ON A DECOMPOSITION OF HARDY–HILBERT'S TYPE INEQUALITY

R. LASHKARIPOUR* AND A. MOAZZEN

Communicated by Michel Waldschmidt

ABSTRACT. In this paper, two pairs of new inequalities are given, which decompose two Hilbert-type inequalities.

1. Introduction

In 1908, H. Weyl [3] published the following Hilbert inequality: If $\{a_n\}$, $\{b_n\}$ are real sequences, $0 < \sum_{n=1}^{\infty} a_n^2 < \infty$ and $0 < \sum_{n=1}^{\infty} b_n^2 < \infty$, then

(1.1)
$$\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{a_n b_m}{m+n} < \pi \Big(\sum_{n=1}^{\infty} a_n^2 \sum_{n=1}^{\infty} b_n^2 \Big)^{\frac{1}{2}},$$

where the constant factor π is the best possible. In 1925, G. H. Hardy [1] extended (1.1) as: If p>1, $\frac{1}{p}+\frac{1}{q}=1$, $a_n,b_n\geq 0$, $0<\sum_{n=1}^{\infty}a_n^p<\infty$ and $0<\sum_{n=1}^{\infty}b_n^q<\infty$, then

(1.2)
$$\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{a_n b_m}{m+n} < \frac{\pi}{\sin(\frac{\pi}{p})} \Big(\sum_{n=1}^{\infty} a_n^p \Big)^{\frac{1}{p}} \Big(\sum_{n=1}^{\infty} b_n^q \Big)^{\frac{1}{q}},$$

where the constant factor $\frac{\pi}{\sin(\frac{\pi}{p})}$ is the best possible. We refer to (1.2) as the Hardy-Hilbert inequality. In 2005, Yang [5] gave an extension of (1.2)

 $\operatorname{MSC}(2010)\text{:}$ Primary: 26D15; Secondary: 26D10.

Keywords: Hilbert's inequality, Hilbert-type inequality, integral inequality.

Received: 23 May 2010, Accepted: 7 September 2010.

*Corresponding author

© 2012 Iranian Mathematical Society.

with a pair of conjugate exponents (p,q)(p>1) and a parameter $\lambda>0$ as: suppose that p>1, $\frac{1}{p}+\frac{1}{q}=1$, $\phi_r>0 (r=p,q)$, $\phi_p+\phi_q=\lambda$ and u is a differentiable strictly increasing function on (a,b) $(-\infty \le a < b \le \infty)$, such that $u(a^+)=0$ and $u(b^-)=\infty$ and also $f,g\ge 0$ satisfy

$$0 < \int_{a}^{b} (u(x))^{p(1-\phi_q)-1} (u'(x))^{1-p} f^p(x) \, dx < \infty,$$
$$0 < \int_{a}^{b} (u(y))^{q(1-\phi_p)-1} (u'(y))^{1-q} g^q(y) \, dy < \infty.$$

Then

(1.3)
$$\int_{a}^{b} \int_{a}^{b} \frac{f(x)g(y)}{(u(x) + u(y))^{\lambda}} dxdy$$

$$< K \Big(\int_{a}^{b} u(x)^{p(1-\phi_{q})-1} (u'(x))^{1-p} f^{p}(x) dx \Big)^{\frac{1}{p}}$$

$$\times \Big(\int_{a}^{b} (u(y))^{q(1-\phi_{p})-1} (u'(y))^{1-q} g^{q}(y) dy \Big)^{\frac{1}{q}},$$

where the constant factor $K = \beta(\phi_p, \phi_q)$, is the best possible. For $0 with <math>\{\lambda : \phi_r > 0 \ (r = p, q), \phi_p + \phi_q = \lambda\} \neq \emptyset$, inequality (1.3) is reversed and the constant factor is still the best possible.

