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HYPERSURFACES WITH CONSTANT MEAN
CURVATURE IN A LORENTZIAN SPACE FORM

S. SHU* AND A. YI HAN

Communicated by Karsten Grove

ABSTRACT. We give some characterizations of n dimensional (n >
2) hyperbolic cylinder, spherical cylinder or Euclidean cylinder in
a Lorentzian space form. We show that the hyperbolic cylinder,
spherical cylinder or Euclidean cylinder is the only complete space-
like hypersurface in an (n+1) dimensional Lorentzian space form
M7 (¢) with non-zero constant mean curvature and two distinct
principal curvatures one of which is simple, if the norm square of the
second fundamental form of M™ satisfies some pinching conditions,
respectively.

1. Introduction

By an (n + 1) dimensional Lorentzian space form M} (c) we mean
a Minkowski space R’f“, a de Sitter space S’f“(c) or an anti-de Sitter
space H{LH(C), according to ¢ > 0, ¢ = 0 or ¢ < 0, respectively. That is,
a Lorentzian space form M7 (¢) is a complete connected (n+1) dimen-
sional Lorentzian manifold with constant curvature c¢. A hypersurface
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in a Lorentzian manifold is said to be space-like if the induced metric
on the hypersurface is positive definite.

In connection with the negative settlement of the Bernstein problem
due to Calabi [3], Cheng and Yau [4], and Chouque-Bruhat et al. [5]
proved the following theorem independently.

Theorem 1.1 ([4, 5] ). Let M™ be a complete space-like hypersurface
in an (n+1) dimensional Lorentzian space form M (c), ¢ > 0. If M™
is maximal, then it is totally geodesic.

Ishihara [7] also proved the following well-known result.

Theorem 1.2 ([7]). If M™ is an n dimensional (n > 2) complete
mazimal space-like hypersurface in anti-de Sitter space H{"H(—l), then,

(1.1) S <n,

and S = n if and only if M" = H™ (=) x H"™™(—-L—-) (1 <m <

n—m
n—1), where S denotes the norm square of the second fundamental form
of M.

As a generalization of Theorem 1.1, complete space-like hypersurfaces
with constant mean curvature in a Lorentz manifold have been investi-
gated by many mathematicians; see [2,6,8,10,12 ,13]. Ki et al. [9] proved
the following result.

Theorem 1.3 ([9]). Let M™ be a complete space-like hypersurface with
constant mean curvature in an (n+1) dimensional Lorentzian space form
M{‘H(c). If M™ satisfies one of the following properties,

(1) e<oO,

(2) ¢>0,n >3 and n2H? > 4(n — 1)e,

(3) ¢>0,n=2and H? > c,
then,

SH? n(n — 2)
Y P2

(1.2) S < —net — Vn2H%Y — 4(n — 1)cH?,
2(n—1

where S denotes the norm square of the second fundamental form of M.
From Ki et al. [9], we know that the well-known standard mod-
els of complete space-like hypersurfaces with non-zero constant mean
curvature in an (n+1) dimensional Lorentzian space form M (c) are

the totally umbilical space-like hypersurfaces and the following product
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manifolds:
H*(¢1) x R*F

1
:ﬂ@wemﬂzRﬁwah|wz—;>m,
1

where ¢; < 0 and k = 1,--- ,n — 1. We note that H*(c;) x R** in
R’f“ has two distinct principal curvatures \/—c; with multiplicity &
and 0 with multiplicity n — k and S = %n2H 2,

H*(e1) x 8" (e2) = {(2,y) € S77H(0)

1 1
2 k41 —k+1 2 2
CRQH_ :R1+ x R" * : |J"’ :_77‘y| :7}7
c1 C2
Whereé—FéZ%,cl<0702>Oandk::1,~~-,n—1. We note

that H"(c1) x S"*(c2) in S7*(c) has two distinct principal curvatures

v/ ¢ — ¢1 with multiplicity £ and /¢ — ¢ with multiplicity n — k and
n3H? n(n — 2k

