TOPOLOGICAL CENTERS OF THE N-TH DUAL OF MODULE ACTIONS

K. HAGHNEJAD AZAR* AND A. RIAZI

Communicated by Antony To-Ming Lau

ABSTRACT. We study the topological centers of nth dual of Banach \mathcal{A} -modules and we extend some propositions from Lau and Ülger into n-th dual of Banach $\mathcal{A}-modules$ where $n\geq 0$ is even number. Let \mathcal{B} be a Banach $\mathcal{A}-bimodule$. By using some new conditions, we show that $Z^{\ell}_{\mathcal{A}^{(n)}}(\mathcal{B}^{(n)})=\mathcal{B}^{(n)}$ and $Z^{\ell}_{\mathcal{B}^{(n)}}(\mathcal{A}^{(n)})=\mathcal{A}^{(n)}$. We get some conclusions on group algebras.

1. Introduction

Throughout this paper, \mathcal{A} is a Banach algebra and \mathcal{A}^* , \mathcal{A}^{**} , respectively, are the first and second dual of \mathcal{A} . A bounded net $(e_{\alpha})_{\alpha \in I}$ in \mathcal{A} is called a bounded left approximate identity (BLAI) [respectively bounded right approximate identity (BRAI)] if, for each $a \in \mathcal{A}$, $e_{\alpha}a \to a$ [respectively $ae_{\alpha} \to a$]. Moreover, (e_{α}) is called a (two sided) bounded approximate identity (BAI), if for every $a \in \mathcal{A}$, the conditions $e_{\alpha}a \to a$ and $ae_{\alpha} \to a$ both hold. For $a \in \mathcal{A}$ and $a' \in \mathcal{A}^*$, we denote by a'a and aa' respectively, the functionals on \mathcal{A}^* defined by $\langle a'a,b\rangle = \langle a',ab\rangle = a'(ab)$ and $\langle aa',b\rangle = \langle a',ba\rangle = a'(ba)$ for all $b \in \mathcal{A}$. The Banach algebra \mathcal{A} is embedded in its second dual via the identification $\langle a,a'\rangle - \langle a',a\rangle$ for every $a \in \mathcal{A}$ and $a' \in \mathcal{A}^*$. We denote the set $\{a'a: a \in \mathcal{A} \text{ and } a' \in \mathcal{A}^*\}$

 $\operatorname{MSC}(2010) \colon \operatorname{Primary:}\ 46 L06; \operatorname{Secondary:}\ 47 L25,\ 47 B47.$

Keywords: Arens regularity, bilinear mapping, topological center.

Received: 26 January 2010, Accepted: 17 August 2010.

*Corresponding author

^{© 2012} Iranian Mathematical Society.

and $\{aa': a \in \mathcal{A} \text{ and } a' \in \mathcal{A}^*\}$ by \mathcal{A}^*A and $A\mathcal{A}^*$, respectively. Clearly these two sets are subsets of A^* .

Let \mathcal{A} has a BAI. If the equality $\mathcal{A}^*\mathcal{A} = \mathcal{A}^*$, $(\mathcal{A}\mathcal{A}^* = \mathcal{A}^*)$ holds, then we say that \mathcal{A}^* factors on the left (right). If both equalities $\mathcal{A}^*\mathcal{A} = \mathcal{A}\mathcal{A}^* = \mathcal{A}^*$ hold, then we say that \mathcal{A}^* factors on both sides.

Let X, Y, Z be normed spaces and let $m: X \times Y \to Z$ be a bounded bilinear mapping. Arens in [1] offers two natural extensions m^{***} and m^{t***t} of m from $X^{**} \times Y^{**}$ into Z^{**} as follows

- 1. $m^*: Z^* \times X \to Y^*$, given by $\langle m^*(z',x), y \rangle = \langle z', m(x,y) \rangle$ where $x \in X, y \in Y, z' \in Z^*,$
- 2. $m^{**}: Y^{**} \times Z^* \to X^*$, given by $\langle m^{**}(y'',z'),x \rangle = \langle y'',m^*(z',x) \rangle$ where $x \in X, y'' \in Y^{**}, z' \in Z^*,$ 3. $m^{***}: X^{**} \times Y^{**} \to Z^{**}$, given by $\langle m^{***}(x'', y''), z' \rangle$
- $=\langle x'', m^{**}(y'', z')\rangle$ where $x'' \in X^{**}, y'' \in Y^{**}, z' \in Z^{*}$.

The mapping m^{***} is the unique extension of m such that

 $x'' \to m^{***}(x'', y'')$ from X^{**} into Z^{**} is $weak^*$ -to-weak* continuous for every $y'' \in Y^{**}$, but the mapping $y'' \to m^{***}(x'', y'')$ is not in general $weak^*$ -to- $weak^*$ continuous from Y^{**} into Z^{**} unless $x'' \in X$. Hence the first topological center of m may be defined as follows

$$Z_1(m) = \{x'' \in X^{**}: y'' \to m^{***}(x'', y'') \text{ is } weak^*\text{-to-weak}^*$$

$$continuous\}.$$

Now let $m^t: Y \times X \to Z$ be the transpose of m defined by $m^t(y,x) =$ m(x,y) for every $x \in X$ and $y \in Y$. Then m^t is a continuous bilinear map from $Y \times X$ to Z, and so it may be extended as above to m^{t***} : $Y^{**} \times X^{**} \to Z^{**}$. The mapping $m^{t***t}: X^{**} \times Y^{**} \to Z^{**}$ in general is not equal to m^{***} , see [1]. If $m^{***} = m^{t***t}$, then m is called Arens regular. The mapping $y'' \to m^{t***t}(x'', y'')$ is $weak^*$ -to-weak* continuous for every $y'' \in Y^{**}$, but the mapping $x'' \to m^{t***t}(x'', y'')$ from X^{**} into Z^{**} is not in general $weak^*$ -to- $weak^*$ continuous for every $y'' \in Y^{**}$. So we define the second topological center of m as

$$Z_2(m) = \{y'' \in Y^{**}: x'' \to m^{t***t}(x'', y'') \text{ is } weak^*\text{-to-weak}^*\}$$

continuous.

It is clear that m is Arens regular if and only if $Z_1(m) = X^{**}$ or $Z_2(m) =$ Y^{**} . Arens regularity of m is equivalent to the following

$$\lim_{i} \lim_{j} \langle z', m(x_i, y_j) \rangle = \lim_{j} \lim_{i} \langle z', m(x_i, y_j) \rangle,$$

whenever both limits exist for all bounded sequences $(x_i)_i \subseteq X$, $(y_i)_i \subseteq Y$ and $z' \in Z^*$, see [18].

The mapping m is left strongly Arens irregular if $Z_1(m) = X$ and m is right strongly Arens irregular if $Z_2(m) = Y$.

Now let \mathcal{B} be a Banach \mathcal{A} -bimodule, and let

$$\pi_{\ell}: \mathcal{A} \times \mathcal{B} \to \mathcal{B} \text{ and } \pi_{r}: \mathcal{B} \times \mathcal{A} \to \mathcal{B}.$$

be the left and right module actions of $\mathcal A$ on $\mathcal B$, respectively. Then $\mathcal B^{**}$ is a Banach $\mathcal A^{**}$ -bimodule with the following module actions where $\mathcal A^{**}$ is equipped with the left Arens product

$$\pi_{\ell}^{***}: \mathcal{A}^{**} \times \mathcal{B}^{**} \to \mathcal{B}^{**} \text{ and } \pi_{r}^{***}: \mathcal{B}^{**} \times \mathcal{A}^{**} \to \mathcal{B}^{**}.$$

Similarly, \mathcal{B}^{**} is a Banach \mathcal{A}^{**} -bimodule with the following module actions where \mathcal{A}^{**} is equipped with the right Arens product

$$\pi_{\ell}^{t***t}: \mathcal{A}^{**} \times \mathcal{B}^{**} \to \mathcal{B}^{**} \ and \ \pi_{r}^{t***t}: \ \mathcal{B}^{**} \times \mathcal{A}^{**} \to \mathcal{B}^{**}.$$

