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ON SKEW ARMENDARIZ AND SKEW
QUASI-ARMENDARIZ MODULES

A. ALHEVAZ AND A. MOUSSAVT*

Communicated by Omid Ali Shehni Karamzadeh

ABSTRACT. Let a be an endomorphism and § an a-derivation of
a ring R. In this paper we study the relationship between an
R-module Mg and the general polynomial module M[z] over the
skew polynomial ring R|[x; «, §]. We introduce the notions of skew-
Armendariz modules and skew quasi-Armendariz modules which
are generalizations of a-Armendariz modules and extend the classes
of non-reduced skew-Armendariz modules. An equivalent charac-
terization of an a-skew Armendariz module is given. Some proper-
ties of this generalization are established, and connections of prop-
erties of a skew-Armendariz module Mg with those of M[x]g[z;a,6]
are investigated. As a consequence we extend and unify several
known results related to Armendariz modules.

1. Introduction

Throughout this paper R denotes an associative ring with unity, «
is a ring endomorphism and § an a-derivation of R, that is, § is an
additive map such that d(ab) = 6(a)b+ a(a)d(b), for all a,b € R. We de-
note R[x; «, ] the Ore extension (skew polynomial ring) whose elements
are the polynomials over R, the addition is defined as usual and the
multiplication subject to the relation xa = a(a)x 4+ §(a) for any a € R.
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A ring R is called Baer (respectively, quasi-Baer) if the right an-
nihilator of every nonempty subset (respectively, right ideal) of R is
generated, as a right ideal, by an idempotent of R. Kaplansky [23],
introduced the Baer rings to abstract various properties of rings of op-
erators on a Hilbert space. Clark [13] introduced the quasi-Baer rings
and used them to characterize a finite dimensional twisted matrix units
semigroup algebra over an algebraically closed field. All modules are as-
sumed to be unitary right modules. Let anng(X) = {r € R | Xr = 0},
where X is a subset of a module Mg.

In [29], Lee and Zhou introduced Baer, quasi-Baer and p.p.-modules
as follows:

(1) Mp is called Baer (respectively, quasi-Baer) if, for any subset (re-
spectively, submodule) X of M, annp(X) = eR where €? = e € R.

(2) Mp is called principally projective (or simply p.p.) module (respec-
tively, principally quasi-Baer (or simply p.q.-Baer) module) if, for any
element m € M, anng(m) = eR (respectively, anng(mR) = eR) where
e? =ecR.

Clearly, a ring R is Baer (respectively, p.p. or quasi-Baer) if and only
if Ry is Baer (respectively, p.p. or quasi-Baer) module. If R is a Baer
(respectively, p.p. or quasi-Baer) ring, then for any right ideal I of R,
IR is Baer (respectively, p.p. or quasi- Baer) module. It is clear that R
is a right p.q.-Baer ring if and only if Rg is a p.q.-Baer module. Every
submodule of a p.q.-Baer module is p.q.-Baer and every Baer module is
quasi-Baer.

A ring is called reduced if it has no nonzero nilpotent elements and
Mpg is called reduced by Lee and Zhou [29] if, for any m € M and
a € R, ma = 0 implies mR N Ma = 0. Lee and Zhou have extended
various results of reduced rings to reduced modules and Agayev et al. [1]
introduced and studied abelian modules as a generalization of abelian
rings.

Zhang and Chen [43] introduced the notion of a-skew Armendariz
modules. Namely, an R-module Mp is called a-skew Armendariz, if
for polynomials m(z) = mg + miz + --- + mpa® € M[z] and f(z) =
bo + b1z + - -+ + bya™ € R[z;al, m(z)f(z) = 0 implies m;a’(b;) = 0 for
each 0 < i < kand 0 < j < n. According to Lee and Zhou [29], a
module Mg is called a-Armendariz if Mg is a-compatible and a-skew-
Armendariz. If « is equal to the identity, then the above definition
boils down to the standard notion of Armendariz module. Moreover,
they proved that R is an a-skew Armendariz ring if and only if every
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flat right R-module is a-skew Armendariz. By [29], a module Mp is
a-reduced if Mg is a-compatible and reduced.

The polynomial extensions of Baer, quasi-Baer, right p.q.-Baer and
p.p.-rings and modules have been investigated by many authors [5-10,
15-21, 34-43]. Most of these have worked either with the case § = 0
and a an automorphism or the case where « is the identity. With the
impetus of quantized derivations, renewed interest in the general Ore
extension R[x;a,d] has arisen during the last few years.

In this paper, we study the relationship between an R-module Mp
and the general polynomial module M [x] over the skew polynomial ring
R[z; o, d]. We introduce the notions of skew-Armendariz modules and
skew quasi-Armendariz modules which are generalizations of a-skew Ar-
mendariz modules [43] and a-reduced modules [29]. An equivalent char-
acterization of an a-skew-Armendariz module is given, which is useful to
simplify the proofs. Also new families of non-reduced skew-Armendariz
modules are presented. Among other results, we show that there is a
strong connection of the Baer, quasi-Baer and the p.p.-property of the
two modules, respectively.

Furthermore, we show that for an endomorphism « and an a-derivation
0 of aring R, (1) A right R-module Mg is a-skew-Armendariz if and
only if for polynomials m(z) = mg + miz + -+ + mya® € M[z] and
f(x) =ao+a1x+-- +apz™ in R[z; o], m(z) f(z) = 0 implies mob; = 0
for each 0 < j < n; (2) An a-compatible module Mpg is reduced if and
only if M[z]/M[z](z™) is an a-skew Armendariz module over R[z]/(z™)
for any integer n > 2. This result shows that a-compatible reduced
modules play so important roles in the study of skew-Armendariz mod-
ules (and hence skew-Armendariz rings) as that of reduced modules in
the study of Armendariz modules. (3) An («, d)-compatible module Mg
is quasi-Baer (respectively, p.q.-Baer) if and only if M[x] is a quasi-
Baer (respectively, p.q.-Baer) module over R[x;«,d]; (4) If Mg is skew-
Armendariz with R C M, then Mp is Baer (respectively, p.p) if and
only if M|[x] is a Baer (respectively, p.p.-) module over R[z;,d]; (5) A
necessary and sufficient condition for the trivial extension T'(R, R) to be
skew quasi-Armendariz is obtained. Examples to illustrate the concepts
and results are included.

We also study the relations between the set of annihilators in M and
the set of annihilators in M [7]gjy.q,5- We give a sufficient condition for
a module to be skew quasi-Armendariz and study the structure of the
skew quasi-Armendariz modules. This work extends and unifies several
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known results related to Armendariz rings and modules, in particular
the landmark results of Hong et al. [20, 21], parallels results of the
second author and A.R. Nasr-Isfahani [35] on Ore extensions, and com-
plements later results of E. Hashemi [16] and Zhang and Chen [43] to
general polynomial modules over Ore polynomial extension R[z;«, d].

2. Skew-Armendariz Modules

In this section the notion of an skew-Armendariz module is intro-
duced as a generalization of skew-Armendariz rings to modules and its
properties are studied. We prove that many results of skew-Armendariz
rings can be extended to modules with this general settings. We show
that the notion of skew-Armendariz module generalizes that of a-skew
Armendariz modules of Zhang and Chen [43] as well as a-Armendariz
modules and a-reduced modules of Lee and Zhou [29]. Moreover we
extend the classes of skew-Armendariz modules.

We will be working here with general right modules Mp rather than
just Rp, and the restrictions on « and § we require are best phrased as
conditions on the module Mg that arise from the use of general o and
6. Let us formally define these conditions here:

From the Ore commutation law, an inductive argument can be made
to calculate an expression for z’a, for all j € N and a € R. To record
this result, we shall use some convenient notation introduced in [3, 27]:
Notation. Given a and § as above and integers j > i > 0, let us
write f7 for the sum of all “words” in « and ¢ in which there are i

factors of a and j — i factors of §. For instance, f; = o, fg =67, and
T i=ad T ool a4 dad T
Using recursive formulas for the fij ’s and induction, as done in [27],
one can show with a routine computation that

J
(2.1) tla = Zfij(a)xi,
=0

for all @ € R, where j > ¢ > 0. This formula uniquely determines a
general product of (left) polynomials in S = R[z; a, §] and will be used
freely in what follows. More generally, given a right R-module Mg, we
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can form the polynomial module M[z]gs over S as follows. Elements of
M[z] have the form Y m;z* (m; € M), and the action of S on such
elements is basically dictated by (2.1), since it suffices to define the
action of monomials of S on monomials in M|x]s via

(ma?)(az') =m>_ fl(a)a'™!
=0

for all @ € R and j,I € N. It is readily verified that this makes M x]
into an S-module.