2k(n — k) 2k(n—k

S =—-nc+

;H\/TLQHQ —4k(n — k)e,

Hk(C]_)XHn_k(CQ) ={(z,y) € H{Hl(c)
1 1
CREP= R x B = L=,
C1 C9

where % + é = %,cl <0,co <0and k=1,---,n—1. We note that
H*(c1) x H" *(cg) in H""'(¢) has two distinct principal curvatures
++/c — ¢; with multiplicity k¥ and F+/c — co with multiplicity n — k£ and

n3H? n(n — 2k)
2k(n — k) 2k(n—k)

From Ki et al. [9], H'(c1) x S" (e2), HY(c1) x R*1 or H'(¢p) x
H"(cy) is, in particular, called a hyperbolic cylinder in S{‘H(C), R7f+1
or H'"™ (c); H"(c1) x S'(eg) or H™"!(e1) x R is also called a spherical
cylinder or Euclidean cylinder in ST (c) or R7™. The norm square of

the second fundamental form of a hyperbolic cylinder H'(c1) x R~ ! or
Euclidean cylinder H"'(c;) x R' in R} satisfies:

S =—-nc+ H+/n2H? — 4k(n — k)c.

n2H?

1. =n’H? =—;
(1.3) S=n*H* or S pe—E
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the norm square of the second fundamental form of a hyperbolic cylinder
H'(c1) x 8" !(cg) or spherical cylinder H"(c1) x S*(c2) in ST+ (c) or
a hyperbolic cylinder H'(c1) x H" (c2) in H"™ (c) satisfies:
3172
n°H n(n —2
1.4 =— +

(14) S= et o oo
Denote by P (t) the following polynomial,

(1.5) Py (t) = (n — 1)t* — nHt + .

§H¢Mﬂﬂ—qn—na

By a direct calculation, we know that (1.5) has two real roots:

_ nH — /n?H? —4(n—1)c b nH + /n2H? — 4(n — 1)c

B 2(n—1) » 2 2(n—1)

For ¢ =0, t; =0 and t3 > 0; for ¢ < 0, t; < 0 and to > 0; for ¢ > 0 and

H? > ¢ (which implies n? H? > 4(n—1)c), t; > 0 and t2 > 0. Therefore,
we realize that (1.3) and (1.4) may be rewritten as follows:

ty

(1.6) S=n?H? or §=(n—1)t3, for ¢=0,

(1.7)

S=(n-Dt4+c7% or S=(n—1)ti+c2;2 for c<0 and ¢ >0,
and

(1.8) (n— 1)t3 + Pty? < (n— 1)t + 22

Here, we investigate complete hypersurfaces with constant mean cur-
vatures in a Lorentzian space form M}"*!(c) and give some characteri-
zation of n dimensional (n > 2) hyperbolic cylinder H'(c1) x S" 1(ca),
H'(c1) x R or H'(¢c1) x H" Y(c2) in M}"*!(c) and spherical cylinder
H" (c1) x S'(cg) or Buclidean cylinder H" !(¢;) x R' in S7(c) or
R?'H. More precisely, we obtain the following result.

Main Theorem. Let M™ be an n dimensional (n > 2) complete
space-like hypersurface in an (n+1) dimensional Lorentzian space form
M (c) with non-zero constant mean curvature and two distinct prin-
cipal curvatures, one of which X\ is simple and limg_,oo A # H. Then,
(1) forc =0, (i) M™ is isometric to the Euclidean cylinder H"~(c1)x
RY, ¢1 <0, if S < (n—1)t3, and (ii) M™ is isometric to the hyperbolic
cylinder H'(c1) x R"~ or Euclidean cylinder H" '(c1) x R, ¢; <0 if
(n—1)t3 < S <n?H?,
where ty is the positive real root of (1.5).
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(2) For ¢ < 0, M"™ is isometric to the hyperbolic cylinder H'(c1) x
H" (), é + é = %, c1 <0, ca <0 if one of the following conditions
1s satisfied:

(i) S < (n—1)3 + %52, or

(i1) (n— V)3 + 2,2 < S < (n— 1)} + 2,2,
where t1 is the negative real root and to the positive real root of (1.5).