We may therefore define the topological centers of the left and right module actions of \mathcal{A}^{**} on \mathcal{B}^{**} as follows:

$$Z_{\mathcal{B}^{**}}(\mathcal{A}^{**}) = Z(\pi_{\ell}) = \{a'' \in \mathcal{A}^{**} : \text{ the map } b'' \to \pi_{\ell}^{***}(a'', b'') : \\ \mathcal{B}^{**} \to \mathcal{B}^{**} \text{ is weak}^* \text{-to-weak}^* \text{ continuous} \}$$

$$Z_{\mathcal{B}^{**}}^t(\mathcal{A}^{**}) = Z(\pi_r^t) = \{a'' \in \mathcal{A}^{**} : \text{ the map } b'' \to \pi_r^{t***}(a'', b'') : \\ \mathcal{B}^{**} \to \mathcal{B}^{**} \text{ is weak}^* \text{-to-weak}^* \text{ continuous} \}$$

$$Z_{\mathcal{A}^{**}}(\mathcal{B}^{**}) = Z(\pi_r) = \{b'' \in \mathcal{B}^{**} : \text{ the map } a'' \to \pi_r^{***}(b'', a'') : \\ \mathcal{A}^{**} \to \mathcal{B}^{**} \text{ is weak}^* \text{-to-weak}^* \text{ continuous} \}$$

$$Z_{\mathcal{A}^{**}}^t(\mathcal{B}^{**}) = Z(\pi_\ell^t) = \{b'' \in \mathcal{B}^{**} : \text{ the map } a'' \to \pi_\ell^{t***}(b'', a'') : \\ \mathcal{A}^{**} \to \mathcal{B}^{**} \text{ is weak}^* \text{-to-weak}^* \text{ continuous} \}.$$

We note that if \mathcal{B} is a left(respectively right) Banach \mathcal{A} -module and $\pi_{\ell}: \mathcal{A} \times \mathcal{B} \to \mathcal{B}$ (respectively $\pi_r: \mathcal{B} \times \mathcal{A} \to \mathcal{B}$) is left (respectively right) module action of \mathcal{A} on \mathcal{B} , then \mathcal{B}^* is a right (respectively left) Banach \mathcal{A} -module.

We write $ab = \pi_{\ell}(a, b)$, $ba = \pi_{r}(b, a)$, $\pi_{\ell}(a_{1}a_{2}, b) = \pi_{\ell}(a_{1}, a_{2}b)$, $\pi_{r}(b, a_{1}a_{2}) = \pi_{r}(ba_{1}, a_{2})$, $\pi_{\ell}^{*}(a_{1}b', a_{2}) = \pi_{\ell}^{*}(b', a_{2}a_{1})$, $\pi_{r}^{*}(b'a, b) = \pi_{r}^{*}(b', ab)$, for all $a_{1}, a_{2}, a \in \mathcal{A}$, $b \in \mathcal{B}$ and $b' \in \mathcal{B}^{*}$ when there is no confusion.

Regarding \mathcal{A} as a Banach \mathcal{A} -bimodule, the operation $\pi: \mathcal{A} \times \mathcal{A} \to \mathcal{A}$ extends to π^{***} and π^{t***t} defined on $\mathcal{A}^{**} \times \mathcal{A}^{**}$. These extensions are

known as the first(left) and the second (right) Arens products, respectively and in both cases, the second dual space \mathcal{A}^{**} becomes a Banach algebra. In this situation, we will also simplify our notations. So the first (left) Arens product of $a'', b'' \in \mathcal{A}^{**}$ will be simply denoted by a''b'' and will be defined by the following three steps:

$$\langle a'a, b \rangle = \langle a', ab \rangle,$$
$$\langle a''a', a \rangle = \langle a'', a'a \rangle,$$
$$\langle a''b'', a' \rangle = \langle a'', b''a' \rangle.$$

for every $a,b \in \mathcal{A}$ and $a' \in \mathcal{A}^*$. Similarly, the second (right) Arens product of $a'',b'' \in \mathcal{A}^{**}$ will be denoted by $a'' \circ b''$ and will be defined by :

$$\langle aoa', b \rangle = \langle a', ba \rangle,$$
$$\langle a' \circ a'', a \rangle = \langle a'', a \circ a' \rangle,$$
$$\langle a'' \circ b'', a' \rangle = \langle b'', a' \circ b'' \rangle,$$

for all $a, b \in \mathcal{A}$ and $a' \in \mathcal{A}^*$.

The regularity of a normed algebra \mathcal{A} is defined to be the regularity of its algebra multiplication when considered as a bilinear mapping. Let a'' and b'' be elements of \mathcal{A}^{**} . By Goldstine's Theorem [4, p.425] there are nets $(a_{\alpha})_{\alpha}$ and $(b_{\beta})_{\beta}$ in \mathcal{A} such that $a'' = weak^* - \lim_{\alpha} a_{\alpha}$ and $b'' = weak^* - \lim_{\beta} b_{\beta}$. So it is easy to see that for all $a' \in \mathcal{A}^*$, we have

$$\lim_{\alpha} \lim_{\beta} \langle a', \pi(a_{\alpha}, b_{\beta}) \rangle = \langle a''b'', a' \rangle,$$
$$\lim_{\beta} \lim_{\alpha} \langle a', \pi(a_{\alpha}, b_{\beta}) \rangle = \langle a''ob'', a' \rangle,$$

where a''b'' and $a'' \circ b''$ are the first and second Arens products of \mathcal{A}^{**} , respectively, see [14, 18].

We find the usual first and second topological center of A^{**} , which are

$$Z_{\mathcal{A}^{**}}(\mathcal{A}^{**}) = Z(\pi) = \{a'' \in \mathcal{A}^{**} : b'' \to a''b'' \text{ is } weak^*\text{-to-weak}^* \\ continuous\},$$

$$Z_{\mathcal{A}^{**}}^t(\mathcal{A}^{**}) = Z(\pi^t) = \{a'' \in \mathcal{A}^{**} : a'' \to a'' \circ b'' \text{ is } weak^*\text{-to-weak}^* \\ continuous\}.$$

An element e'' of \mathcal{A}^{**} is said to be a mixed unit if e'' is a right unit for the first Arens multiplication and a left unit for the second Arens multiplication. That is, e'' is a mixed unit if and only if, for each $a'' \in \mathcal{A}^{**}$, $a''e'' = e'' \circ a'' = a''$. By [4, p.146] an element e'' of \mathcal{A}^{**} is mixed unit if and only if it is a $weak^*$ cluster point of some BAI $(e_{\alpha})_{\alpha \in I}$ in \mathcal{A} .

A functional a' in \mathcal{A}^* is said to be wap (weakly almost periodic) on \mathcal{A} if the mapping $a \to a'a$ from \mathcal{A} into \mathcal{A}^* is weakly compact. Pym in [18] showed that this definition is equivalent to the following condition. For any two net $(a_{\alpha})_{\alpha}$ and $(b_{\beta})_{\beta}$ in $\{a \in \mathcal{A} : || a || \leq 1\}$, we have

$$\lim_{\alpha} \lim_{\beta} \langle a', a_{\alpha} b_{\beta} \rangle = \lim_{\beta} \lim_{\alpha} \langle a', a_{\alpha} b_{\beta} \rangle,$$

whenever both iterated limits exist. The collection of all wap functionals on \mathcal{A} is denoted by $wap(\mathcal{A})$. We also have $a' \in wap(A)$ if and only if $\langle a''b'', a' \rangle = \langle a'' \circ b'', a' \rangle$ for every a'', $b'' \in \mathcal{A}^{**}$.

This paper is organized as follows:

- a) Let \mathcal{B} be a Banach \mathcal{A} -bimodule. Let $n \geq 0$ be an even number and $0 \leq r \leq \frac{n}{2}$. Assume that $U_{n,r} = (\mathcal{A}^{(n-r)}\mathcal{A}^{(r)})^{(r)}$ or $U_{n,r} = (\mathcal{A}^{(n-r)}\mathcal{A}^{(r-1)})^{(r)}$ and $\phi \in U_{n,r}$. Then $\phi \in Z^{\ell}_{\mathcal{B}^{(n)}}(U_{n,r})$ if and only if $b^{(n-1)}\phi \in \mathcal{B}^{(n-1)}$ for all $b^{(n-1)} \in \mathcal{B}^{(n-1)}$.
- **b**) Let \mathcal{B} be a Banach $\mathcal{A}\text{-}bimodule.$ Then
 - (1) $b^{(n)} \in Z^{\ell}_{\mathcal{A}^{(n)}}(\mathcal{B}^{(n)})$ if and only if $b^{(n-1)}b^{(n)} \in \mathcal{A}^{(n-1)}$ for all $b^{(n-1)} \in \mathcal{B}^{(n-1)}$.
 - (2) If $\phi \in Z^{\ell}_{\mathcal{B}^{(n)}}(U_{n,r})$, then $a^{(n-2)}\phi \in Z^{\ell}_{\mathcal{B}^{(n)}}(\mathcal{A}^{(n)})$ for all $a^{(n-2)} \in \mathcal{A}^{(n-2)}$.
- **c**) Let \mathcal{B} be a Banach space such that $\mathcal{B}^{(n)}$ is weakly compact. Then for Banach \mathcal{A} -bimodule \mathcal{B} , we have the following assertions.
 - (1) Suppose that $(e_{\alpha}^{(n)})_{\alpha} \subseteq \mathcal{A}^{(n)}$ is a BLAI for $\mathcal{B}^{(n)}$ such that $e_{\alpha}^{(n)}\mathcal{B}^{(n+2)} \subseteq \mathcal{B}^{(n)}$,

for every α . Then \mathcal{B} is reflexive.