There are some kind of Hilbert-type inequalities. For instance, Dongmel Xin in [4] gave the following statement:

If
$$p > 1$$
, $\frac{1}{p} + \frac{1}{q} = 1$, $r > 1$, $\frac{1}{r} + \frac{1}{s} = 1$, $\lambda > 0$ and $f, g \ge 0$ such that
$$0 < \int_0^\infty x^{p(1-\frac{\lambda}{r})-1} f^p(x) \, dx < \infty,$$
$$0 < \int_0^\infty y^{q(1-\frac{\lambda}{s})-1} g^q(y) \, dy < \infty.$$

Then we have

(1.4)
$$\int_0^\infty \int_0^\infty \frac{\ln(\frac{x}{y})f(x)g(y)}{x^\lambda - y^\lambda} dx dy < \left[\frac{\pi}{\lambda \sin(\frac{\pi}{r})} \right]^2 \left(\int_0^\infty x^{p(1-\frac{\lambda}{r})-1} f^p(x) dx \right)^{\frac{1}{p}} \times \left(\int_0^\infty y^{q(1-\frac{\lambda}{s})-1} g^q(y) dy \right)^{\frac{1}{q}},$$

where the constant factor is the best possible.

Recently, Yang [6] by the identity

$$\frac{1}{m+n} = \frac{\max\{m,n\}}{(m+n)^2} + \frac{\min\{m,n\}}{(m+n)^2} \qquad (m,n \in \mathbb{N})$$

gave a decomposition of Hilbert's inequality as follows

$$\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{\max\{m,n\}}{(m+n)^2} a_m b_n < (\frac{\pi}{2}+1) \Big(\sum_{n=1}^{\infty} a_n^2 \sum_{n=1}^{\infty} b_n^2 \Big)^{\frac{1}{2}},$$

$$\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{\min\{m, n\}}{(m+n)^2} a_m b_n < (\frac{\pi}{2} - 1) \Big(\sum_{n=1}^{\infty} a_n^2 \sum_{n=1}^{\infty} b_n^2 \Big)^{\frac{1}{2}}.$$

The sum of two best constant factors is π (the constant factor of Hilbert's inequality).

2. Main results

In this section, by the following identities we give two pairs of new Hilbert-type inequalities which decompose inequalities (1.3) and (1.4), respectively:

$$\frac{1}{(x+y)^{\lambda}} = \frac{x}{(x+y)^{\lambda+1}} + \frac{y}{(x+y)^{\lambda+1}},$$

$$\frac{\ln(\frac{x}{y})}{x^{\lambda} - y^{\lambda}} = \frac{x^{\lambda} \ln(\frac{x}{y})}{x^{2\lambda} - y^{2\lambda}} + \frac{y^{\lambda} \ln(\frac{x}{y})}{x^{2\lambda} - y^{2\lambda}}.$$

At first, by using the idea of Lemma 2.3 at [2] one can easily prove the following Lemma.

Lemma 2.1. Let $0 \le ps < 1$ and $0 \le sq < 2$ and $\lambda > 2 - \min\{p, q\}$. Define a function Φ by

$$\Phi(s) = \left(\beta(\lambda + ps, 1 - ps)\right)^{\frac{1}{p}} \left(\beta(\lambda - (1 - qs), 2 - qs)\right)^{\frac{1}{q}},$$

where $\beta(m,n)$ is beta function. Then $\Phi(s)$ attains its minimum at $s = \frac{2-\lambda}{pq}$.

Theorem 2.2. Assume that p > 1, $\lambda > 2 - \min\{p, q\}$, $\frac{1}{p} + \frac{1}{q} = 1$ and u, v are two strict increasing differentiable functions such that u(0) = v(0) = 0, $u(\infty) = v(\infty) = \infty$,

$$0 < \int_0^\infty (u(x))^{1-\lambda} (u'(x))^{1-p} f^p(x) \, dx < \infty,$$
$$0 < \int_0^\infty (v(y))^{1-\lambda} (v'(y))^{1-q} g^q(y) \, dy < \infty.$$

Then

$$\int_{0}^{\infty} \int_{0}^{\infty} \frac{u(x)}{(u(x) + v(y))^{1+\lambda}} f(x)g(y) \, dx dy$$

$$< K_{1}(\lambda) \Big(\int_{0}^{\infty} (u(x))^{1-\lambda} (u'(x))^{1-p} f^{p}(x) \, dx \Big)^{\frac{1}{p}}$$

$$\times \Big(\int_{0}^{\infty} (v(y))^{1-\lambda} (v'(y))^{1-q} g^{q}(y) \, dy \Big)^{\frac{1}{q}},$$

where $\phi_r(\lambda) = 1 - \frac{2-\lambda}{r}$ and $K_1(\lambda) = \frac{\phi_p(\lambda)}{\lambda} \beta(\phi_p(\lambda), \phi_q(\lambda))$. The constant factor is the best possible.