(3) For ¢ >0 and H? > ¢, M™ is isometric to the hyperbolic cylinder
H'(c1) x S Y(cg) or spherical cylinder H"1(c1) x St(cy), % + é =1
c1 <0, ca > 0 if one of the following conditions is satisfied:

(i) S < (n—1)t3 + 252, or

(i1) (n — D)3+ 252 < S < (n— 1)t + 212,
where t1 and ta are the two positive real Toots of (1.5).

2. Preliminaries

Let M™ be an n dimensional space-like hypersurface in an (n+1) di-
mensional Lorentzian space form M{"!(¢). We choose a local field of
semi-Riemannian orthonormal frames {ey,--- ,en1} in M (c) such
that at each point of M™, {e1,---,e,} span the tangent space of M"
and form an orthonormal frame there. We use the following convention
on the range of indices:

1§A7B707§n+17 1§1737k7§n
Let {w1,- -+ ,wnt1} be the dual frame field so that the semi-Riemannian
metric of M (c) is given by: ds? = Y w? — w2 | = Y eaw?, where
i A
€ = 1 and €En+1 = —1.
The structure equations of M7 (¢) are given by

(2.1) dWA:ZGBWAB ANwp, wap+wpa =0,
B

(2.2) dwap =) eowac Awos + Qas,
c

where,

1
(2.3) Qap = 3 CZDKABCDWC A WD,

(2.4) Kapcp = €a€pc(0acOBp — 0ADOBC)-
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Restricting these forms to M™, we have,

(2.5) wpt1 = 0.
Cartan’s Lemma implies:
(2.6) Wn41,4i = Z hija)j, hij = hji.
J
The structure equations of M™ are:
(2.7) dw; = Zwij A wj, wij + wj; = 0,
J
1
(2.8) dwij = Zwik N Wi — 5 Z Rijklwk N wy,
k k.l
(2.9) Rijrt = c(0dji — 6udjn) — (hirhji — hahj),
where the R;;j; are the components of the curvature tensor of M and
(2.10) h = Z h,-jwi ® Wy
,J

is the second fundamental form of M.
From the above equation, we have,

(2.11) n(n—1)(R—c) =S —n’H?,

where n(n — 1) R is the scalar curvature of M, H is the mean curvature,
and S =) hfj is the norm square of the second fundamental form of

. Y]
We choose ey, - -, e, such that h;; = \;jd;;. From (2.6), we have,
(212) Wn+l,i = )\iwi, 1= 1, 2, ey N.
Hence, we have from the structure equations of M™,
dwpy1; = dX Awi+ Aidw;
(2.13) = d\i Nw; +)\izwij A wj.
J

On the other hand, we have on the curvature forms of M+ (c),

Qi1 = —3 > Kptricpwe Awp

C,.D
(2.14) = 33 c(6nt1¢0iD — Sn+100ic)we Awp
C,D

= cwpy1 ANw; =0.
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Therefore, from the structure equations of M{LH(C), we have,

dwni1i = D Wnt1j AWji — Wnging1 A wWngti + Qngi
2.15 J
( ) = Z )\jwij AN wj.
J

From (2.13) and (2.15), we obtain:

(2.16) d\i Awi + Y (A = Aj)wij Awj = 0.
J

Letting

(2.17) Vi = (A — Aj)wij,

we have v;; = 1;;. Equation (2.16) can be written as:

(2.18) Z(wz] + 5¢jd)\j) Nwj = 0.

J

By Cartan’s Lemma, we get

(2.19) Vij + 0i5dN; = ZQijkwk,
k

where the ();;; are uniquely determined functions such that

(2.20) Qijk = Qikj-
3. Proof of Main Theorem

We firstly state a proposition which can be proved by making use of
the similar method due to Otsuki [11] for Riemannian space forms.