(2) Suppose that $(e_{\alpha}^{(n)})_{\alpha} \subseteq \mathcal{A}^{(n)}$ is a *BRAI* for $\mathcal{B}^{(n)}$ and

$$Z_{e^{(n+2)}}^{\ell}(\mathcal{B}^{(n+2)}) = \mathcal{B}^{(n+2)},$$

where $e_{\alpha}^{(n)} \stackrel{w^*}{\to} e^{(n+2)}$ in $\mathcal{A}^{(n)}$. If $\mathcal{B}^{(n+2)}e_{\alpha}^{(n)} \subseteq \mathcal{B}^{(n)}$ for every α , then $Z_{\mathcal{A}^{(n+2)}}^{\ell}(\mathcal{B}^{(n+2)}) = \mathcal{B}^{(n+2)}$.

- d) Assume that \mathcal{B} is a Banach \mathcal{A} -bimodule. Then
 - (1) $\mathcal{B}^{(n+1)}\mathcal{A}^{(n)} \subseteq wap_{\ell}(\mathcal{B}^{(n)})$ if and only if

$$\mathcal{A}^{(n)}\mathcal{A}^{(n+2)} \subseteq Z_{\mathcal{B}^{(n+2)}}^{\ell}(\mathcal{A}^{(n+2)}).$$

(2) If $\mathcal{A}^{(n)}\mathcal{A}^{(n+2)} \subseteq \mathcal{A}^{(n)}Z^{\ell}_{\mathcal{B}^{(n+2)}}(\mathcal{A}^{(n+2)})$, then

$$\mathcal{A}^{(n)}\mathcal{A}^{(n+2)}\subseteq Z_{\mathcal{B}^{(n+2)}}^{\ell}(\mathcal{A}^{(n+2)}).$$

- e) Let \mathcal{B} be a left Banach \mathcal{A} -bimodule and let $n \geq 0$ be an even number. Suppose that $b_0^{(n+1)} \in \mathcal{B}^{(n+1)}$. Then $b_0^{(n+1)} \in wap_{\ell}(\mathcal{B}^{(n)})$ if and only if the mapping $T: b^{(n+2)} \to b^{(n+2)}b_0^{(n+1)}$ form $\mathcal{B}^{(n+2)}$ into $\mathcal{A}^{(n+1)}$ is $weak^*$ -to-weak continuous.
- f) Let \mathcal{B} be a left Banach \mathcal{A} -bimodule. Then for $n \geq 2$, we have the following assertions.
 - (1) If $\mathcal{A}^{(n)} = a_0^{(n-2)} \mathcal{A}^{(n)}$ [respectively, $\mathcal{A}^{(n)} = \mathcal{A}^{(n)} a_0^{(n-2)}$] for some $a_0^{(n-2)} \in \mathcal{A}^{(n-2)}$ and $a_0^{(n-2)}$ has Rw^*w property [respectively Lw^*w property] with respect to $\mathcal{B}^{(n)}$, then $Z_{\mathcal{B}^{(n)}}(\mathcal{A}^{(n)}) = \mathcal{A}^{(n)}$.
 - (2) If $\mathcal{B}^{(n)} = a_0^{(n-2)} \mathcal{B}^{(n)}$ [respectively, $\mathcal{B}^{(n)} = \mathcal{B}^{(n)} a_0^{(n-2)}$] for some $a_0^{(n-2)} \in \mathcal{A}^{(n-2)}$ and $a_0^{(n-2)}$ has Rw^*w property [respectively Lw^*w property] with respect to $\mathcal{B}^{(n)}$, then $Z_{\mathcal{A}^{(n)}}(\mathcal{B}^{(n)}) = \mathcal{B}^{(n)}$.

2. Topological Centers of Module Actions

Suppose that \mathcal{A} is a Banach algebra and \mathcal{B} is a Banach \mathcal{A} -bimodule. According to [5, p.27-28] \mathcal{B}^{**} is a Banach \mathcal{A}^{**} -bimodule, where \mathcal{A}^{**} is equipped with the first Arens product. We recall the topological centers of module actions of \mathcal{A}^{**} on \mathcal{B}^{**} as follows.

$$Z^{\ell}_{\mathcal{A}^{**}}(\mathcal{B}^{**}) = \{b'' \in \mathcal{B}^{**} : \text{ the map } a'' \to b''a'' : \mathcal{A}^{**} \to \mathcal{B}^{**} \\ is \text{ weak*-to-weak* continuous}\}$$
$$Z^{\ell}_{\mathcal{B}^{**}}(\mathcal{A}^{**}) = \{a'' \in \mathcal{A}^{**} : \text{ the map } b'' \to a''b'' : \mathcal{B}^{**} \to \mathcal{B}^{**} \\ is \text{ weak*-to-weak* continuous}\}.$$

Let $\mathcal{A}^{(n)}$ and $\mathcal{B}^{(n)}$ be $nth\ dual$ of \mathcal{A} and \mathcal{B} , respectively. By [25, p. 4132-4134] if $n \geq 0$ is an even number, then $\mathcal{B}^{(n)}$ is a Banach $\mathcal{A}^{(n)}$ -bimodule. Then for $n \geq 2$, we define $\mathcal{B}^{(n)}\mathcal{B}^{(n-1)}$ as a subspace of $\mathcal{A}^{(n-1)}$, that is, for all $b^{(n)} \in \mathcal{B}^{(n)}$, $b^{(n-1)} \in \mathcal{B}^{(n-1)}$ and $a^{(n-2)} \in \mathcal{A}^{(n-2)}$ we define

$$\langle b^{(n)}b^{(n-1)}, a^{(n-2)}\rangle = \langle b^{(n)}, b^{(n-1)}a^{(n-2)}\rangle.$$

If n is odd number, we define $\mathcal{B}^{(n)}\mathcal{B}^{(n-1)}$ as a subspace of $\mathcal{A}^{(n)}$, that is, for all $b^{(n)} \in \mathcal{B}^{(n)}$, $b^{(n-1)} \in \mathcal{B}^{(n-1)}$ and $a^{(n-1)} \in \mathcal{A}^{(n-1)}$, we define

$$\langle b^{(n)}b^{(n-1)}, a^{(n-1)} \rangle = \langle b^{(n)}, b^{(n-1)}a^{(n-1)} \rangle.$$

If n = 0, we take $\mathcal{A}^{(0)} = \mathcal{A}$ and $\mathcal{B}^{(0)} = \mathcal{B}$.