A ring R is called Armendariz if whenever polynomials f(z) = ag +
arz+--+apz™, g(x) = bo+biz+- - -+bnpz™ € R[z] satisty f(x)g(x) =0,
then a;b; = 0 for each 4,j. Following Anderson and Camillo [2], a
module Mp is called Armendariz if, whenever m(z)f(x) = 0, where
m(z) = Y5 _ymiz’ € Mlz] and f(z) = Z;‘:O ajx’ € R[z], we have
m;a; = 0 for all 4, 7.

The term Armendariz was introduced by Rege and Chhawchharia [41].
This nomenclature was used by them since it was Armendariz [5], who
initially showed that a reduced ring always satisfies this condition.

The more comprehensive study of Armendariz rings was carried out
recently (see, e.g., [1-2, 5-6, 11-12, 15-22, 28-29]. The interest of this
notion lies in its natural and useful role in understanding the relation
between the annihilators of the ring R and the annihilators of the poly-
nomial ring R[z]. The reason behind these is the fact that there is a
natural bijection between the set of annihilators of R and the set of
annihilators of R[z| (see Hirano, [19]).

In [21], C.Y. Hong, N.K. Kim and T.K. Kwak extended the Armen-
dariz property of rings to skew polynomial rings R[z;a]: For an endo-
morphism « of a ring R, R is called an a-skew Armendariz ring (or,
a skew-Armendariz ring with the endomorphism «) if for polynomials
f(z) =ap+a1z+---+apz™ and g(z) = bo+bix+- - -+ byz™ in Rlz; al,
f(z)g(z) = 0 implies a;a’(bj) =0 for each 0 <i < n and 0 < j < m.

M. Basger in [6] studied relations between the set of annihilators in Mg
and the set of annihilators in M[z]|. In [43], Zhang and Chen extended
a result of [42] and they showed that, a ring R is a-skew Armendariz
if and only if every flat right R-module is a-skew Armendariz. Some
other properties of Armendariz rings and modules have been studied
in Armendariz [5], Rege and Chhawchharia [41], Rege and Buhphang
[42], Anderson and Camillo [2], Hong et al. [20, 21], Kim and Lee
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[25], Chen and Tong [12], Hashemi and Moussavi [17, 18], Huh, Lee
and Smoktunowicz [22], Lee and Zhou [29], Nasr-Isfahani and Moussavi
[35-39] and some other authors.

According to Krempa [26], an endomorphism « of a ring R is called
to be rigid if aa(a) = 0 implies a = 0 for a € R. A ring R is said to be
a-rigid if there exists a rigid endomorphism « of R. Hong et al. [20],
studied Ore extensions of Baer rings over a-rigid rings, and show that
a ring R is a-rigid if and only if R[z;«,d] is reduced. Clearly a reduced
ring is Baer if and only if it is quasi-Baer.

In [35], the second author and A.R. Nasr-Isfahani, introduced the con-
cept of a skew-Armendariz ring and studied its properties. Our focus in
this section is to introduce the concept of a skew-Armendariz module
and study its properties. We prove that the notion of skew-Armendariz
module generalizes that of a-skew Armendariz rings of Hong et al. [21]
and Krempa’s a-rigid rings [26] as well as that of the second author and
A.R. Nasr-Isfahani’s skew-Armendariz rings [35] to general polynomial
modules over Ore polynomial extension R[z;«, d].

Definition 2.1. (Zhang and Chen [43]) Let R be a ring with an endo-
morphism o and Mg an R-module. A module Mg is called an «-skew
Armendariz module, if for polynomials m(x) = mo+myz+---+myah €
Mlx] and f(x) = by +biz+ -+ bpa™ € Rlz;al, m(x)f(x) = 0 implies
miai(bj) =0 foreach0<i<kand0<j<n.

Definition 2.2. Let R be a ring with an endomorphism « and a-
derivation §. Let Mg be an R-module. We say that Mg is an («, §)-skew
Armendariz module if, for polynomials m(x) = mo+myz+---+myah €
Mlz] and f(z) = bo+biz+---+bya™ € Rlx; o, 0], m(z) f(x) = 0 implies
mixibjxj =0foreach0<i<kand 0<j<n.

Notice that in the case when § = 0, the above definition boils down
to the notion of a-skew Armendariz of Zhang and Chen [43].

Definition 2.3. Let R be a ring with an endomorphism o and «-
derivation §. Let Mg be an R-module. We say that Mg is a skew-
Armendariz module, if for polynomials m(x) = mo+myz+---+myah €
Mlx] and f(x) = bop+biz+---+bya™ € Rlz;, 0], m(z) f(z) = 0 implies
mob; =0 for each 0 < j < n.
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It is clear that (o, 0)-skew Armendariz modules are skew-Armendariz,
and each Armendariz module is a-skew Armendariz, where o = idg, and
every submodule of a skew-Armendariz module is skew-Armendariz. It is
also clear that R is a skew-Armendariz ring if Rg is an skew-Armendariz
module. In [35], the second author and A.R. Nasr-Isfahani provided
numerous examples of non-semiprime (and hence non-reduced) skew-
Armendariz rings.

The following equivalent characterization of an a-skew-Armendariz
module is useful to simplify the proofs of results in the context of Ar-
mendariz rings and modules. It is shown that our definition of a skew-
Armendariz module is a generalization of Hong et al.’s a-skew Armen-
dariz ring [21] and Zhang and Chen’s a-skew Armendariz module [43],
for the more general setting.

The following result shows that our definition of a skew-Armendariz
module is a generalization of the notion of an a-skew-Armendariz mod-
ule for the more general setting:

Theorem 2.4. Let M be a module and o an endomorphism of R. Then
Mp is a-skew Armendariz if and only if for every polynomials m(x) =
mo+miz+---+mpxk € Mx] and f(x) = bo+biz+---+by2™ € R[r;q],
m(x)f(x) =0 implies mob; =0 for each 0 < j < n.

Proof. The forward direction is clear that if Mg is an a-skew Armen-
dariz, then for every polynomials m(z) = mo+miz+---+mpa® € Mz
and f(z) = by + bixz + -+ + bpa" € Rlz;a], m(x)f(x) = 0 implies
mob; = 0 for each 0 < 7 < n. For the backward direction, suppose
that for every polynomials m(z) = mg +mix + - - - +mpa® € M[z] and
f(x) =bo+bix+ -+ bya™ € Rlz;a], m(x) f(x) = 0 implies mgb; =0
for each 0 < j < n. We show that Mp is a-skew Armendariz. We have,
0= (mo +miz + - +mpa®) (b + brz + - - 4 bpa™) =
mo(bo+b1z+- - +byx™)+(my +moz+- - Ampah )z (bo+brz+- - +bya™).
So (my +maz + - - +mpaF 1) (a(bo)z + a(by)x? + - + (b, )z H1) = 0.
Hence mia(bj) = 0 for each 0 < j < n. Inductively, we can see that
miozi(bj) =0 for each 0 < ¢ < k and 0 < j < n and the result follows.
]

Corollary 2.5. A ring R with an endomorphism « is a-skew Armen-
dariz if and only if for every polynomials f(x) = a9 + a1z + -+ +
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apz® |, g(x) = by + bz + - + bpa™ € R[z;a], f(x)g(x) = 0 implies
apb; = 0 for each 0 < j < n.

If we take o = idg, we deduce the following equivalent condition for
a module to be Armendariz.

Corollary 2.6. A module Mg is Armendariz if and only if for every
polynomials m(x) = mo+myz+---+mpxk € M[x] and f(x) = bo+biz+
<-4 bpa™ € R[z], m(x) f(z) = 0 implies mob; = 0 for each 0 < j < n.

Corollary 2.7. A ring R is Armendariz if and only if for every polyno-
mials f(z) = ap+arx+---+anx"” , g(x) =bo+biz+---+bpz™ € R[z],
f(z)g(x) = 0 implies apb; = 0 for each 0 < j < m.

Definition 2.8. Let R be a ring with an endomorphism a and an «-
derivation 6. We say that Mg is a linearly skew-Armendariz module, if
for linear polynomials m(x) = mo +miz € M[z] and g(xz) = by + bz €
R[x; o, 0], m(z)g(x) = 0 implies moby = moby = 0.