Proof. Put
$$f(x) = F(x)(u'(x))^{\frac{1}{q}}$$
 and $g(y) = G(y)(v'(y))^{\frac{1}{p}}$. Then
$$\int_{0}^{\infty} \int_{0}^{\infty} \frac{u(x)}{(u(x) + v(y))^{\lambda + 1}} f(x)g(y) \, dx dy$$

$$= \int_{0}^{\infty} \int_{0}^{\infty} \frac{u(x)F(x)(u'(x))^{\frac{1}{q}}G(y)(v'(y))^{\frac{1}{p}}}{(u(x) + v(y))^{\lambda + 1}} \, dx dy$$

$$= \int_{0}^{\infty} \int_{0}^{\infty} \frac{F(x)(u(x)v'(y))^{\frac{1}{p}}}{(u(x) + v(y))^{\frac{\lambda + 1}{p}}} \left(\frac{u(x)}{v(y)}\right)^{s}$$

$$\times \frac{G(y)(u(x)u'(x))^{\frac{1}{q}}}{(u(x) + v(y))^{\frac{\lambda + 1}{q}}} \left(\frac{v(y)}{v(x)}\right)^{s} \, dx dy$$

$$\leq \left(\int_{0}^{\infty} \int_{0}^{\infty} \frac{F^{p}(x)u(x)v'(y)}{(u(x) + v(y))^{\lambda + 1}} \left(\frac{u(x)}{v(y)}\right)^{sp} \, dx dy\right)^{\frac{1}{p}}$$

$$\times \left(\int_{0}^{\infty} \int_{0}^{\infty} \frac{G^{q}(y)u(x)u'(x)}{(u(x) + v(y))^{\lambda + 1}} \left(\frac{v(y)}{u(x)}\right)^{sq} \, dx dy\right)^{\frac{1}{q}}$$

$$= M^{\frac{1}{p}} N^{\frac{1}{q}},$$

where

$$M = \int_0^\infty \int_0^\infty \frac{F^p(x)u(x)v'(y)}{u^{\lambda+1}(x)(1+\frac{v(y)}{u(x)})^{\lambda+1}} \left(\frac{u(x)}{v(y)}\right)^{sp} dxdy.$$

By substituting $t = \frac{v(y)}{u(x)}$, one obtains

$$M = \left(\int_0^\infty F^p(x) u^{1-\lambda}(x) \, dx \right) \int_0^\infty \frac{t^{-ps}}{(1+t)^{\lambda+1}} \, dt$$
$$= \beta (1-ps, \lambda+ps) \int_0^\infty (u(x))^{1-\lambda} (u'(x))^{1-p} f^p(x) \, dx,$$

providing 1 - ps > 0 and $\lambda + ps > 0$. Similarly,

$$N = \beta(2 - sq, \lambda - 1 + sq) \int_0^\infty (v(y))^{1-\lambda} (v'(y))^{1-q} g^q(y) \, dy,$$

providing 2 - qs > 0 and $\lambda - 1 + qs > 0$. So

$$\begin{split} \int_0^\infty & \int_0^\infty \frac{u(x)}{(u(x) + v(y))^{\lambda + 1}} f(x) g(y) \, dx dy \\ & \leq K \Big(\int_0^\infty (u(x))^{1 - \lambda} (u'(x))^{1 - p} f^p(x) \, dx \Big)^{\frac{1}{p}} \\ & \times \Big(\int_0^\infty (v(y))^{1 - \lambda} (v'(y))^{1 - q} f^p(y) \, dy \Big)^{\frac{1}{q}}, \end{split}$$

where

$$K = \beta^{\frac{1}{p}} (1 - ps, \lambda + ps) \beta^{\frac{1}{q}} (2 - sq, \lambda - 1 + sq).$$

We should choose the parameter s such that

$$\begin{cases} 1 - ps > 0 \\ \lambda + ps > 0 \end{cases}$$
 and
$$\begin{cases} 2 - qs > 0 \\ \lambda - 1 + qs > 0; \end{cases}$$