We also define the topological centers of module actions of $\mathcal{A}^{(n)}$ on $\mathcal{B}^{(n)}$ as follows

$$\begin{split} Z^{\ell}_{\mathcal{A}^{(n)}}(\mathcal{B}^{(n)}) &= \{b^{(n)} \in \mathcal{B}^{(n)}: \ the \ map \ a^{(n)} \rightarrow b^{(n)}a^{(n)} \ : \ \mathcal{A}^{(n)} \rightarrow \mathcal{B}^{(n)} \\ & is \ weak^*\text{-}to\text{-}weak^* \ continuous} \} \\ Z^{\ell}_{\mathcal{B}^{(n)}}(\mathcal{A}^{(n)}) &= \{a^{(n)} \in \mathcal{A}^{(n)}: \ the \ map \ b^{(n)} \rightarrow a^{(n)}b^{(n)} \ : \ \mathcal{B}^{(n)} \rightarrow \mathcal{B}^{(n)} \\ & is \ weak^*\text{-}to\text{-}weak^* \ continuous} \}. \end{split}$$

Let \mathcal{A} be a Banach algebra with a (BAI) and suppose that $\mathcal{A}^{(n)}$ and $\mathcal{A}^{(m)}$ are the *nth dual* and *mth dual* of \mathcal{A} , respectively. Suppose that at least one of the integers n or m is an even number. Then we define the set $\mathcal{A}^{(n)}\mathcal{A}^{(m)}$ as a linear space that is generated by the following set

$$\{a^{(n)}a^{(m)}: a^{(n)} \in \mathcal{A}^{(n)} \text{ and } a^{(m)} \in \mathcal{A}^{(m)}\},$$

where the multiplication $a^{(n)}a^{(m)}$ is defined with respect to the first Arens product. If $n \geq m$, then $\mathcal{A}^{(n)}\mathcal{A}^{(m)}$ is a subspace of $\mathcal{A}^{(n)}$. Observe that $\mathcal{A}^{(n)}\mathcal{A}^{(m)}$ is Banach algebra whenever n and m are even numbers, but if one of them is an odd number, then $\mathcal{A}^{(n)}\mathcal{A}^{(m)}$ is not in general a Banach algebra.

Let $n \geq 0$ be an even number and $0 \leq r \leq \frac{n}{2}$. For a Banach algebra \mathcal{A} , we define a new Banach algebra $U_{n,r}$ with respect to the first Arens product as follows.

If r is an even (respectively odd) number, then we write $U_{n,r} = (\mathcal{A}^{(n-r)}\mathcal{A}^{(r)})^{(r)}$ (respectively $U_{n,r} = (\mathcal{A}^{(n-r)}\mathcal{A}^{(r-1)})^{(r)}$). It is clear that $U_{n,r}$ is a subalgebra of $\mathcal{A}^{(n)}$. For example, if we take n=2 and r=1, then $U_{2,1}=(\mathcal{A}^*\mathcal{A})^*$ is a subalgebra of \mathcal{A}^{**} with respect to the first Arens product.

Now if \mathcal{B} is a Banach \mathcal{A} -bimodule, then it is clear that $\mathcal{B}^{(n)}$ is a Banach $U_{n,r}-bimodule$ with respect to the first Arens product, for detail see [25]. Thus we can define the topological centers of module actions $U_{n,r}$ on $\mathcal{B}^{(n)}$ as $Z^{\ell}_{\mathcal{B}^{(n)}}(U_{n,r})$ and $Z^{\ell}_{U_{n,r}}(\mathcal{B}^{(n)})$ similar to the preceding definitions. In every parts of this paper, $n \geq 0$ is even number.

Theorem 2.1. Let \mathcal{B} be a Banach \mathcal{A} -bimodule and $\phi \in U_{n,r}$. Then $\phi \in Z^{\ell}_{\mathcal{B}^{(n)}}(U_{n,r})$ if and only if $b^{(n-1)}\phi \in \mathcal{B}^{(n-1)}$ for all $b^{(n-1)} \in \mathcal{B}^{(n-1)}$.

Proof. Let $\phi \in Z^{\ell}_{\mathcal{B}^{(n)}}(U_{n,r})$. Suppose that $(b_{\alpha}^{(n)})_{\alpha} \subseteq \mathcal{B}^{(n)}$ such that $b_{\alpha}^{(n)} \stackrel{w^*}{\to} b^{(n)}$ in $\mathcal{B}^{(n)}$. Then, for every $b^{(n-1)} \in \mathcal{B}^{(n-1)}$, we have

$$\langle b^{(n-1)}\phi,b_{\alpha}^{(n)}\rangle=\langle b^{(n-1)},\phi b_{\alpha}^{(n)}\rangle=\langle \phi b_{\alpha}^{(n)},b^{(n-1)}\rangle \rightarrow \langle \phi b^{(n)},b^{(n-1)}\rangle$$

$$=\langle b^{(n-1)}\phi, b^{(n)}\rangle.$$

It follows that $b^{(n-1)}\phi \in (\mathcal{B}^{(n)}, weak^*)^* = \mathcal{B}^{(n-1)}$.

Conversely, let $b^{(n-1)}\phi \in \mathcal{B}^{(n-1)}$ for every $b^{(n-1)} \in \mathcal{B}^{(n-1)}$ and suppose that $(b_{\alpha}^{(n)})_{\alpha} \subseteq \mathcal{B}^{(n)}$ such that $b_{\alpha}^{(n)} \xrightarrow{w^*} b^{(n)}$ in $\mathcal{B}^{(n)}$. Then

$$\begin{split} \langle \phi b_{\alpha}^{(n)}, b^{(n-1)} \rangle &= \langle \phi, b_{\alpha}^{(n)} b^{(n-1)} \rangle = \langle b_{\alpha}^{(n)} b^{(n-1)}, \phi \rangle = \langle b_{\alpha}^{(n)}, b^{(n-1)} \phi \rangle \\ &\rightarrow \langle b^{(n)}, b^{(n-1)} \phi \rangle = \langle \phi b^{(n)}, b^{(n-1)} \rangle. \end{split}$$

It follows that $\phi b_{\alpha}^{(n)} \xrightarrow{w^*} \phi b^{(n)}$, and so $\phi \in Z^{\ell}_{\mathcal{B}^{(n)}}(U_{n,r})$.

In the preceding theorem if we take $\mathcal{B}=\mathcal{A},\ n=2$ and r=1, we obtain Lemma 3.1 (b) of [14].

Theorem 2.2. Let \mathcal{B} be a Banach \mathcal{A} -bimodule and $b^{(n)} \in \mathcal{B}^{(n)}$. Then we have the following assertions:

- (1) $b^{(n)} \in Z^{\ell}_{\mathcal{A}^{(n)}}(\mathcal{B}^{(n)})$ if and only if $b^{(n-1)}b^{(n)} \in \mathcal{A}^{(n-1)}$ for all $b^{(n-1)} \in \mathcal{B}^{(n-1)}$.
- (2) If $\phi \in Z^{\ell}_{\mathcal{B}^{(n)}}(U_{n,r})$, then $a^{(n-2)}\phi \in Z^{\ell}_{\mathcal{B}^{(n)}}(\mathcal{A}^{(n)})$ for all $a^{(n-2)} \in \mathcal{A}^{(n-2)}$.
- Proof. (1) Let $b^{(n)} \in Z^{\ell}_{\mathcal{A}^{(n)}}(\mathcal{B}^{(n)})$. We show that $b^{(n-1)}b^{(n)} \in \mathcal{A}^{(n-1)}$ where $b^{(n-1)} \in \mathcal{B}^{(n-1)}$. Suppose that $(a_{\alpha}^{(n)})_{\alpha} \subseteq \mathcal{A}^{(n)}$ and $a_{\alpha}^{(n)} \xrightarrow{w^*} a^{(n)}$ in $\mathcal{A}^{(n)}$. Then we have

$$\begin{split} \langle b^{(n-1)}b^{(n)}, a_{\alpha}^{(n)} \rangle &= \langle b^{(n-1)}, b^{(n)}a_{\alpha}^{(n)} \rangle = \langle b^{(n)}a_{\alpha}^{(n)}, b^{(n-1)} \rangle \\ &\to \langle b^{(n)}a^{(n)}, b^{(n-1)} \rangle = \langle b^{(n-1)}b^{(n)}, a^{(n)} \rangle. \end{split}$$

Consequently, $b^{(n-1)}b^{(n)} \in (\mathcal{A}^{(n)}, weak^*)^* = \mathcal{A}^{(n-1)}$. It follows that $b^{(n-1)}b^{(n)} \in \mathcal{A}^{(n-1)}$.

Conversely, let $b^{(n-1)}b^{(n)} \in \mathcal{A}^{(n-1)}$ for each $b^{(n-1)} \in \mathcal{B}^{(n-1)}$. Suppose that $(a_{\alpha}^{(n)})_{\alpha} \subseteq \mathcal{A}^{(n)}$ and $a_{\alpha}^{(n)} \stackrel{w^*}{\to} a^{(n)}$ in $\mathcal{A}^{(n)}$. Then we

$$\begin{split} \langle b^{(n)} a_{\alpha}^{(n)}, b^{(n-1)} \rangle &= \langle b^{(n)}, a_{\alpha}^{(n)} b^{(n-1)} \rangle = \langle a_{\alpha}^{(n)} b^{(n-1)}, b^{(n)} \rangle \\ &= \langle a_{\alpha}^{(n)}, b^{(n-1)} b^{(n)} \rangle \to \langle a^{(n)}, b^{(n-1)} b^{(n)} \rangle = \langle b^{(n)} a^{(n)}, b^{(n-1)} \rangle. \end{split}$$

It follows that $b^{(n)}a_{\alpha}^{(n)} \xrightarrow{w^*} b^{(n)}a^{(n)}$, and hence $b^{(n)} \in Z^{\ell}_{\mathcal{A}^{(n)}}(\mathcal{B}^{(n)})$.