Proposition 3.1. Let M be a hypersurface in an (n+1) dimensional
Lorentzian space form M{‘H(c) such that the multiplicities of the prin-
cipal curvatures are constant. Then, the distribution of the space of the
principal vectors corresponding to each principal curvature is completely
integrable. In particular, if the multiplicity of a principal curvature is
greater than 1, then this principal curvature is constant on each inte-
gral submanifold of the corresponding distribution of the space of the
principal vectors.
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Let M™ be an n dimensional complete oriented space-like hypersurface
with non-zero constant mean curvature and with two distinct principal
curvatures, one of which is simple. We can choose an orientation for M"™
such that H > 0. Without loss of generality, we may assume,

A=X== 1=\ A=y
where \; for ¢ = 1,2, -+ ,n are the principal curvatures of M"™. There-
fore, we know that
(3.1) (n—DX+p=nH, S=(n—-1)A\+u°
We have,
(3.2) w=nH—(n—-1)\
From

A—p=nA—H)#0,
we get A — H # 0.
1
Let w = |A—H| =». We denote the integral submanifold through z € M™"
corresponding to A by Mffl(x). Let

(3.3) AN=D Npwr, A=Y g wp-
k=1 k=1

From Proposition 3.1, we have,

(3.4) M=Aa=-=X\p_1=0 on M} *(x).

From (3.2), we have,

(3.5) dp = —(n—1)dA.

Hence, we also have,

(3.6) pa=fpa="=pn1=0 on M ().

In this case, we may locally consider A to be a function of the arc length s
of the integral curve of the principal vector field e,, corresponding to the
principal curvature p. From (2.19) and (3.4), we have, for 1 < j <mn-—1,

dA = dAj= )7 Qjjrwr
k=1
n—1

(3.7) B
= > Qjjrwk + Qjjnwn = Ay wp.
k=1
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Therefore, we have,
(3.8) Qi =0, 1<k<n—1, and Qjjn = A\
By (2.19) and (3.6), we have,

A = A= Quuwn
(3.9) et n

= kz::1 QnnkWk + Qunnwn = Z; [yi Wi = [y Wn.

Hence, we obtain:
(3.10) Qunk =0, 1<k<n-—1, and Qnnn = iy -
From (3.5), we get
(3.11) Qnnn = piyn=—(n —1)A,,, .

From the definition of v;;, if ¢ # j, we have 9;; = 0, for 1 <i <n — 1,
and 1 < j < n — 1. Therefore, from (2.19), if i # 7, 1 <i<n—1 and
1 <j<n-—1, we have,

(3.12) Qijr = 0, for any k.
By (2.19),(3.8),(3.10),(3.11) and (3.12), we get

Vjn = kZ QjnkWr
=1
= ijnwj + annwn = wj.
From (2.19),(3.2)and (3.13), we have,

o Qp]n - )‘771 Wi — )‘an Y
w]n_)\f,u_)\f,u T AN—-H)"

Therefore, from the structure equations of M™, we have,

(3.13)

(3.14)

n—1
dw, = Zwk/\wknernn/\wn =0.
k=1
Therefore, we may put w, = ds. By (3.7) and (3.9), we get

dX

A\ = A\, ds, An = —,
@ ds

and

dp
d,UJ:,LL,ndS, Hon = E
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Then, we have,

1
& d{log|A—H|"}
M AN—-H)? ds 7

(3.15)

Equation (3.15) shows that the integral submanifold M} ~!(z) corre-
sponding to A and s is umbilical in M™ and M (c).
From (3.15) and the structure equations of M{""!(c), we have,

n—1
dwijn, = Z Wik A Wkn + Win A Wnpn — Wing1 A Wnpin + Qjn

k=1
n—1

= ijk N Wikn — Wintl N Wniln — CWj AWy
k=1
d{log |\ — H|"} =

= 7 ijk Awy — (¢ — Ap)wj A ds.