By Lemma 2.1 K attains its minimum at $s = \frac{2-\lambda}{pq}$. In this case,

$$K = \Big(\beta(1-\frac{2-\lambda}{q}\ ,\ \lambda+\frac{2-\lambda}{q})\Big)^{\frac{1}{p}}\Big(\beta(2-\frac{2-\lambda}{p}\ ,\ \lambda-(1-\frac{2-\lambda}{p.})\Big)^{\frac{1}{q}}.$$

So by the identity $1 - \frac{2-\lambda}{q} = \lambda - (1 - \frac{2-\lambda}{p})$, we have

$$K(\lambda) = \frac{\phi_p(\lambda)}{\lambda} \beta(\phi_p(\lambda), \phi_q(\lambda)).$$

If the inequality mentioned in Theorem 2.2 takes the form of equality, then there exist constants c_1 , c_2 such that $c_1^2 + c_2^2 \neq 0$ and

$$c_1 f^p(x) (u'(x))^{-p} (u(x))^{2-\lambda} = c_2 g^q(y) (v'(y))^{-q} (v(y))^{2-\lambda} = c$$

almost everywhere on $(0,\infty) \times (0,\infty)$, where c is constant. Without loss of generality, suppose that $c_1 \neq 0$, then one has $f^p(x) = \frac{c}{c_1}(u'(x))^p(u(x))^{\lambda-2}$, almost everywhere on $(0,\infty)$.

Now, we have

$$\int_0^\infty (u(x))^{1-\lambda} (u'(x))^{1-p} f^p(x) \, dx = \frac{c}{c_1} \int_0^\infty \frac{du}{u},$$

which contradicts the fact that

$$0 < \int_0^\infty (u(x))^{1-\lambda} (u'(x))^{1-p} f^p(x) \, dx < \infty.$$

If the constant factor is not the best possible, then there is a positive number K with $K < K(\lambda)$ such that

$$\int_{0}^{\infty} \int_{0}^{\infty} \frac{f(x)g(y)}{(u(x) + v(y))^{\lambda}} dx dy < K \Big(\int_{0}^{\infty} (u(x))^{1-\lambda} (u'(x))^{1-p} f^{p}(x) dx \Big)^{\frac{1}{p}}$$

$$\times \Big(\int_{0}^{\infty} (v(y))^{1-\lambda} (v'(y))^{1-q} g^{q}(y) dy \Big)^{\frac{1}{q}}.$$

Assume that $0 < \epsilon < q + \lambda - 2$ and

$$f_{\epsilon}(x) = \begin{cases} 0 & 0 \le x < u^{-1}(1) \\ (u(x))^{-\frac{2+\epsilon-\lambda}{p}} u'(x) & x \ge u^{-1}(1) \end{cases}$$

and

$$g_{\epsilon}(y) = \begin{cases} 0 & 0 \le y < v^{-1}(1) \\ (v(y))^{-\frac{2+\epsilon-\lambda}{q}} v'(y) & y \ge v^{-1}(1) \end{cases}.$$

One can show that

$$\int_0^\infty (u(x))^{1-\lambda} (u'(x))^{1-p} f_{\epsilon}^p(x) \, dx = \int_0^\infty (v(y))^{1-\lambda} (v'(y))^{1-q} g_{\epsilon}^q(y) \, dy$$
$$= \frac{1}{\epsilon}.$$

On the other hand, we have

$$\int_0^\infty \int_0^\infty \frac{u(x)f_\epsilon(x)g_\epsilon(y)}{(u(x)+v(y))^{\lambda+1}} \, dx dy$$

$$\begin{split} &= \int_{u^{-1}(1)}^{\infty} (u(x))^{-1-\epsilon} u'(x) \Big(\int_{\frac{1}{u(x)}}^{\infty} \frac{t^{-\frac{2+\epsilon-\lambda}{q}}}{(1+t)^{\lambda+1}} \, dt \Big) \, dx \\ &> \frac{1}{\epsilon} (k(\lambda) + o(1)) - \int_{u^{-1}(1)}^{\infty} (u(x))^{-1-\epsilon} u'(x) \Big(\int_{0}^{\frac{1}{u(x)}} \frac{t^{-\frac{2+\epsilon-\lambda}{q}}}{t^{\lambda+1}} \, dt \Big) \, dx \\ &= \frac{1}{\epsilon} (k(\lambda) + o(1)) - \frac{1}{(1-\lambda - \frac{2+\epsilon-\lambda}{q})(\epsilon - \lambda - \frac{2+\epsilon-\lambda}{q})}. \end{split}$$

Hence, we deduce that $K > K(\lambda)$ as ϵ tends to zero.