(2) Let $\phi \in Z^{\ell}_{\mathcal{B}^{(n)}}(U_{n,r})$ and $a^{(n-2)} \in \mathcal{A}^{(n-2)}$. Assume that $(b_{\alpha}^{(n)})_{\alpha} \subseteq \mathcal{B}^{(n)}$ such that $b_{\alpha}^{(n)} \xrightarrow{w^*} b^{(n)}$ in $\mathcal{B}^{(n)}$. Then for all $b^{(n-1)} \in \mathcal{B}^{(n-1)}$, we have

$$\langle (a^{(n-2)}\phi)b_{\alpha}^{(n)},b^{(n-1)}\rangle = \langle \phi b_{\alpha}^{(n)},b^{(n-1)}a^{(n-2)}\rangle \rightarrow$$

$$\begin{split} \langle \phi b^{(n)}, b^{(n-1)} a^{(n-2)} \rangle &= \langle (a^{(n-2)} \phi) b^{(n)}, b^{(n-1)} \rangle. \end{split}$$
 It follows that $(a^{(n-2)} \phi) b_{\alpha}^{(n)} \overset{w^*}{\to} (a^{(n-2)} \phi) b^{(n)}$, and hence
$$a^{(n-2)} \phi \in Z^{\ell}_{\mathcal{B}^{(n)}}(\mathcal{A}^{(n)}). \end{split}$$

In the preceding theorem, part (1), if we take $\mathcal{B} = \mathcal{A}$ and n = 2, we conclude Lemma 3.1 (a) of [14]. In part (2) of this theorem, if we take $\mathcal{B} = \mathcal{A}$, n = 2 and r = 1, we also obtain Lemma 3.1 (c) from [14].

Definition 2.3. Let \mathcal{B} be a Banach \mathcal{A} -bimodule and suppose that $a'' \in \mathcal{A}^{**}$. Assume that $(a''_{\alpha})_{\alpha} \subseteq \mathcal{A}^{**}$ such that $a''_{\alpha} \stackrel{w^*}{\to} a''$. If for every $b'' \in \mathcal{B}^{**}$, $b''a''_{\alpha} \stackrel{w^*}{\to} b''a''$, then we say that $a'' \to b''a''$ is weak*-to-weak* point continuous.

Suppose that \mathcal{B} is a Banach \mathcal{A} -bimodule. Assume that $a'' \in \mathcal{A}^{**}$. Then we define the locally topological center of a'' on \mathcal{B}^{**} as follows

$$Z_{a''}^{\ell}(\mathcal{B}^{**}) = \{b'' \in \mathcal{B}^{**}: \ a'' \to b''a'' \ is \ weak^*\text{-to-weak}^* \ point \\ continuous\}.$$

The definition of $Z_{b''}^{\ell}(\mathcal{A}^{**})$ where $b'' \in \mathcal{B}^{**}$ is similar. It is clear that

$$\bigcap_{a''\in\mathcal{A}^{**}} Z^{\ell}_{a''}(\mathcal{B}^{**}) = Z^{\ell}_{\mathcal{A}^{**}}(\mathcal{B}^{**}),$$

$$\bigcap_{b''\in\mathcal{B}^{**}} Z^{\ell}_{b''}(\mathcal{A}^{**}) = Z^{\ell}_{\mathcal{B}^{**}}(\mathcal{A}^{**}).$$

Let \mathcal{B} be a Banach space. Then $K \subseteq B$ is called weakly compact, if K is compact with respect to weak topology on \mathcal{B} . By [7], we know that K is weakly compact if and only if K is weakly limit point compact.

Theorem 2.4. Assume that \mathcal{B} is a Banach \mathcal{A} -bimodule such that $\mathcal{B}^{(n)}$ is weakly compact. Then we have the following assertions:

(1) Suppose that
$$(e_{\alpha}^{(n)})_{\alpha} \subseteq \mathcal{A}^{(n)}$$
 is a BLAI for $\mathcal{B}^{(n)}$ such that $e_{\alpha}^{(n)}\mathcal{B}^{(n+2)} \subseteq \mathcal{B}^{(n)}$,

for every α . Then \mathcal{B} is reflexive.

(2) Suppose that $(e_{\alpha}^{(n)})_{\alpha} \subseteq \mathcal{A}^{(n)}$ is a BRAI for $\mathcal{B}^{(n)}$ and $Z_{\alpha^{(n+2)}}^{\ell}(\mathcal{B}^{(n+2)}) = \mathcal{B}^{(n+2)},$

where $e_{\alpha}^{(n)} \stackrel{w^*}{\to} e^{(n+2)}$ in $\mathcal{A}^{(n)}$. If $\mathcal{B}^{(n+2)}e_{\alpha}^{(n)} \subseteq \mathcal{B}^{(n)}$ for every α , then $Z_{\mathcal{A}^{(n+2)}}^{\ell}(\mathcal{B}^{(n+2)}) = \mathcal{B}^{(n+2)}$.

- Proof. (1) Let $b^{n+2} \in \mathcal{B}^{(n+2)}$. Since $(e_{\alpha}^{(n)})_{\alpha}$ is a BLAI for $\mathcal{B}^{(n)}$, without loss generality, there is a left unit $e^{(n+2)} \in \mathcal{A}^{n+2}$ for $\mathcal{B}^{(n+2)}$ such that $e_{\alpha}^{(n)} \stackrel{w^*}{\to} e^{(n+2)}$ in $\mathcal{A}^{(n+2)}$, see [10]. Then we have $e_{\alpha}^{(n)}b^{(n+2)} \stackrel{w^*}{\to} b^{(n+2)}$ in $\mathcal{B}^{(n+2)}$. Since $e_{\alpha}^{(n)}b^{(n+2)} \in \mathcal{B}^{(n)}$, we have $e_{\alpha}^{(n)}b^{(n+2)} \stackrel{w}{\to} b^{(n+2)}$ in $\mathcal{B}^{(n)}$. We conclude that $b^{n+2} \in \mathcal{B}^{(n)}$, because $\mathcal{B}^{(n)}$ is weakly compact.
 - (2) Suppose that $b^{(n+2)} \in Z^{\ell}_{\mathcal{A}^{(n+2)}}(\mathcal{B}^{(n+2)})$ and $e^{(n)}_{\alpha} \stackrel{w^*}{\to} e^{(n+2)}$ in $\mathcal{A}^{(n)}$ such that $e^{(n+2)}$ is a right unit for $\mathcal{B}^{(n+2)}$, see [10]. Then we have $b^{(n+2)}e^{(n)}_{\alpha} \stackrel{w^*}{\to} b^{(n+2)}$ in $\mathcal{B}^{(n+2)}$. Since $\mathcal{B}^{(n+2)}e^{(n)}_{\alpha} \subseteq \mathcal{B}^{(n)}$ for every α , $b^{(n+2)}e^{(n)}_{\alpha} \stackrel{w}{\to} b^{(n+2)}$ in $\mathcal{B}^{(n)}$ and since $\mathcal{B}^{(n)}$ is weakly compact, $b^{(n+2)} \in \mathcal{B}^{(n)}$. It follows that $Z^{\ell}_{\mathcal{A}^{(n+2)}}(\mathcal{B}^{(n+2)}) = \mathcal{B}^{(n+2)}$.

Definition 2.5. Let \mathcal{B} be a Banach \mathcal{A} -bimodule and $n \geq 0$. Then $b^{(n+2)} \in \mathcal{B}^{(n+2)}$ is said to be weakly left almost periodic functional if the set

$$\{b^{(n+1)}a^{(n)}: a^{(n)} \in \mathcal{A}^{(n)}, \parallel a^{(n)} \parallel \le 1\},\$$

is relatively weakly compact, and $b^{(n+2)} \in \mathcal{B}^{(n+2)}$ is said to be weakly right almost periodic functional if the set

$$\{a^{(n)}b^{(n+1)}: a^{(n)} \in \mathcal{A}^{(n)}, \parallel a^{(n)} \parallel \le 1\},\$$

is relatively weakly compact. We denote by $wap_{\ell}(\mathcal{B}^{(n)})$ [respectively $wap_{r}(\mathcal{B}^{(n)})$] the closed subspace of $\mathcal{B}^{(n+1)}$ consisting of all weakly left [respectively right] almost periodic functionals in $\mathcal{B}^{(n+1)}$.