k=1

From (3.15), we have,

_ d*{log|\— H|n}

1
d{log |\ — H|»
, dflog |\~ HJ3)

dwij, = 752 ds A\ w Is dw;
d*{log |\ — H|n} d{log |\ — H|n} ¢
= 152 ds A wj + ds ijk: N Wi
k=1
d*{log |\ — H|n}  d{log|\ — H|n},
={- 152 + [ I “}w; Ads
d{log|X — H|"} =
+ ds ijk N wg.

k=1

From the above two equalities, we have,

d*{log|\ — H|w} {d{logu—m%}
ds? ds

(3.16) 12— (c— ) = 0.

From (3.2), we get
(3.17)

1 1
F{log A~ H|') _ dflog|A— HIE}

— 2_ —
552 I {(n—=1)A—nHX+c} =0.
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Since we define w = |\ — H|_%, then we obtain from the above
equation,
d*w 2
s

We can now prove the following lemmas.

Lemma 3.2. Let
Py (t) = (n — 1)t* — nHt + c.

Then, for ¢ <0 orc >0 and H? > ¢, Py (t) has two real roots t1 and
to and

(1) ift > H, then t > ta holds if and only if Pg(t) > 0 and t < to
holds if and only if Py (t) <O0.

(2) If t < H, then t > t1 holds if and only if Py(t) <0 and t < t;
holds if and only if Py (t) > 0, where for ¢ =0, t; = 0 and ty > 0, for
c<0,t; <0 andty >0, forc>0 and H> > ¢, t; > 0 and t3 > 0.

Proof. We have,
APy (1)
dt
It follows that the solution of deLt(t) =0istyg = 2(271_{1) > 0. Therefore,
we know that ¢ < ¢y if and only if Py (t) is a decreasing function, ¢t > ¢y if
and only if Py (t) is an increasing function and Py (t) obtain its minimum
at t ={y.

Since Py (t) is continuous and P (tg) = ¢ — %
that P (t) has two distinct real roots ¢; and to with ¢; < ty < to. From
Py (0) = ¢, we infer that for ¢ =0, t; =0 and t3 > 0, for ¢ < 0, t; <0
and ty > 0, for ¢ > 0 and H? > ¢, t; > 0 and t5 > 0.

Since to < H and Py(H) = ¢ — H? < 0, then we know that H < ts.
In fact, if H > to, then from the increasing property of Py (t), we have
Py (H) > Py (t2) = 0, which is a contraction.

Now, we prove the second part of Lemma 3.2. If ¢t > H, then from the
increasing property of Py (t), we obtain that ¢ > t5 holds if and only if
PH(t) > PH(tQ) =0andt < tz holds if and only if PH(t) < PH(tQ) =0.

If t < H, then from the decreasing property of Py(t), we directly
obtain that ¢ < ¢; holds if and only if Py (t) > Py (t1) =0.

Now, we consider the case t < H and t > t;. From ¢t > t1, we have
t € [t1,to] or t € [to, H]. If t € [t1,10], then from the decreasing property
of Py (t), we infer that Py (t) < Pg(t1) = 0; if t € [to, H], then from

=2(n—1)t—nH.

< 0, then we infer
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the increasing property of P (t), we infer that Py (t) < Py(H) < 0.
Hence, if ¢t > t;, then Py (t) < 0. On the other hand, if Py(t) < 0,
then by ¢t < H, we can prove t > t1. In fact, if ¢ < t;, then from
the decreasing property of Py (t), we infer that Py(t) > Py(t1) = 0,
which is a contradiction to having Py (t) < 0. Therefore, if ¢ < H, then
t > t1 holds if and only if Py (t) < 0. The proof of the lemma is now
complete. O

Lemma 3.3. Let
S(t) = (n— Dt* 4+ [nH — (n — 1)t]%
(1) If t > H, then t > to holds if and only if S(t) > S(t2) and t < ty
holds if and only if S(t) < S(tq).
(13) If t < H, then t > t1 holds if and only if S(t) < S(t1) and t < t;
holds if and only if S(t) > S(t1), where t1 and to are the two distinct
real roots of Py (t) and t; < to.