It is clear that each skew-Armendariz module is linearly skew-Armen-
dariz and that every submodule of a linearly skew-Armendariz module
is also linearly skew-Armendariz.

By [12, Example 2.2], there exists an a-skew Armendariz ring R such

that « is not a monomorphism and R is not a reduced ring:

Example 2.9. Let D be a domain and R,(D) a subring of My(D),
where n > 2 and

a a2 a3 - Qip
0 a a99 a2n

Rn(D) = 0 0 a -+ azn a, ij € D
0O O 0 a

Let o be an endomorphism of R, (D) such that
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a a2 a1z -+ QAlnp a 0 O 0
0 a agy v a9, 0 a O 0
o 0 O a asn — 0 0 «a 0
0 0 0 -+ a 000 - a

Clearly, « is not a monomorphism and R, (D) is not a reduced ring. In
[12, Example 2.2] it is proved that Ry (D) is an a-skew Armendariz ring.

Let R be a subring of a ring S with 1g € R and Mg C Lg. Let a be
an endomorphism and ¢ an a-derivation of S such that a(R) C R and
0(R) CR. If Lg is (o, 9)-skew Armendariz, then Mp is also («, §)-skew
Armendariz.

We can deduce the following result, using the definition of skew-
Armendariz modules.

Proposition 2.10. Let « be an endomorphism and 6 an «-derivation
of a ring R. The class of skew-Armendariz modules is closed under sub-
modules, direct products and direct sums.

Definition 2.11. (Annin, [3]) Given a module Mg, an endomorphism
a : R — R and an a-derivation § : R — R, we say that Mg is a-
compatible if for each m € M andr € R, we have mr = 0 < ma(r) = 0.
Moreover, we say Mp is §-compatible if for each m € M and r € R,
we have mr = 0 = md(r) = 0. If Mg is both a-compatible and o-
compatible, we say that Mp is («, §)-compatible.

The (a, 0)-compatibility condition on Mg is a natural, independently
interesting condition from which we can derive a number of interesting
properties, and it will be of invaluable service in the proof of our main
results. After a few quick remarks about Definition 2.11, we will present
some results on modules and annihilators in Ore extension rings that
can be deduced for these («, §)-compatible modules. These fundamental
properties of («, d)-compatible modules will lay the groundwork for our
main results.
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Remark 2.12. (a) It is important to note that the a-compatibility as-
sumption requires an “if and only if 7 while the d-compatibility assump-
tion is only a one-sided implication. The reason for the stronger assump-
tion on « is that we will often need to consider the leading coefficient
of an expression m(x)r, where m(x) € Mz] and r € R, where by (2.1)
will involve powers of o but will be free of . Finally, observe that in the
classical case where § = 0, one never has the reverse implication to the
d-compatibility condition for a nonzero module Mg, so we certainly do
not expect a two-sided implication for the condition on §.

(b) If Mg is a-compatible (respectively, 6-compatible), then so is any
submodule of Mpg.

(c) If Mg is a-compatible (respectively, §-compatible), then for all
i > 1, Mg is o'-compatible (respectively, 5*-compatible).

The following lemma shows that the («, §)-compatibility property on
a module Mp, is inherited by the polynomial module M [z].

Lemma 2.13. [3, Lemma 2.16] A module Mg is (o, §)-compatible if and
only if the polynomial extension M|[x]g is (o, 0)-compatible.

Lemma 2.14. The following are equivalent for a module Mp.
(1) Mg is reduced and (v, 0)-compatible;

(i) The following conditions hold. For any m € M and a € R,
(a) ma =0 implies mRa = 0,
(b) ma = 0 implies md(a) = 0,
(¢) ma =0 if and only if ma(a) =0,
(d) ma® = 0 implies ma = 0.

)
Proof. The proof is straightforward.
O

Lemma 2.15. Let Mg be an («, d)-compatible module. Let m € M and
a,b € R. Then we have the following:
(i) If ma = 0, then ma?(a) = 0 = md?(a) for any positive integer j;
(i) If mab = 0, then ma(87(a))d(b) = 0 = ma’(d(a))d’ (b), and hence
mad? (b) = 0 = md’(a)b for any positive integer i,j;
(7i1) anng(ma) = anng(ma(a)) C anng(md(a)).
Proof. (i) This follows from section (c) of Remark 2.12.

(i) Suppose that mab = 0. Since My is §-compatible, mad’ (b) = 0 for
each j.
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Using a-compatibility of Mg, ma(ab) = 0, so ma(a)b = 0. Since Mg is
d-compatible, ma(a)d(b) = 0.
Since Mp is d-compatible, mab = 0 implies 0 = md(a)b + ma(a)d(b).
By above, we deduce md(a)b = 0.
Using a-compatibility of Mg, ma(d(a)b) = 0 if and only if ma(d(a))a(b)
= 0 if and only if ma(d(a))b = 0. By d-compatibility of Mg, we have
ma(d(a))d(b) = 0.
By above calculations, md(a)b = 0 and by J-compatibility of Mg, 0 =
md(8(a)b) = mé?(a)b+ ma(d(a))s(b). So, mdé%(a)b = 0.
Therefore, inductively we get md?(a)b = 0 for each j. So, mad’(b) =
0 = mé&(a)b. Also, we can similarly deduce that ma(d’(a))d(b) = 0.
Now we show that mab = 0 implies that mai(§(a))d’(b) = 0. By above,
md(a)b = 0, and then a‘-compatibility of Mg implies ma‘(5(a)b) = 0
and hence ma‘(8(a))ai(b) = 0. Also using a’-compatibility of Mg, it
implies ma‘(d(a))b = 0. Since Mg is §’-compatible, ma(§(a))d’ (b) = 0.
These computations impliy the result.
(i7i) Note that a-compatibility of Mg yields ma(a)b = 0 < ma(a)a(b) =
0 & ma(ab) =0 < mab = 0 for all a,b € R. It remains only to show
that anng(ma) C anng(md(a)). To see this, let mab = 0 for some b € R.
Using d-compatibility, we get 0 = md(ab) = m (6(a)b + a(a)d(b)) = 0.
Since we have already concluded that ma(a)b = 0, j-compatibility im-
plies that ma(a)d(b) = 0, and hence md(a)b = 0, as desired.

O

Lemma 2.16. Let My be an (o, §)-compatible module and m(x) = mo+
<o+ mpa® € Mx] and r € R. Then m(x)r = 0 if and only if m;sr = 0
for all 0 <1 < k.

Proof. Assume m;r = 0 for all 0 < ¢ < k. An easy calculation using
(2.1) shows that

k
(2.2) m(:n)r:Z ijfij(r) zt,

k
i=0 \ j=i

By (a, d)-compatibility of Mg, we have mjfij(r) =0, for all 4,5. Thus
(2.2) yields m(x)r = 0. Conversely, assume that m(z)r = 0. We deduce
from (2.2) that,
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k
(2.3) ij fl(r) =0,

for each ¢ < k. '

Starting with i = k, Eq. (2.3) yields mya®(r) = 0 and hence m; f} (r) =
0, for each j > i, by (o, d)-compatibility of Mp. Using (2.3) again, we
deduce that m;a’(r) = 0, and that m;r = 0 as desired. O

Proposition 2.17. A module Mg is a-reduced if and only if the poly-
nomial extension M[z|gr is an a-reduced module.

Proof. It is enough to prove the forward direction. By Lemma 2.13, Mg
is a-compatible if and only if M[x]g is a-compatible. Now assume that,
Mp, is reduced, to show that M[x]g is reduced, using Lemma 2.14, we
only need to show that m(z)a = 0 implies m(z)Ra = 0 and m(z)a? = 0
implies m(x)a = 0, where m(z) = Zf:o m;xt € M[z] and a € R. First
let m(z)a = 0. Since My is reduced and m;a = 0 for each i, m;Ra = 0
for each i and hence m(z)Ra = 0. Now suppose m(x)a? = 0. Since
Mp, is reduced and m;a® = 0 for each i, m;a = 0 for each i and hence
m(z)a = 0. Thus M[x]g is reduced and the result follows by Lemma
2.14. ]

Notice that, the concept of a-reduced for the regular module Rp co-
incides with that of reduced and a-compatible ring R, which in this case
R is indeed an a-rigid ring; and note also that, a ring R is a-rigid if and
only if R is reduced and («, §)-compatible. So we deduce the following:

Corollary 2.18. A ring R is a-rigid if and only if R[z]r (R[z;a] or
R[z; a, d]) is an a-reduced R-module.