By [6, 14, 18], the definition of $wap_{\ell}(\mathcal{B}^{(n)})$ and $wap_{r}(\mathcal{B}^{(n)})$, respectively, are equivalent to the following:

$$wap_{\ell}(\mathcal{B}^{(n)}) = \{b^{(n+1)} \in \mathcal{B}^{(n+1)} : \langle b^{(n+2)} a_{\alpha}^{(n+2)}, b^{(n+1)} \rangle \rightarrow \langle b^{(n+2)} a^{(n+2)}, b^{(n+1)} \rangle \text{ where } a_{\alpha}^{(n+2)} \xrightarrow{w^*} a^{(n+2)} \}.$$

and

$$wap_{r}(\mathcal{B}^{(n)}) = \{b^{(n+1)} \in \mathcal{B}^{(n+1)} : \langle a^{(n+2)}b_{\alpha}^{(n+2)}, b^{(n+1)} \rangle \rightarrow \langle a^{(n+2)}b^{(n+2)}, b^{(n+1)} \rangle \text{ where } b_{\alpha}^{(n+2)} \xrightarrow{w^{*}} b^{(n+2)} \}.$$

If we take A = B and n = 0, then $wap_{\ell}(A) = wap_{r}(A) = wap(A)$.

Theorem 2.6. Assume that \mathcal{B} is a Banach \mathcal{A} -bimodule and $n \geq 0$. Then we have the following assertions:

(1)
$$\mathcal{B}^{(n+1)}\mathcal{A}^{(n)} \subseteq wap_{\ell}(\mathcal{B}^{(n)})$$
 if and only if

$$\mathcal{A}^{(n)}\mathcal{A}^{(n+2)} \subseteq Z^{\ell}_{\mathcal{B}^{(n+2)}}(\mathcal{A}^{(n+2)}).$$

(2) If
$$\mathcal{A}^{(n)}\mathcal{A}^{(n+2)} \subseteq \mathcal{A}^{(n)}Z^{\ell}_{\mathcal{B}^{(n+2)}}(\mathcal{A}^{(n+2)})$$
, then
$$\mathcal{A}^{(n)}\mathcal{A}^{(n+2)} \subseteq Z^{\ell}_{\mathcal{B}^{(n+2)}}(\mathcal{A}^{(n+2)}).$$

Proof. (1) Suppose that $\mathcal{B}^{(n+1)}\mathcal{A}^{(n)} \subseteq wap_{\ell}(\mathcal{B}^{(n)})$. Let $a^{(n)} \in \mathcal{A}^{(n)}$, $a^{(n+2)} \in \mathcal{A}^{(n+2)}$ and let $(b_{\alpha}^{(n+2)})_{\alpha} \subseteq \mathcal{B}^{(n+2)}$ such that $b_{\alpha}^{(n+2)} \xrightarrow{w^*} b^{(n+2)}$. Then for every $b^{(n+1)} \in \mathcal{B}^{(n+1)}$, we have

$$\langle (a^{(n)}a^{(n+2)})b_{\alpha}^{(n+2)},b^{(n+1)}\rangle = \langle a^{(n+2)}b_{\alpha}^{(n+2)},b^{(n+1)}a^{(n)}\rangle$$

$$\to \langle a^{(n+2)}b^{(n+2)}, b^{(n+1)}a^{(n)} \rangle = \langle (a^{(n)}a^{(n+2)})b^{(n+2)}, b^{(n+1)} \rangle.$$

It follows that $a^{(n)}a^{(n+2)} \in Z_{\mathcal{B}^{(n+2)}}^{\ell}(\mathcal{A}^{(n+2)}).$

Conversely, let $a^{(n)}a^{(n+2)} \in Z^{\ell}_{\mathcal{B}^{(n+2)}}(\mathcal{A}^{(n+2)})$ for every $a^{(n)} \in \mathcal{A}^{(n)}$, $a^{(n+2)} \in \mathcal{A}^{(n+2)}$. Suppose that $(b^{(n+2)}_{\alpha})_{\alpha} \subseteq \mathcal{B}^{(n+2)}$ such that $b^{(n+2)}_{\alpha} \stackrel{w^*}{\to} b^{(n+2)}$. Then for every $b^{(n+1)} \in \mathcal{B}^{(n+1)}$, we have

$$\langle a^{(n+2)}b_{\alpha}^{(n+2)}, b^{(n+1)}a^{(n)} \rangle = \langle (a^{(n)}a^{(n+2)})b_{\alpha}^{(n+2)}, b^{(n+1)} \rangle$$

$$\rightarrow \langle (a^{(n)}a^{(n+2)})b^{(n+2)}, b^{(n+1)} \rangle = \langle a^{(n+2)}b_{\alpha}^{(n+2)}, b^{(n+1)}a^{(n)} \rangle.$$

It follows that $\mathcal{B}^{(n+1)}\mathcal{A}^{(n)} \subseteq wap_{\ell}(\mathcal{B}^{(n)})$.

(2) Since $\mathcal{A}^{(n)}\mathcal{A}^{(n+2)} \subseteq \mathcal{A}^{(n)}Z^{\ell}_{\mathcal{B}^{(n)}}((\mathcal{A}^{(n+2)}), \text{ for every } a^{(n)} \in \mathcal{A}^{(n)}$ and $a^{(n+2)} \in \mathcal{A}^{(n+2)}, \text{ we have } a^{(n)}a^{(n+2)} \in \mathcal{A}^{(n)}Z^{\ell}_{\mathcal{B}^{(n+2)}}(\mathcal{A}^{(n+2)}).$ Then there are $x^{(n)} \in \mathcal{A}^{(n)}$ and $\phi \in Z^{\ell}_{\mathcal{B}^{(n+2)}}(\mathcal{A}^{(n+2)})$ such that $a^{(n)}a^{(n+2)} = x^{(n)}\phi$. Suppose that $(b^{(n+2)}_{\alpha})_{\alpha} \subseteq \mathcal{B}^{(n+2)}$ such that $b^{(n+2)}_{\alpha} \xrightarrow{w^*} b^{(n+2)}$. Then for every $b^{(n+1)} \in \mathcal{B}^{(n+1)}$, we have $(a^{(n)}a^{(n+2)})b^{(n+2)}b^{(n+2)} = ((x^{(n)}\phi)b^{(n+2)}b^{(n+1)})$

$$\begin{split} \langle (a^{(n)}a^{(n+2)})b_{\alpha}^{(n+2)},b^{(n+1)}\rangle &= \langle (x^{(n)}\phi)b_{\alpha}^{(n+2)},b^{(n+1)}\rangle \\ &= \langle \phi b_{\alpha}^{(n+2)},b^{(n+1)}x^{(n)}\rangle \to \langle \phi b^{(n+2)},b^{(n+1)}x^{(n)}\rangle \\ &= \langle (a^{(n)}a^{(n+2)})b^{(n+2)},b^{(n+1)}\rangle. \end{split}$$

In the preceding theorem, if we take $\mathcal{B} = \mathcal{A}$ and n = 0, we conclude Theorem 3.6 (a) of [14].

Theorem 2.7. Assume that \mathcal{B} is a Banach \mathcal{A} -bimodule and $n \geq 0$. If $\mathcal{A}^{(n)}$ is a left ideal in $\mathcal{A}^{(n+2)}$, then $\mathcal{B}^{(n+1)}\mathcal{A}^{(n)} \subseteq wap_{\ell}(\mathcal{B}^{(n)})$.

Proof. The proof is clear.

Theorem 2.8. Let \mathcal{B} be a left Banach \mathcal{A} -bimodule and $n \geq 0$ be an even number. Suppose that $b_0^{(n+1)} \in \mathcal{B}^{(n+1)}$. Then $b_0^{(n+1)} \in wap_{\ell}(\mathcal{B}^{(n)})$ if and only if the mapping $T: b^{(n+2)} \to b^{(n+2)}b_0^{(n+1)}$ form $\mathcal{B}^{(n+2)}$ into $\mathcal{A}^{(n+1)}$ is $weak^*$ -to-weak continuous.