Proof. We have,

ds(t
“Zi) — 9n(n —1)(t — H).
It follows that the solution of %l(tt) = 01is t = H. Therefore, t < H if

and only if S(¢) is a decreasing function, t > H if and only if S(¢) is an
increasing function and S(¢) obtain its minimum at ¢t = H.

From the proof of Lemma 3.2, we know that ¢t; < H < t5. Since
t > H if and only if S(¢) is an increasing function, then we infer that if
t > H, then ¢ > t5 holds if and only if S(t) > S(t2) and ¢ < ¢ holds if
and only if S(t) < S(t2).

If t < H, then from the decreasing property of S(t), we directly have
t > t; holds if and only if S(t) < S(t1) and ¢ < ¢; holds if and only if
S(t) > S(t1). The proof of the lemma is now complete. O

Proof of Main Theorem. Putting ¢t = A, from (3.18), we have,

d*w
(3.19) ) + wPy(t) = 0.
Since
A—p=n(t—H)#0,
then we have, t — H # 0.
(1) For ¢ =0,
(i) if S < (n — 1)t2, then we consider two cases t > H and t < H:
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Case t > H: Since S(t2) = (n — 1)t2, then from Lemma 3.2, Lemma
3.3 and (3.19), we have S(t) < (n — 1)t2 = S(t2) holds if and only if
t < t9 if and only if Py(t) < 0 and if and only if ‘fif > 0. Thus,
4% is a monotonic function of s € (—o0, +00). Therefore, by the similar
assertion in Wei [14], we have that w(s) must is monotonic when s tends
to infinity. From the definition of w(s) and lims_,oc A # H, we infer
that the positive function w(s) is bounded. Since w(s) is bounded and
monotonic, when s tends to infinity, we know that both lim,_, o w(s)
and limg_, ;o w(s) exist and then we get

im 92 _ gy )
s——oo ds s—+oo  ds
From the monotonicity of dw(s), we have dz(s) = 0 and w(s) =constant.

From w = |\ — HF% and (3.1), we have A and p are constants; that is,
M™ is isoparametric. Therefore, by the congruence Theorem of Abe et
al. [1], M™ is isometric to the Euclidean cylinder H" !(c;) x R!, where
c1 <0.

Case t < H: Since S(t2) = (n — 1)t3 = ”:ff < n?H? = S(t1), then
we have S < S(t1). From Lemma 3.2, Lemma 3.3 and (3.19), we have
S(t) < S(tl) holds if and only if ¢ > ¢; if and only if Py (t) < 0 and if and
only if d % > 0. Thus, d—w is a monotonic function of s € (—o0,400).
By the same assertion as above, we know that M™ is isometric to the
Euclidean cylinder H"(c;) x R!, where ¢; < 0.

(i3) If (n — 1)t3 < S < n?H?, we also consider two cases t > H and
t<H.

Case t > H: Since S > (n — 1)t3 = S(t2), then from Lemma 3.2,
Lemma 3.3 and (3.19), we have S(t) > S(t2) holds if and only if ¢ > o
if and only if Pg(t) > 0 and if and only if ©2 < 0. Thus, 92 is a

monotonic function of s € (—o0,+00). Combining ‘ZS? < 0 with the
boundedness of w(s), similar to the proof of (i), we know that w(s), A
and p are constants, that is, M™ is isoparametric. By the congruence
Theorem of Abe et al. [1], we know that M™ is isometric to the hyper-
bolic cylinder H'(c;) x R"! or the Euclidean cylinder H" !(c1) x R!,
where ¢1 < 0.