Theorem 2.19. Every («,d)-compatible and reduced module is skew-
Armendariz.

Proof. Let m(z) = mo + -+ +mga® € M[z], f(x) = ag + - + apa™ €
R[x;a, 6] and m(z) f(z) = 0. So ma*(a,) = 0, because it is the leading
coefficient of m(z)f(z). By a-compatibility of Mg, we have mya, =
0. By Lemma 2.14, myRa, = 0, and by («a,d)-compatibility of Mg,
my.f} (an) = 0. Thus the coefficient of 2**"~1 in the equation m(z) f () =
0 is mpa®(a,_1) +mp_10*"1(a,) = 0. Multiplying by a,, from right we
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get my_10*"Y(an)a, = 0. Using a-compatibility repeatedly we obtain
mk_la% = 0. Hence my_1a, = 0, by Lemma 2.14. So my_1Ra, = 0, by
Lemma 2.14 and by («, 6)-compatibility of Mg, mi_1f] (an) = 0. There-
fore mya,—1 = 0. Continuing this process and using («, §)-compatibility
of Mg, we obtain mixiajxj =0foreach 0 <i<kand0<j<n. Since
(cv,0)-skew Armendariz modules are skew Armendariz, the result fol-
lows. O

Zhang and Chen [43] proved that, for an endomorphism « of a ring
R and of = idp for some positive integer ¢, My is a-reduced if and only
if M[z]/M|x](z™) is an a-skew Armendariz module over R[z]/(z") for
integer n > 2. They also asked if the condition of = idg superfluous.

For a right R-module Mr and A = (a;;) € M,(R), let MA =
{(may) | m € M}. Forn > 2, let V.= 3" E;;\1 where {E;; |
1 < i4,j < n} are the matrix units, and set T(R,n) = RI, + RV +
<4+ RV T(M,n) = MI, + MV 4 --- + MV"~!, Then T(R,n) is
a ring and T'(M,n) becomes a right module over T'(R,n) under usual
addition and multiplication of matrices. There is a ring isomorphism
Y : T(R,n) — R[z]/(z") given by ¥(rol, + 1V + -+ rp VL) =
ro+7mw+ -+ rp_12" 1+ (2) and an Abelian group isomorphism ¢ :
T(M,n) — M[z]/M[z)(z") given by ¢(mol,+miV+--+my,_1 V1) =
mo+mix + - +mp_12" "+ M[z](2™) such that ¢(WA) = ¢(W)y(A)
for all W e T(M,n) and A € T(R,n).

Notice that

ay air -+ QGp—2 Qp-—1
0 a a1 - ap—2

T(R,n) := 0 0 a - : la; € R,
o o0 --- 0 ag

with n > 2, is a ring with point-wise addition and usual matrix multi-
plication. We can denote elements of T'(R,n) by (ag, a1,...,an—1).

Lee and Zhou [29] proved that for each integer n > 2, M{[z|/M [z](z")
is an Armendariz right module over R[x]/(z") if and only if Mp is re-
duced. In the following we generalize this to a-reduced modules.

Let o be an endomorphism of a ring R. Then the map T(R,n) —
T(R,n) defined by agly, + a1V + -+ an—1 V"t — a(ag)l, + alar)V +
-+ a(ap—1)V" ! is an endomorphism of T(R,n). Similarly it is easy
to see that the map R[z]/(2") — R[z]/(z™) defined by ap + a1z + -+ +
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an—12" 1+ (2™) — alag) + a(ar)x + - - + alap_1)z" 1 + (z") is an en-
domorphism of R[x]/(z™). We will also denote the two maps above by «.

The following result shows that a-compatible reduced modules play
so important roles in the study of skew-Armendariz modules (and hence
skew-Armendariz rings) as that of reduced rings in the study of Armen-
dariz rings.

Theorem 2.20. An a-compatible module Mg is reduced if and only
if M[z]/M|x](z"™) is an a-skew Armendariz module over R[z]/(x™) for
integer n > 2.

Proof. First assume that T'(M,n) is an a-skew Armendariz module over
T(R,n)and let ma = 0fora € Rand m € M. Let p(z) = (m,0,...,0)+
(0,0,...,mr)x € T(M,n)[z; o], q(z) = (a,0,...,0)—(0,0,...,raa))x €
T(R,n)[x; ] with p(z)q(z) = 0. Since T(M,n) is a-skew Armendariz,
(m,0,...,0)(0,0,...,7ra(a)) = 0 implies mra(a) = 0 for each r € R.
Hence mRa(a) = 0 yields mRa = 0, because Mp is a-compatible. Thus
Mp, is reduced. Conversely, assume that Mp is reduced. Consider the
following mapping
v1: T(M,n)[z;a] — T(M[z;a],n), be given by ¢1(A4g + A1z + -+ +
Akﬁk) = (f1, fas- -+, fn), where 4; = (ai1, @iz, . .., ain) € T(M,n), fi/ =
agyr + appr + -+ appa® € Mz], 0 < i < kand 1 < i < n. Let
@2 : T(R,n)[z;a] — T(R[z;a],n), given by @o(Bg+ Bix+-- -+ Bjal) =
(gl,gg, - ,gn), where Bj = (bjl, bjg, e bjn) S T(R, n), gy = bOj’ +
bijx + -+ bpal € Rlrsal, 0 < j < land 1 < j/ < n. It is
easy to see that (1, o are isomorphisms. Suppose that p = Ay +
Ayx + -+ At € T(M,n)[z;a] and ¢ = By + Bz + -+ + Bpa™ €
T(R,n)[x; a], where A; = (ai1, ai2, - . ., ain) € T(M,n), foreach 0 <i <t
and B; = (bj1,bj2,...,bn) € T(R,n) for each 0 < j < m and let
p(x)q(z) = 0. Suppose that p; = ag; + ajiz + -+ + ayxt € M[z;a] and
q; = boj +bijx + -+ by;z™ € R[x;al, then p;g; =0 for 1 <i < n and
1 <j<n-—1i+ 1. We then have the system of equations

(Ao) agibo; = 0,

(A1) agibij + aria(boj) = 0,
(AQ) a(),‘bgj + alia(blj) + aziOJQ(ij) =0,

(Atym—1)  a@—1)ibmj + atia (bu,_1y;) =0,
(Atym)  atiat (bmj) = 0.
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By (Ai4m), we have a;al(bp;) = 0, which implies aybm; = 0, by a-
compatibility of Mp. Hence ay; Rby,j = 0. Multiplying (Ai1m—1) by bm;
from the I'ight, (At-l—m—l) becomes a(t_l)ibfnj + atiat(b(m_l)j)bmj = 0.
Since a4 Rby,; = 0, we get a(t,l)ibfnj = 0. But Mp is reduced, so
a(;—1)ibmj = 0. Continuing this process, we have ag;b;; = 0, where
0<lI<m,1<i<nandl < j <n-—1+1 This shows that
ApBs = 0 for 0 < s < m, proving that T'(M,n) is a-skew Armendariz
module over T'(R, n). O

Corollary 2.21. [29, Theorem 1.9] A module Mg is reduced if and
only if M[x]/M[z](z™) is an Armendariz module over R[x]/(z") for an
integer n > 2.

Next we recall a well-known result.

Proposition 2.22. Suppose that M is a flat right R-module. Then for
every exact sequence 0 — K — F — M — 0, where F is R-free, we
have (FI) N K = K1 for each left ideal I of R; in particular, we have
Fa N K = Ka for each element a of R.

Proposition 2.23. Let a be an endomorphism of a ring R and § an
a-derivation. Then R is a skew-Armendariz ring if and only if every
flat R module M is skew-Armendariz.

Proof. Let M be a flat R-module. Suppose 0 - K — F — M — 0
is an exact sequence with F' free over R. For an element y € F, we
denote § = y + K in M. Suppose that f(z) = i ziz’ € Mz
and g(z) = 377, ajx’ € Rlr;a,d] with f(x)g(x) = 0. We show that
yoa; = 0 for 0 < j < n. We have f(z)g(xz) =0, so we get,
The constant term:  gpag + 716(ag) + y26%(ag) + - - = 0;
The coefficient of x:  ypa1 + y1a(ag) + v1d(ar) + -+ = 0;

The coefficient of '™, gal(a,) = 0.