Proof. Let $b_0^{(n+1)} \in \mathcal{B}^{(n+1)}$ and suppose that $b_{\alpha}^{(n+2)} \xrightarrow{w^*} b^{(n+2)}$ in $\mathcal{B}^{(n+2)}$. Then for every $a^{(n+2)} \in \mathcal{A}^{(n+2)}$, we have

$$\begin{split} \langle a^{(n+2)}, b_{\alpha}^{(n+2)} b_0^{(n+1)} \rangle &= \langle a^{(n+2)} b_{\alpha}^{(n+2)}, b_0^{(n+1)} \rangle \rightarrow \langle a^{(n+2)} b^{(n+2)}, b_0^{(n+1)} \rangle \\ &= \langle a^{(n+2)}, b^{(n+2)} b_0^{(n+1)} \rangle. \end{split}$$

It follows that $b_{\alpha}^{(n+2)}b_0^{(n+1)} \stackrel{w}{\to} b^{(n+2)}b_0^{(n+1)}$ in $\mathcal{A}^{(n+1)}$. The proof of the converse is similar to the preceding proof.

Corollary 2.9. Assume that \mathcal{B} is a Banach \mathcal{A} -bimodule. Then $Z_{\mathcal{A}^{(n+2)}}^{\ell}(\mathcal{B}^{(n+2)}) = \mathcal{B}^{(n+2)}$ if and only if the mapping $T: b^{(n+2)} \to b^{(n+2)}b_0^{(n+1)}$ form $\mathcal{B}^{(n+2)}$ into $\mathcal{A}^{(n+1)}$ is weak*-to-weak continuous for every $b_0^{(n+1)} \in \mathcal{B}^{(n+1)}$.

Corollary 2.10. Let \mathcal{A} be a Banach algebra. Assume that $a' \in \mathcal{A}^*$ and $T_{a'}$ is a linear operator from \mathcal{A} into \mathcal{A}^* defined by $T_{a'}a = a'a$. Then, $a' \in wap(\mathcal{A})$ if and only if the adjoint of $T_{a'}$ is weak*-to-weak continuous. So \mathcal{A} is Arens regular if and only if the adjoint of the mapping $T_{a'}a = a'a$ is weak*-to-weak continuous for every $a' \in \mathcal{A}^*$.

Definition 2.11. Let \mathcal{B} be a left Banach \mathcal{A} -bimodule and $a^{(n)} \in \mathcal{A}^{(n)}$. Let $(b_{\alpha}^{(n+1)})_{\alpha} \subseteq \mathcal{B}^{(n+1)}$ such that $a^{(n)}b_{\alpha}^{(n+1)} \stackrel{w^*}{\to} 0$. We say that $a^{(n)}$ has Left – weak*-weak property (= Lw*w – property) with respect to $\mathcal{B}^{(n)}$ when $a^{(n)}b_{\alpha}^{(n+1)} \stackrel{w}{\to} 0$. If every $a^{(n)} \in \mathcal{A}$ has Lw*w – property with respect to $\mathcal{B}^{(n)}$, then we say that $\mathcal{A}^{(n)}$ has Lw*w – property with respect to $\mathcal{B}^{(n)}$. The definition of the Right – weak*-weak property (= Rw*w – property) is the same.

We say that $a^{(n)} \in \mathcal{A}^{(n)}$ has weak*-weak property (= w*w- property) with respect to $\mathcal{B}^{(n)}$ if it has Lw^*w - property and Rw^*w - property with respect to $\mathcal{B}^{(n)}$.

If $a^{(n)} \in \mathcal{A}^{(n)}$ has Lw^*w- property with respect to itself, then we say that $a^{(n)} \in \mathcal{A}^{(n)}$ has Lw^*w- property.

Example 2.12. (1) If \mathcal{B} is Banach \mathcal{A} -bimodule and reflexive, then \mathcal{A} has w^*w -property with respect to \mathcal{B} .

- (2) $L^1(G)$, M(G) and A(G) have w^*w -property when G is finite.
- (3) Let G be locally compact group. Then $L^1(G)$ [respectively M(G)] has w^*w property [respectively Lw^*w property] with respect to $L^p(G)$ whenever p > 1.
- (4) Suppose that \mathcal{B} is a left Banach \mathcal{A} -module and e is a left unit element of \mathcal{A} such that eb = b for all $b \in \mathcal{B}$. If e has Lw^*w -property, then \mathcal{B} is reflexive.
- (5) If S is a compact semigroup, then $C^+(S) = \{ f \in C(S) : f > 0 \}$ has w^*w -property.

Theorem 2.13. Let \mathcal{B} be a left Banach \mathcal{A} -bimodule and $n \geq 2$. Then we have the following assertions:

- (1) If $\mathcal{A}^{(n)} = a_0^{(n-2)} \mathcal{A}^{(n)}$ [respectively $\mathcal{A}^{(n)} = \mathcal{A}^{(n)} a_0^{(n-2)}$] for some $a_0^{(n-2)} \in \mathcal{A}^{(n-2)}$ and $a_0^{(n-2)}$ has Rw^*w property [respectively Lw^*w property] with respect to $\mathcal{B}^{(n)}$, then $Z_{\mathcal{B}^{(n)}}(\mathcal{A}^{(n)}) = \mathcal{A}^{(n)}$.
- (2) If $\mathcal{B}^{(n)} = a_0^{(n-2)} \mathcal{B}^{(n)}$ [respectively $\mathcal{B}^{(n)} = \mathcal{B}^{(n)} a_0^{(n-2)}$]' for some $a_0^{(n-2)} \in \mathcal{A}^{(n-2)}$ and $a_0^{(n-2)}$ has Rw^*w property [respectively Lw^*w property] with respect to $\mathcal{B}^{(n)}$, then $Z_{A^{(n)}}(\mathcal{B}^{(n)}) = \mathcal{B}^{(n)}$.
- Proof. (1) Suppose that $\mathcal{A}^{(n)} = a_0^{(n-2)} \mathcal{A}^{(n)}$ for some $a_0^{(n-2)} \in \mathcal{A}^{(n-2)}$ and $a_0^{(n-2)}$ has Rw^*w property. Let $(b_\alpha^{(n)})_\alpha \subseteq \mathcal{B}^{(n)}$ such that $b_\alpha^{(n)} \stackrel{w^*}{\to} b^{(n)}$. Then for every $a^{(n-2)} \in \mathcal{A}^{(n-2)}$ and $b^{(n-1)} \in \mathcal{B}^{(n-1)}$, we have

$$\begin{split} \langle b_{\alpha}^{(n)} b^{(n-1)}, a^{(n-2)} \rangle &= \langle b_{\alpha}^{(n)}, b^{(n-1)} a^{(n-2)} \rangle \to \langle b^{(n)}, b^{(n-1)} a^{(n-2)} \rangle \\ &= \langle b^{(n)} b^{(n-1)}, a^{(n-2)} \rangle. \end{split}$$

It follows that $b_{\alpha}^{(n)}b^{(n-1)} \stackrel{w^*}{\to} b^{(n)}b^{(n-1)}$. It also is clear that $(b_{\alpha}^{(n)}b^{(n-1)})a_0^{(n-2)} \stackrel{w^*}{\to} (b^{(n)}b^{(n-1)})a_0^{(n-2)}$. Since $a_0^{(n-2)}$ has Rw^*w -property, $(b_{\alpha}^{(n)}b^{(n-1)})a_0^{(n-2)} \stackrel{w}{\to} (b^{(n)}b^{(n-1)})a_0^{(n-2)}$. Now, let $a^{(n)} \in \mathcal{A}^{(n)}$. Since $\mathcal{A}^{(n)} = a_0^{(n-2)}\mathcal{A}^{(n)}$, there is $x^{(n)} \in \mathcal{A}^{(n)}$ such that $a^{(n)} = a_0^{(n-2)}x^{(n)}$. Thus we have

$$\begin{split} \langle a^{(n)}b_{\alpha}^{(n)},b^{(n-1)}\rangle &= \langle a^{(n)},b_{\alpha}^{(n)}b^{(n-1)}\rangle = \langle a_0^{(n-2)}x^{(n)},b_{\alpha}^{(n)}b^{(n-1)}\rangle \\ &= \langle x^{(n)},(b_{\alpha}^{(n)}b^{(n-1)})a_0^{(n-2)}\rangle \to \langle x^{(n)},(b^{(n)}b^{(n-1)})a_0^{(n-2)}\rangle \\ &= \langle a^{(n)}b,b^{(n-1)}\rangle. \end{split}$$

It follows that $a^{(n)} \in Z_{A^{(n)}}(\mathcal{B}^{(n)})$.