Case t < H: Since S < n?’H? = S(t1), from Lemma 3.2, Lemma 3.3
and (3.19), we have S(t) < S(tl) holds if and only if ¢ > t1 if and only if
Py (t) <0 and if and only if £F d % > 0. Thus, 22 is a monotonic function
of s € (—o0,+00). By the same assertion as above we know that M"™
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is isometric to the hyperbolic cylinder H'(c;) x R"~! or the Euclidean
cylinder H"'(¢;) x R', where ¢; < 0.

(2) For ¢ < 0, (i) if S < (n—1)t3+ %52, we consider two cases t > H
and t < H.

Case t > H: Since

S(ty) = (n — 1)t3 + [nH — (n — 1)t3)?
=(n—-Dt3+[nH—(n— 1)ty — — + —

1
= (= DB +{ln— 1) —nHtz +d + tﬁ}2
2 2

-1 c
= (n—1)t3 +{—Pu(t2) + —}

to to
= (n—1)t5 + 252,

Then from Lemma 3.2, Lemma 3.3 and (3.19), we have S(t) < S(t2)
holds if and only if ¢ < ¢ if and only if Py (t) < 0 and if and only if
Cﬁ;? > 0. Thus, £2 is a monotonic function of s € (—o00,+00). By
the same assertion in the proof of (1), we know that w(s), A and u are
constants; that is, M™ is isoparametric. By the congruence Theorem of
Abe et al. [1], we know that M™ is isometric to the hyperbolic cylinder
H'(c1) x H" (cg), where % + é =1<0e<o.

Case t < H: By a direct calculation, we have S(t1) = (n—1)t] +c*t; 2.
From (1.8), we have S(t2) < S(¢1). Hence, we obtain that S < S(¢1).
From Lemma 3.2, Lemma 3.3 and (3.19), we have S(¢) < S(¢1) holds if
and only if ¢ > #; if and only if Py(t) < 0 and if and only if % > 0.
Thus, 42 is a monotonic function of s € (—oo,+00). By the same
assertion as above, we know that M™ is isometric to the hyperbolic

cylinder H'(¢1) x H" 1(cz), where % + é =1 c<0,<0.

c?

(i) If (n — 1)t + 252 < S < (n— 1)t} +c*t; %, then we consider two
casest > H and t < H.

Case t > H: Since S > (n — 1)t3 + c?*t5 2 = S(t2), then from Lemma
3.2, Lemma 3.3 and (3.19), we have S(t) > S(t2) holds if and only if
t > ty if and only if Py(t) > 0 and if and only if ©% < 0. Thus, 2= is
a monotonic function of s € (—oo, +00). Similar to the proof of (1), we
know that w(s), A and p are constants; that is, M™ is isoparametric. By
the congruence Theorem of Abe et al. [1], we know that M™ is isometric
to the hyperbolic cylinder H'(c;) x H"(¢3), where é + é =1 ¢ <0,
co < 0.
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Case t < H: Since S < (n — 1)t3 + c*t7? = S(t1), then from Lemma
3.2, Lemma 3.3 and (3.19), we have S(¢) < S(¢1) holds if and only if
t > t; if and only if Py(t) < 0 and if and only if dw > 0. Thus,

ds?
‘é—f is a monotonic function of s € (—o0, 400). By the same assertion as
above, we know that M™ is isometric to the hyperbolic cylinder H'(c;) x
H" 1(cy), where % + é = %, c1 <0, ca <O.

(3) For ¢ > 0 and H? > ¢, if (i) S < (n — 1)t + 252 or (i)
(n—1)t3 + ;2 < S < (n— 1)t + 2%, then by the same assertion in
the proof of (2), we can also prove that w(s), A and p are constants; that
is, M™ is isoparametric. By the congruence Theorem of Abe et al. [1], we
know that M™ is isometric to the hyperbolic cylinder H!(c1) x S"~1(co)
or the spherical cylinder H"~!(c1) x S'(cz2), where é + é = %, c1 <0,
co > 0. This completes the proof of the Main Theorem. O
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