Since M is a flat R-module, there exists an R-module homomorphism 3 :
F — K such that 3 fixes these coefficients. Write w; := ((y;) —y; for i =
0,1,...,t. Each w; is an element of F', therefore the polynomial h(x) =
Zé‘:o w;z' € F[r] and h(z)g(x) = 0. Since R is skew-Armendariz and
F'is a free R-module, F' is skew-Armendariz by Proposition 2.10. Thus,
we have woa; = 0 for all j. It follows that yoa; € K for all j, so yoa; =0
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in M, proving that M is skew-Armendariz.
O

Put Anng(2MR) = {anng(U) | U C Mg}, where Mg is an R-module.

Theorem 2.24. Let Mg be an (o, d)-compatible module and S = R[z; o, d].
Then the following statements are equivalent:

(1) Mg is a skew-Armendariz module;

(2) The map 1 : Anng(2MR) — Anng(2M#ls), defined by A — AS
for all A € Anng(2MR), is bijective.

Proof. (1) = (2). Consider the maps ¢ : {anng(U) | U C Mg} —
{anng(U) | U C M|[z]s} defined by A +— AS for every A € {anng(U) |
U C Mg}, and ¢ : {anng(U) | U € M[z]s} — {anng(U) | U € Mg}
defined by B — B N R. It is clear that ¢ is well defined, because
annr(U)S = anng(U) for each U C Mp. Since My, is («, §)-compatible,
we see that anng(V) N R = anng(Vp) for each V' C M|z]g, where V} is
the set of coefficients of all elements of V. Hence v’ is also well defined.
Since ¢t = id, 1 is injective. Assume that B € {anng(U) | U C
MIx]s}, then B = anng(J) for some J C M|z|g. Let B; and J; denote
the set of coefficients of elements of B and .J, respectively. We claim
that anng(J1) = B1R. Let m(x) = mo +miz + --- + mya® € J and
f(x) = bp+bix+ -+ byz™ € B. Then m(z)f(x) = 0. Since Mp
is skew-Armendariz and (o, d)-compatible, m;b; = 0 for all m; and b;.
Thus J; B = 0, hence B1R C anng(Jy). Since My is («, §)-compatible,
anng(J1) € B1R. Thus anng(J1) = B1 R, and hence anng(J) = B1RS.
Therefore 1 is surjective.

(2) = (1). Let m(z) = mo +miz + - + mga® € Mz]s and f(z) =
bo + b1z + -+ + bpa™ € S = R[z;a,d] satisfy m(x)f(z) = 0. Then
f(z) € anng(m(xz)) = AS, where A = anng(U) and U C Mp. Hence
bo,...,b, € A and so m(xz)b; = 0 for 0 < j < n. Hence mgb; = 0 for
each 0 < j < n, and the result follows.

]

Theorem 2.25. If My is a linearly skew-Armendariz module with R C
M, then for each idempotent e € R, a(e) = e and 6(e) = 0.

Proof. Since Mg, is a linearly skew-Armendariz module with R C Mg,
then Rp is also linearly skew-Armendariz. Hence by [35, Theorem 3.1],
the result follows. O
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N. Agayev et al. [1] introduced and studied the notion of abelian
modules:
A module Mpg is called abelian if, for any m € M and any a € R, any
idempotent e € R, mae = mea. It is proved in [1] that every Armen-
dariz module and hence every reduced module is abelian. The class of
abelian modules is closed under direct sums, and a ring R is abelian if
and only if every flat R-module Mp, is abelian.

Theorem 2.26. If Mg is a linearly skew-Armendariz module with R C
M, then Mg is an abelian module.

Proof. Let Mp be a linearly skew-Armendariz module. Consider the
polynomials mj(x) = me — mer(1 — e)x and ma(z) = m(1 —e) —m(1l —
e)rex € M[x|gpa,s and fi(z) = (1 —e) +er(l —e)zr and fao(z) =
e+ (1 — e)rex € R[r;q,d], where e is an idempotent in R, r € R
and m € M. Since a(e) = e and d§(e) = 0, we have my(z)fi(z) = 0
and mo(x)fa(x) = 0. Since Mg is linearly skew-Armendariz, we get
mere = mer and mere = mre. Thus mer = mre for each r € R, and
hence Mg is an abelian module.

U

Corollary 2.27. If Mg is a skew-Armendariz module with R C M,
then Mg is an abelian module.

Theorem 2.28. Let Mg be a reduced module. Then Mpg is a
p.p.-module if and only if Mp is a p.q.-Baer module.

Proof. Since Mg is reduced, by Lemma 2.14, for each m € M and
a € R, ma = 0 implies mRa = 0. So annr(m) C annr(mR) and hence
anng(m) = anng(mR).

O

Theorem 2.29. Let Mg be an («,d)-compatible and skew-Armendariz
module with R € M. Then Mg is p.p. if and only if M[x]gz:a.5 5 p-p-

Proof. Suppose that Mg is a p.p.-module and m(z) = mo + miz +
o+ mya® € M[z]. So anng(m;) = e;R for idempotents e; € R with
0 <1i < k. Sete=epe---eg, then e is an idempotent, this is be-
cause Mp is abelian by Corollary 2.27. Hence eR = N¥_janng(m;). By
Theorem 2.25, a(e) = e and d(e) = 0. Thus m(z)e = 0 and hence
eS C anng(m(z)), where S = R[z;a,d]. Next, assume that ¢(x) =
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PRI bjx) € anng(m(z)). Since Mg is skew-Armendariz, mgb; = 0 for
0 <j <n. Sobj; € eR and hence ¢(z) € eS, so anng(m(x)) = eS. This
shows that M|z] is a p.p.-module over R[z;a, d].

Conversely, suppose that M[x] is a p.p.-module over R[z;c,d] and
m € M. Let e(z) = eg+e1x+- -+ e,z" be an idempotent in R[z; «, d].
Then from e(1—€) =0 = (1—e)e, we get (eg+e1x+---+epz™)(1—eo—
erx—---—epx™) =0and (1—eg—e1x—- - -—enx™)(eg+erx+- - -+epz™) =
0. Since Mp is skew-Armendariz, ey(1 —eg) = 0, (1 — eg)e; = 0. So
eoe; = 0, e; = epe;, and hence e; = 0. Thus e(z) = 6(2] =e¢ey € R, and
anng(m) = eS, which yields anng(m) = eR and the result follows.

U

Theorem 2.30. Let Mp be an («, d)-compatible skew-Armendariz mod-
ule with R C M. Then Mg is Baer if and only if M[z]g(z;a,5) is Baer.

Proof. Assume that Mp is a Baer module and J C M|xz]. First suppose
Jo = {m € M|m is a leading coefficient of some non-zero element of J}.
Clearly, Jy is a subset of M. Since Mg is Baer, there exists e> = e € R
such that anng(Jy) = eR. Hence eS C anng(J) by Lemma 2.15. Let
f(z) = by + bz + -+ + bya™ € anng(J). Then Jopb; = 0 for each
J =0,...,n, because Mg is skew-Armendariz. Hence b; = eb; for each
j=0,....,nand f(z) = ef(xz) € eS. Thus anng(J) = eS and M|z]g
is a Baer module. Conversely, assume that M]z]s is a Baer module
and A C M. Then Alzx] C MJz]. Since M|x] is Baer, there exists an
idempotent e(x) = eg + - -+ + e,2™ € S such that anng(A[z]) = e(z)S.
Hence Aey = 0 and egR C anng(A). Next, let t € anng(A). Then
Alz]t = 0 by Lemma 2.16. Hence ¢t = e(z)t and so t = egt € egR. Thus
annpr(A) = egR and Mp is a Baer module.

O

F 0

Example 2.31. Let F' be a filed and R = ( 0 F

F 0
F 0
‘ a 0 b 0 .
gwenbya((o b>>_<0 a>,f0reacha,b€F. Note that R is

an abelian ring and Mg is an abelian module. But we see that Mg is not

a-skew Armendariz. For this let m(z) = < (1] 8 > T < —02 8 )m c

) and let Mp =

be a right R-module. Let o : R — R be the automorphism
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Mlz] and f(x) = ( 8 (1) )—i— ( (2) 8 >x € R[xz;a]. Then, we can eas-

ily see that m(x) f(x) = 0. But we have, moa; = < (1) 8 > < (2) 8 > -

2 0
(39)
McCoy [31, Theorem 2] proved that if R is a commutative ring, then

whenever g(x) is a zero-divisor in R[x] there exists a nonzero ¢ € R such
that cg(x) = 0. We shall extend this result as follows.