The proof of the next part is similar to the preceding proof. (2) Let $\mathcal{B}^{(n)} = a_0^{(n-2)} \mathcal{B}^{(n)}$ for some $a_0^{(n-2)} \in \mathcal{A}^{(n-2)}$ and let $a_0^{(n-2)}$ has Rw^*w -property with respect to $\mathcal{B}^{(n)}$. Assume that $(a_{\alpha}^{(n)})_{\alpha} \subseteq$ $\mathcal{A}^{(n)}$ such that $a_{\alpha}^{(n)} \xrightarrow{w^*} a^{(n)}$. Then for every $b^{(n-1)} \in \mathcal{B}^{(n-1)}$, we have

$$\begin{split} \langle a_{\alpha}^{(n)}b^{(n-1)},b^{(n-2)}\rangle &= \langle a_{\alpha}^{(n)},b^{(n-1)}b^{(n-2)}\rangle \to \langle a^{(n)},b^{(n-1)}b^{(n-2)}\rangle \\ &= \langle a^{(n)}b^{(n-1)},b^{(n-2)}\rangle. \end{split}$$

We conclude that $a_n^{(n)}b^{(n-1)} \xrightarrow{w^*} a^{(n)}b^{(n-1)}$. It is clear that

$$(a_{\alpha}^{(n)}b^{(n-1)})a_0^{(n-2)} \overset{w^*}{\to} (a^{(n)}b^{(n-1)})a_0^{(n-2)}.$$

Since $a_0^{(n-2)}$ has Rw^*w property,

$$(a_{\alpha}^{(n)}b^{(n-1)})a_0^{(n-2)} \xrightarrow{w} (a^{(n)}b^{(n-1)})a_0^{(n-2)}.$$

Suppose that $b^{(n)} \in \mathcal{B}^{(n)}$. Since $\mathcal{B}^{(n)} = a_0^{(n-2)} \mathcal{B}^{(n)}$, there is $y^{(n)} \in \mathcal{B}^{(n)}$ such that $b^{(n)} = a_0^{(n-2)} y^{(n)}$. Consequently, we have

$$\begin{split} \langle b^{(n)} a_{\alpha}^{(n)}, b^{(n-1)} \rangle &= \langle b^{(n)}, a_{\alpha}^{(n)} b^{(n-1)} \rangle = \langle a_0^{(n-2)} y^{(n)}, a_{\alpha}^{(n)} b^{(n-1)} \rangle \\ &= \langle y^{(n)}, (a_{\alpha}^{(n)} b^{(n-1)}) a_0^{(n-2)} \rangle \rightarrow \langle y^{(n)}, (a^{(n)} b^{(n-1)}) a_0^{(n-2)} \rangle \\ &= \langle a_0^{(n-2)} y^{(n)}, (a^{(n)} b^{(n-1)}) \rangle = \langle b^{(n)} a^{(n)}, b^{(n-1)} \rangle. \end{split}$$

Thus $b^{(n)}a_{\alpha}^{(n)} \xrightarrow{w} b^{(n)}a^{(n)}$. It follows that $b^{(n)} \in Z_{\mathcal{A}^{(n)}}(\mathcal{B}^{(n)})$. The proof of the next part is similar to the preceding proof.

Example 2.14. i) Let G be a locally compact group. Since M(G) is a Banach $L^1(G)$ -bimodule and the unit element of $M(G)^{(n)}$ does not have Lw^*w - property or Rw^*w - property, by using the preceding theorem, we have

$$Z_{L^1(G)^{(n)}}(M(G)^{(n)}) \neq M(G)^{(n)}.$$

ii) If G is finite, then by using the preceding theorem, we conclude that

$$Z_{M(G)^{(n)}}(L^1(G)^{(n)}) = L^1(G)^{(n)},$$

$$Z_{L^1(G)^{(n)}}(M(G)^{(n)}) = M(G)^{(n)}.$$

Acknowledgments

The authors thank the referee for his/her useful comments.

References

- [1] R. E. Arens, The adjoint of a bilinear operation, *Proc. Amer. Math. Soc.* 2 (1951), 839–848.
- [2] N. Arikan, A simple condition ensuring the Arens regularity of bilinear mappings, Proc. Amer. Math. Soc. 84 (1982), no.4, 525-532.
- [3] J. Baker, A. T. Lau, J. S. Pym, Module homomorphisms and topological centres associated with weakly sequentially complete Banach algebras, *J. Funct. Anal.* **158** (1998), no. 1, 186–208.
- [4] F. F. Bonsall, J. Duncan, Complete Normed Algebras, Springer-Verlag, New York-Heidelberg, 1973.
- [5] H. G. Dales, A. Rodrigues-Palacios, M. V. Velasco, The second transpose of a derivation, J. London Math. Soc. 64 (2001), no. 2, 707–721.
- [6] H. G. Dales, Banach Algebra and Automatic Continuity, London Math. Soc. Monographs, New Ser. 24, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 2000.
- [7] N. Dunford, J. T. Schwartz, Linear Operators I, John Wiley and Sons, Inc., New York, 1958.
- [8] M. Eshaghi Gordji, M. Filali, Arens regularity of module actions, Studia Math. 181 (2007), no. 3, 237–254.
- [9] M. Eshaghi Gordji, M. Filali, Weak amenability of the second dual of a Banach algebra, *Studia Math.* **182** (2007), no. 3, 205–213.
- [10] K. Haghnejad Azar, A. Riazi, Arens regularity of bilinear forms and unital Banach module space, submitted.
- [11] E. Hewitt, K. A. Ross, Abstract Harmonic Analysis Vol I, Springer-Verlag, New York-Berlin, 1979.
- [12] E. Hewitt, K. A. Ross, Abstract Harmonic Analysis Vol II, Springer-Verlag, New York-Berlin, 1970.
- [13] A. T. Lau, V. Losert, On the second conjugate algebra of $L_1(G)$ of a locally compact group, J. London Math. Soc. **37** (1988), no. 2, 464–480.
- [14] A. T. Lau, A. Ülger, Topological center of certain dual algebras, Trans. Amer. Math. Soc. 348 (1996), no. 3, 1191–1212.
- [15] S. Mohamadzadih, H. R. E. Vishki, Arens regularity of module actions and the second adjoint of a derivation, Bull. Aust. Math. Soc.. 77 (2008), no. 3, 465–476.
- [16] M. Neufang, Solution to a conjecture by Hofmeier-Wittstock, J. Funct. Anal. 217 (2004), no. 1, 171–180.
- [17] M. Neufang, On a conjecture by Ghahramani-Lau and related problems concerning topological centres, J. Funct. Anal. 224 (2005), no. 1, 217–229.
- [18] J. S. Pym, The convolution of functionals on spaces of bounded functions, Proc. London Math. Soc. 15 (1965), no. 3, 84–104.
- [19] A. Ülger, Arens regularity of the algebra $A \hat{\otimes} B$, Trans. Amer. Math. Soc. **305** (1988), no. 2, 623–639.

- [20] A. Ülger, Arens regularity sometimes implies the RNP, Pacific J. Math. 143 (1990), no. 2, 377–399.
- [21] A. Ülger, Some stability properties of Arens regular bilinear operators, *Proc. Amer. Math. Soc.* **34** (1991), no. 3, 443–454.
- [22] A. Ülger, Arens regularity of weakly sequentially complete Banach algebras, Proc. Amer. Math. Soc. 127 (1999), no. 11, 3221–3227.
- [23] P. K. Wong, The second conjugate algebras of Banach algebras, J. Math. Sci. 17 (1994), no. 1, 15–18.
- [24] N. J. Young, The irregularity of multiplication in group algebra, Quart J. Math. Oxford Ser. 24 (2) (1973) 59–62.
- [25] Y. Zhang, Weak amenability of module extensions of Banach algebras, Trans. Amer. Math. Soc. 354 (2002), no. 10, 4131–4151.

K. Haghnejad Azar

Department of Mathematics, University of Mohghegh Ardabili, P.O. Box 5619911367, Ardabil, Iran

Email: haghnejad@aut.ac.ir

A. Riazi

Department of Mathematics, Amirkabir University of Technology, P.O. Box 15914, Tehran, Iran

Email: riazi@aut.ac.ir