1 .
From (1.8), we have S(t2) ≤ S(t1). Hence, we obtain that S ≤ S(t1).
From Lemma 3.2, Lemma 3.3 and (3.19), we have S(t) ≤ S(t1) holds if
and only if t ≥ t1 if and only if PH(t) ≤ 0 and if and only if d2$

ds2 ≥ 0.
Thus, d$

ds is a monotonic function of s ∈ (−∞,+∞). By the same
assertion as above, we know that Mn is isometric to the hyperbolic
cylinder H1(c1)×Hn−1(c2), where 1

c1
+ 1

c2
= 1

c , c1 < 0, c2 < 0.
(ii) If (n− 1)t22 + c2t−2

2 ≤ S ≤ (n− 1)t21 + c2t−2
1 , then we consider two

cases t > H and t < H.
Case t > H: Since S ≥ (n− 1)t22 + c2t−2

2 = S(t2), then from Lemma
3.2, Lemma 3.3 and (3.19), we have S(t) ≥ S(t2) holds if and only if
t ≥ t2 if and only if PH(t) ≥ 0 and if and only if d2$

ds2 ≤ 0. Thus, d$
ds is

a monotonic function of s ∈ (−∞,+∞). Similar to the proof of (1), we
know that $(s), λ and µ are constants; that is, Mn is isoparametric. By
the congruence Theorem of Abe et al. [1], we know that Mn is isometric
to the hyperbolic cylinder H1(c1)×Hn−1(c2), where 1

c1
+ 1

c2
= 1

c , c1 < 0,
c2 < 0.
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Case t < H: Since S ≤ (n− 1)t21 + c2t−2
1 = S(t1), then from Lemma

3.2, Lemma 3.3 and (3.19), we have S(t) ≤ S(t1) holds if and only if
t ≥ t1 if and only if PH(t) ≤ 0 and if and only if d2$

ds2 ≥ 0. Thus,
d$
ds is a monotonic function of s ∈ (−∞,+∞). By the same assertion as
above, we know that Mn is isometric to the hyperbolic cylinder H1(c1)×
Hn−1(c2), where 1

c1
+ 1

c2
= 1

c , c1 < 0, c2 < 0.
(3) For c > 0 and H2 ≥ c, if (i) S ≤ (n − 1)t22 + c2t−2

2 or (ii)
(n− 1)t22 + c2t−2

2 ≤ S ≤ (n− 1)t21 + c2t−2
1 , then by the same assertion in

the proof of (2), we can also prove that $(s), λ and µ are constants; that
is, Mn is isoparametric. By the congruence Theorem of Abe et al. [1], we
know that Mn is isometric to the hyperbolic cylinder H1(c1)×Sn−1(c2)
or the spherical cylinder Hn−1(c1)× S1(c2), where 1

c1
+ 1

c2
= 1

c , c1 < 0,
c2 > 0. This completes the proof of the Main Theorem. �
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