Proposition 2.32. Let Mg be an («, §)-compatible and reduced module.
If m(z) is a torsion element in M|x] (i.e., m(x)h(z) = 0 for some
0 # h(x) € R[z;a, 0] ), then there exists a non-zero element ¢ of R such
that m(z)c = 0.

Proof. Let m(z) = Y1y miz" € M(z] and h(z) = Y 5_o hja! € R[z;a,d]
and m(z)h(x) = 0. Then m,a"(hs) = 0, and since M is a-compatible,
we have mphs = 0. By Lemma 2.14, we get m,Rhs = 0. Since Mpg
is (a,d)-compatible, it is (a’,§’)-compatible for each i,j and hence
mnf!(hs) = 0 for each j > i > 0. Hence the coefficient of z"+5~!
in m(z)h(x) = 0 is mpa™(hs—1) + mp_10" " L(hs) = 0.
Multiply the above equation from right by hs, we get m,_1a" ! (hs)hs =
0. Using a-compatibility repeatedly, we obtain m,_1h2 = 0, and then
by Lemma 2.14, we have m,_1hs = 0. Using Lemma 2.14 again, we
have m,,_1Rhs = 0, and by (c, §)-compatibility of Mg, m,_1f] (hs) =0
for each j > i > 0. Hence the coefficient of x"**~2 in m(x)h(z) = 0 is
M ™ (hs—2) + Mmp—10" " (hs_1) + mu f? 1 (hs—1) + my_20"2(hs) = 0.
Multiplying the above equation from right by hs, we get m,,_oa™ 2(hg)hs
0. Using a-compatibility repeatedly we obtain m,_sh? = 0, and then
by Lemma 2.14, we have m,_ohs = 0. Continuing this process we de-
duce that mjh, = 0 for each j. Since h(x) # 0 we may assume that
¢ = hs # 0. Then by Lemma 2.16, we get m(x)c = 0.

]

Corollary 2.33. Let Mp be an («,d)-compatible and reduced module.
Then Mg is Baer (respectively, p.p.) if and only if so is M[z]g[z;a,s)-

Proof. This follows from Theorems 2.19, 2.29 and 2.30.
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Corollary 2.34. Let R be an a-compatible and reduced ring. Then R
is Baer (respectively, p.p.) if and only if R[x;«,d] is Baer (respectively,
p.p.).-

Proof. Since Rp is a-compatible and reduced, by definition, R is an a-
rigid ring. Hence the result follows by Theorems 11 and 14 of [20].
O

Example 2.35. Let Ry be a domain with characteristic 0 and let R be
the polynomial ring Rolt]. Let o be the automorphism of R which is
invariant on Ry and a(t) = —t. For each fixed element a € Ry, let § be
at™ ! if nis odd,

0 if n is even.
Assume that M := Ry ® Ry ® ---. Then M is a right R module given
by (mo,ma, -+ )r = (0, moko, mik1,---) for each (mg,my,---) € M and
r € R and fixed non-zero integers ko, k1, ko, - --. First we show that Mg
is (o, 0)-compatible. It is enough to show that for each 0 # m € M,
ann(m) = 0. Suppose that (ag,ay,as,---)(bt" + b t™ ™t +...) = 0,
where a;,b; € Ry for each i € Ng and b, # 0. So we have
(0707"' 707a0k0k1"'kT—laalkle"'km'")(br +b7“+1t+ ) = 0.
This implies that agkoky - - - kr—1b, = 0. Since Ry is of characteristic
0, R is a domain. Since b, # 0 and hence koki---ky_1b., # 0, we
get ag = 0. By induction we can see that a; = 0 for each i. Now
we show that Mg is («,d)-skew Armendariz. To see this let m(x) =
mo+miz+- - -+my® € Mx] and f(z) = bo+biz+- - -+byz" € Rlz; a, 0]

k+n k .
with 0 = m(x)f(x) = Y. [ > ijfi](bl)> 2P, So mpaf(a,) =

p=0 \i+i=pj=i
0. By a-compatibility of Mg, we have mya, = 0. Since Mg s re-
duced module, mpRa, = 0. On the other hand, by (a,d)-compatibility
of Mg, mgf!(an,) = 0. Thus the coefficient of ™~ in equation
m(z)f(x) = 0 is mpak(an_1) + mp_10871(a,) = 0. Multiplying by
an from right we get my_10* 1(ay)a, = 0. Using a-compatibility re-
peatedly we obtain mk_la% = 0. Hence mp_1a, = 0. Since Mg is re-
duced, my_1Ra, =0, and by (o, §)-compatibility of Mg, my_1f] (an) =
0. Therefore mypan,—1 = 0. Continuing this process and using («,0)-
compatibility of Mp, we obtain mixiaj$j =0 for each 0 < ¢ < k and
0<j<n, as desired.

the derivation on R given by 6(at"™) =

In the following, we show by an example that the “(«, §)-compatibility
condition” in Lemma 2.16, is not superfluous.
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Example 2.36. Let Ry be a domain and R = Ry[t1,t2], where t1,to are
commuting indeterminates. Let o be the Rg-automorphism defined by
a(ty) = ta and a(ta) = t1. Let M be the polynomial ring Ro[t1]. Con-
sider M to be a right R-module given by ordinary polynomial multiplica-
tion subject to the condition Mty = 0. Then it is easy to see that Mg is
not a-compatible. Now take 0 # m(z) = go(t1)+g1(t1)x+- - -+gr(t1)z" €
Mlz] and t2 € R. Then 0 = m(z)ta = go(t1)ta + g1(t1)xte + -+ +
gr(t))x "ty = gi(t1)tixr + g3(t1)t12® + ---.  Thus for odd integers i,
gi(t1)t1 = 0 which implies that g;(t1) = 0, as Ry is a domain. But
0 # m(z), so for some even number j, 0 # g;(t1) and hence gj(t1)ta # 0
for some j.

3. Skew Quasi-Armendariz Modules

Following Hirano [19], a module My is called quasi-Armendariz if,
whenever m(z)R[z]f(z) = 0, where m(z) = Y.;_,mz’ € M[z] and
f(z) = Z;‘:o ajx? € R[z], we have m;Ra; = 0 for all 4, .

In this section, we generalize the notions of quasi-Armendariz rings
and quasi-Armendariz modules and consider the relations between the
set of annihilators in Mg and the set of annihilators in M[z]g(3:q,s)-

We give a sufficient condition for a module to be skew quasi-Armendariz
and study the structure of the skew quasi-Armendariz modules.

By Hirano in [19], a ring R is called a quasi-Armendariz ring if, when-
ever f(x)R[z]g(x) = 0 where f(x) = ap+ a1z + -+ anpz™ € R[z] and
g(x) = by + bix + - - - + bya™ € R[z], it implies that a;Rb; = 0 for all i
and j. Every semiprime ring is a quasi-Armendariz ring, by [19].

In [19], a module Mp, is called a quasi-Armendariz module if whenever
m(z)R[x]f(x) = 0, where m(z) = mg + mix + - - - + myz® € Mz] and
f(x) =bo+bix+ -+ bya™ € Rz], it implies that m;Rb; = 0 for all
and j.

Definition 3.1. Let Mg be a module, @ an endomorphism of R and
6 an a-derivation. We say Mpg is skew quasi-Armendariz, if when-
ever m(z) = Zf:o mixt € M[z], f(x) = >0 bjz) € R[z;a,d] sat-
isfy m(z)R[x;a,0]f(x) = 0, we have m;z'Ratbja? = 0 for t > 0,
1=0,1,...,kand j=0,1,...,n.
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Theorem 3.2. Let Mp be an a-compatible module and S = R[z;a].
Then,
(1) The following statements are equivalent:
(a) for any m(z) € M|z|g, (anng(m(z)S)NR)[z;a] = anng(m(z)S).
(b) for any m(x) = Zf:o m;xt € M(x]s and f(x) = Z;ZO ajz’ € S,
m(z)S f(x) =0 implies m;Ra; =0, for each i,j.
(2) Let Mg be an skew quasi-Armendariz module and m(x) € M|x]s. If
anng(m(x)S) # 0, then anng(m(z)S) N R # 0.

Proof. (1). (a) = (b) Let m(z) = E?:o mixt € M[z]g, f(x) = Z;ZO a;jx’!
€ S and assume that m(z)Sf(x) = 0. By (a), f(z) € (anng(m(x)S)N
R)[z; a], and we deduce that a; € anng(m(z)S)N R for each 0 < j <t.
So m(z)Sa; = 0 and then by a-compatibility of Mg, we obtain m;Ra; =
0 for each i, j.

(b) = (a) Let g(x) = > % bjx? € (anng(m(z)S) N R)[z;al, so bj €
anng(m(z)S)NR. So m(x)Sb; = 0 for each j and hence m(x)Sg(z) = 0.
Thus g(x) € anng(m(x)S). Now assume that h(z) = Z?:o cjr? €
anng(m(x)S). So m(x)Sh(x) = 0 and by (b) we get m;Rc; = 0. By
a-compatibility of Mg, m(x)Rec; = 0. So ¢; € anng(m(x)S) N R for
each j and hence h(x) € (anng(m(z)S) N R)[z;a]. So anng(m(x)S) =
(anng(m(x)S N R))[z; al.

(2). The proof follows by Lemma 2.15 and (1) (b) = (a). O

In the following result, we give relations between the set of annihila-
tors in Mg and the set of annihilators in M[z]g[z;q)-

Theorem 3.3. Let Mp be an a-compatible module and S = Rlz;al.
Then the following statements are equivalent:

(1) Mg is a skew quasi-Armendariz module;

(2) The map ¢ : Anngr(sub(Mpg)) — Anng(sub(M|z]g)), defined by
Y(anng(N)) = anng(N) = anng(N|x]) for all N € sub(Mg), is bijec-
tive, where sub(Mp) and sub(M|[x]s) denote the sets of submodules.

Proof. (1) = (2) Assume that Mp is skew quasi-Armendariz. Obvi-
ously v is injective. Therefore, it is enough to show 9 is surjective. Let
V € sub(M|z]g) and Cy denotes the set of all coefficients of elements of
V. Then for annr(Cyv R) € Anng(sub(M)), we have ¢(annr(CyR)) =
anng(Cy R) = anng(V). In fact, let f(z) € anng(Cy R). Then Cy Rf(x)
= 0 and hence Vf(z) = 0. So f(x) € anng(V). Conversely, let
g(x) = bo + - + bpax® € anng(V). Then Vg(z) = 0. Since V is a
submodule of M(z|g, VSg(z) = 0. So v(z)Sg(xz) = 0 for all v(z) =
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vo + viz + --- + vzl € V. Since Mg is a-compatible and skew quasi-
Armendariz, v;Rb; = 0 for all i,j. Hence CyRg(x) = 0 and therefore
g(z) € anng(Cy R). Consequently v is surjective.

(2) = (1) Assume m(z)Sf(x) = 0, where m(z) = mo +miz +--- +
myxrt € M[z] and f(x) = ag + a1 + - + apz® € S. By hypothesis,
anng(m(z)S) = anng(N)[z;a] for some submodule N of M. Then
f(x) € anng(N)[z;a] and hence a; € anng(N) for all j. So a; €
anng(N) C anng(N)[z;a] = anng(m(x)S) and then m(x)Sa; = 0.
In particular m(x)Ra; = 0 and hence m;Ra; = 0 for all ¢,j. Since
Mp is a-compatible, m;xz*Rxta;a? = 0, for t > 0, i = 0,1,...,t and
j=0,1,...,k . Therefore Mg is skew quasi-Armendariz . O

Let R be a ring. The trivial extension of R is given by:
T(R,R) = {( 8 2 ) | a,r € R}. Clearly, T(R,R) is a subring of
the ring of 2 x 2 matrices over R. The endomorphism « of R and
the a-derivation ¢ on R are extended to a : T(R,R) — T(R,R) by
)

(INGEIR (G

One can show that § is an a-derivation on T(R, R) and also we can see

T(R, R)|x;&,d] = T(R[x; , 8], R[z; o, §]).

Proposition 3.4. If the trivial extension of R, T(R, R), is skew-quasi
Armendariz, then so is R.

Proof. Let f(x) = ap + -+ + apz™, g(x) = by + - - + bpz™ € R[z; v, 0]
and f(x)R[z;«,dlg(x) = 0. For each a,r € R and t > 0, we have the
following equation:

0— < flz) 0O ) < ar® rat ) ( 0 g(x) ) _ ( 0 f(z)axtg(x) )
=070 f@ )L o at)\o 0 )T o 0 '

Since T'(R, R) is skew quasi-Armendariz, it implies that a;z’ax'b;z7 = 0,

for each 1, j,t. Therefore R is skew quasi-Armendariz. O

When the trivial extension T'(R, R) is skew quasi-Armendariz?

Theorem 3.5. Let R be a ring such that

(1) R is skew quasi-Armendariz;

(i4) If (x)Rlz; 0, 0g(x) = 0, then f(z)Rlz; 8] N Rlw; a, d]g(x) = 0.
Then the trivial extension T = T (R, R) is skew quasi-Armendariz.

Proof. Suppose that a(x)T[x; &, §]3(x) = 0, where
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= @0 7o a1 71 Gn  Tn n
a(x)(o ao>+(0 a1)$+ +<O an>x and
_( b 30 b1 s bn S\ o o
5(95)(0 b0>+(0 b1>x+---+< 0 bm)a? € Tx; &, 9.
Let f(z) = ao+ a1z + - + ana™, r(z) = rg + 1z + - - - + rpa™,
g(l’) = b0+b1$+‘ . ‘+bm$m and S(LL’) = So+s1x+-- 'JrSme‘m c R[$;Ox, 5]
T _

For each g a 2t € T[x; @, d], it follows that

= (5 ) (7 ) () -
f@)aa'g(w) f(r)ar's(z) + f(x)rag(z) + r(@)ac'g(e) \ o o
< 0 f(@)az'g () >

(3.1) f(a)az'g(x) =0,

(3.2) f(a)az's(z) + f(z)ra’g(z) +r(z)az’g(zx) = 0.

g 2 z' is an arbitrary element of T'(R, R)[z; @, §] and

T(R, R)[z; @, 6] =2 T(R[x; o, ], R[x; a, d]), by (3.1) we get

(3-3) f(@)Rlx; o, 0]g(x) = 0.

Since R is skew quasi-Armendariz, aixintbj:Uj =0, for all 4, j,¢t. Thus
by (3.2), f(z)[azts(x) + ratg(x)] + [r(x)axt]g(z) = 0. Hence by (3.2)
and (3.3), we have

f(@)laz’s(z)+ratg(z)] = —[r(x)aa'lg(z) € f(2)Rlz; o, ]NRw; o, b]g ()
= 0. So f(z)lax's(z) + ratg(z)] = 0 = r(z)azlg(z), and hence we
have r(z)R[z;a,d]g(x) = 0, since az' is an arbitrary element. Thus
74X intb 2/ = 0 for all 4, j, t, since R is skew quasi-Armendariz. Also we
have f(z)[aa's(x)] = —[/ (@)ra‘lg(a) € f(z)Rla:a, 0] N Rlz:a, olg(x) =
0. Thus f(x)az's(z) = 0. So we have f(z)R[z; 5]3( ) = 0. Since R is
skew quasi-Armendariz, we deduce a;z’ Rt ijj = 0 for all ¢, j,t. Hence

a; T i a T cf bj s i
(5 o) (502 (% )=-
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C o C o
a;ztaxtb;x!  aixtratbjat + aix;rxtbjl"j‘ + riztaxtb;al — 0 for all

0 a;x*axr'b;x’
i,j and each g ") at e T(R, R). Therefore the trivial extension
T(R, R) is skew quasi-Armendariz. g

Kerr [24] constructed an example of a commutative Goldie ring R
whose polynomial ring R[x] has an infinite ascending chain of annihilator
ideals.

Theorem 3.6. Let Mg be an skew quasi-Armendariz module. If Mg is
(a, §)-compatible, then Mp satisfies the ascending chain condition on
annihilator of submodules if and only if so does M|x]|s, where S =

Rlz; v, 0].

Proof. Assume that Mp satisfies the ascending chain condition on anni-
hilator of submodules. Let Iy C Iy C I3 C ... be a chain of annihilator
of submodules of M[z|s. Then there exist submodules K; of M|z|g
such that anng(K;) = I;, for all i > 1 and K1 2 K9 O K3 D ---
Let M; = {all coefficients of elements of K;}. Since M is skew quasi-
Armendariz, M; is submodule of M for all ¢ > 1. Clearly M; O M;,
for all ¢ > 1. Thus anng(M1) C anng(M2) C anng(Ms) C ---
Since MR satisfies the ascending chain condition on annihilator of sub-
modules, there exists n > 1 such that anng(M;) = anng(M,,) for all
i > n. We show that anng(K;) = anng(K,) for all i > n. Let f(z) =
ag + a1z + -+ + apax™ € anng(K;). Then M;a; = 0 for j =0,...,m,
because M is skew quasi-Armendariz. Thus M,a; =0 for j =0,...,m
and so K, f(z) = 0 by Lemma 2.16. Therefore anng(K;) = anns(Ky)
for all i > n and M|x]g satisfies the ascending chain condition on anni-
hilator of submodules. Now assume M [z]g satisfies the ascending chain
condition on annihilator of submodules. Let J; C Jo C J3 C ... be a
chain of annihilator of submodules of Mg. Then there exist submodules
M; of M such that anng(M;) = J; and My 2 My O M3 O --- for
all ¢ > 1. Hence M;[x] is a submodule of M[z] and M;[x] O M;y;[x]
and anng(M;[z]) C anng(M;y1[z]) for all ¢ > 1. Since M|[z]s satisfies
the ascending chain condition on annihilator of submodules, there exists
n > 1 such that anng(M;[z]) = anng(My[z]) for all i > n. Since M is
skew quasi-Armendariz, by a similar argument as used in the previous
paragraph, one can show that anng(M;) = anng(M,) for all i > n.

O
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Following [3], the second author and E. Hashemi [17] introduced
(a, §)-compatible rings and studied its properties. A ring R is a-compatible
if for each a,b € R, ab = 0 if and only if ac(b) = 0. Moreover, R is said
to be d-compatible if for each a,b € R, ab = 0 implies ad(b) = 0. A ring
R is (a, d)-compatible if it is both a-compatible and J-compatible. In
this case, clearly the endomorphism « is injective. Also by [17, Lemma
2.2], aring R is (o, 0)-compatible and reduced if and only if R is a-rigid
in the sense of Krempa [26]. Thus the a-compatible ring is a generaliza-
tion of a-rigid ring to the more general case where R is not assumed to
be reduced.

Corollary 3.7. Let R be an («, §)-compatible and skew quasi-Armendariz
ring. Then R satisfies the ascending chain condition on right annihila-
tors if and only if so does R[z;a, ).

Corollary 3.8. [19, Corollary 3.3] Let R be an Armendariz ring. Then
R satisfies the ascending chain condition on right annihilators if and
only if so does R[z].

Theorem 3.9. Let Mg be an («,d)-compatible module. Then Mp is
quasi-Baer (respectively, p.q.-Baer) if and only if M[.T]R[z;avg] 1S quast-
Baer (respectively, p.q.-Baer). In this case Mg is skew quasi-Armendariz.

Proof. Assume Mg is quasi-Baer. First we shall prove that Mg is skew
quasi-Armendariz. Suppose that (mg+mix+ - - - +mpa®) R[z; «, 8] (b +
bix + -+ bya™) =0, with m; € M,b; € R. In particular case we have

(34) (mo+miz+---+ mkl‘k)R(bo + b+ -+ bpa™) = 0.

Thus mgRb, = 0 and b, € anng(mipR). Then mya*Rxtb,a™ = 0, by
Lemma 2.15. Since Mg is quasi-Baer, there exists e% = e € R such
that anng(miR) = exR and so b, = exb,,. Replacing R by Rey, in (3.4)
and using Lemma 2.15, we obtain (mg+myx+- - - +my_12* 1) Reg (b +
bz + -+ + byz™) = 0. Hence my_1Rexb, = mp_1Rb, = 0 and b,, €
anng(my_1R). Then my_12* ' Ratb,2™ = 0, by Lemma 2.15. Hence
by, € anng(miR) N anng(mg_1R). Since Mg is quasi-Baer, there ex-
ists f2 = f € R such that anng(mpR) = fR and so b, = fb,. If
we put ep_1 = exf, then ex_1b, = exfb, = exb, = b, and ex_1 €
anng(miR) N anng(mg_1R). Next, replacing R by Rei_1 in (3.4), and
using Lemma 2.15, we obtain (mg + mix + - - - + my_ox* " 2)Reg_1 (b +
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bix + -+ 4 byz™) = 0. Hence we have my_oRe_1b, = myp_oRb, = 0
and that b, € anng(mi_oR) and so my_oz* 2Rz'b,2™ = 0, by Lemma
2.15. Continuing this process, we get m;z' Rxtb,z™ = 0 for i = 0,..., k.
Using induction on k+n, we obtain mil‘iRIL‘tbj$j = 0 for all 4, j,t. There-
fore Mp, is skew quasi-Armendariz. Let J be a S-submodule of M|[z]. Let
N={m € M| mis a leading coefficient of some non-zero element of J}
U {0}. Clearly, N is a submodule of M. Since Mg is quasi-Baer, there
exists 2 = e € R such that anng(N) = eR. Hence ¢S C anng(J) by
Lemma 2.15. Let f(z) = by +bix+---+bya" € anng(J). Then Nb; =0
for each 7 = 0,...,n, because Mp is skew quasi-Armendariz. Hence
bj = ebj for each j =0,...,n and f(z) = ef(x) € eS. Thus anng(J) =
eS and M|z|g is quasi-Baer. Now assume that M[z]g is quasi-Baer and
I is a submodule of M. Then I[z] is a submodule of M|z]. Since M [x]
is quasi-Baer, there exists an idempotent e(x) = eg + -+ + epa™ € S
such that anng(I[x]) = e(z)S. Hence Ieg = 0 and egR C anng(l). Let
t € anng(I). Then I[z]t = 0, by Lemma 2.16. Hence t = e(z)t and so
t = ept € egR. Thus anng(I) = egR and Mp is quasi-Baer.

O

It is clear that R is a right p.q.-Baer ring if and only if Rg is a p.q.-
Baer module. But, there exists a p.q.-Baer right R-module such that R
is not right p.q.-Baer.

Example 3.10. Let R = Zy[x]/(x?), where Zs|x] is the polynomial ring
over the field Zy of two elements and (x2) is the ideal of Zs|x] generated
by x2. It is easy to see that R is a quasi-Armendariz ring. Since right
annihilator of x + (z?) is not generated by any idempotent, R is not a
right p.q.-Baer ring. Now let e = 1+ (2?) and I = ReR. Then e = e,
and for each a € R, anng((a+ I)R) = eR. Therefore R/I is p.q.-Baer
right R-module.

Corollary 3.11. [17, Corollary 2.8] Let R be an («,d)-compatible ring.
Then R is quasi-Baer (respectively, right p.q.-Baer) if and only if R[x; c, 0]
is quasi-Baer (respectively, right p.q.-Baer). In this case R is a skew
quasi-Armendariz Ting.

Corollary 3.12. [9, Corollary 2.8] A ring R is quasi-Baer (respectively,
right p.q.-Baer) if and only if R[x] is quasi-Baer (respectively, right p.q.-
Baer).
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Corollary 3.13. [20, Theorems 12, 15] Let R be an a-rigid ring. Then
R is quasi-Baer (respectively, right p.q.-Baer) if and only if R[z; o, 0] is
quasi-Baer (respectively, right p.q.-Baer).

The following example shows that “(a, d)-compatibility condition” on
Mp in Theorem 3.9 is not superfluous.

Example 3.14. [5, Example 11| There is a ring R and a derivation &
of R such that R[z;d] is a Baer (hence quasi-Baer) ring, but R is not
quasi-Baer. In fact let R = Zy[t]/(t?) with the derivation & such that
§(t) = 1 where = t + (t?) in R and Zs[t] is the polynomial ring over the
field Zy of two elements. Consider the Ore extension R[x;d]. If we set
e11 = tx,e1n = t,e91 = tx?+x, and exs = 14tz in R[z; ], then they form
a system of matrix units in R[x;0]. Now the centralizer of these matrix
units in R[z; ] is Zs[z?]. Therefore R[z;d] &2 Mo (Zo[2?]) = Ma(Zs)[y),
where My(Z2)[y] is the polynomial ring over Ma(Zsz). So the ring R[z; d]
is a Baer ring, but R is not quasi-Baer.
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