Similarly, one may prove the following theorem:

Theorem 2.3. Assume that p > 1, $\lambda > 2 - \min\{p, q\}$, $\frac{1}{p} + \frac{1}{q} = 1$ and u, v are two strict increasing differentiable functions such that u(0) = v(0) = 0, $u(\infty) = v(\infty) = \infty$,

$$0 < \int_0^\infty (u(x))^{1-\lambda} (u'(x))^{1-p} f^p(x) dx < \infty$$

and

$$0 < \int_0^\infty (v(y))^{1-\lambda} (v'(y))^{1-q} g^q(y) \, dy < \infty.$$

Then

$$\int_{0}^{\infty} \int_{0}^{\infty} \frac{v(y)}{(u(x) + v(y))^{1+\lambda}} f(x)g(y) \, dx dy$$

$$< K_{2}(\lambda) \Big(\int_{0}^{\infty} (u(x))^{1-\lambda} (u'(x))^{1-p} f^{p}(x) \, dx \Big)^{\frac{1}{p}}$$

$$\times \Big(\int_{0}^{\infty} (v(y))^{1-\lambda} (v'(y))^{1-q} g^{q}(y) \, dy \Big)^{\frac{1}{q}},$$

where $\phi_r(\lambda) = 1 - \frac{2-\lambda}{r}$ and $K_2(\lambda) = \frac{\phi_q(\lambda)}{\lambda} \beta(\phi_p(\lambda), \phi_q(\lambda))$. The constant factor is the best possible.

Remark 2.4. By $\lambda = \phi_p(\lambda) + \phi_q(\lambda)$, the sum of two best constant factors in Theorems 2.2 and 2.3 is $\beta(\phi_p, \phi_q)$, the best constant factor in inequality (1.3). So the above mentioned two theorems are decompositions of inequality (1.3) due to Yang.

Theorem 2.5. If p > 1, $\frac{1}{p} + \frac{1}{q} = 1$, r > 1, $\frac{1}{r} + \frac{1}{s} = 1$ and u, v are two strictly increasing differentiable functions, u(0) = v(0) = 0, $u(\infty) = v(\infty) = \infty$, $\lambda > 0$ and $f, g \ge 0$ and

$$\int_0^\infty (u(x))^{p(1-\frac{\lambda}{r})-1} (u'(x))^{1-p} f^p(x) \, dx < \infty,$$

$$\int_0^\infty (v(y))^{q(1-\frac{\lambda}{s})-1} (v'(y))^{1-q} g^q(y) \, dy < \infty.$$

Then

$$\int_{0}^{\infty} \int_{0}^{\infty} \frac{u^{\lambda}(x) \ln\left(\frac{u(x)}{v(y)}\right)}{u^{2\lambda}(x) - v^{2\lambda}(y)} f(x) g(y) \, dx dy$$

$$< \left[\frac{\pi}{2\lambda \sin(\pi(1 - \frac{1}{2s}))}\right]^{2} \left(\int_{0}^{\infty} (u(x))^{p(1 - \frac{\lambda}{r}) - 1} (u'(x))^{1 - p} f^{p}(x) \, dx\right)^{\frac{1}{p}}$$

$$\times \left(\int_{0}^{\infty} (v(y))^{q(1 - \frac{\lambda}{s}) - 1} (v'(y))^{1 - q} g^{q}(y) \, dy\right)^{\frac{1}{q}}.$$

The constant factor is the best possible.

$$\begin{split} &Proof. \text{ Let } f(x) = F(x)(u'(x))^{\frac{1}{q}} \text{ and } g(y) = G(y)(v'(y))^{\frac{1}{p}} \text{ , then} \\ &\int_0^\infty \int_0^\infty \frac{u^\lambda(x) \ln\left(\frac{u(x)}{v(y)}\right) f(x) g(y)}{u^{2\lambda}(x) - v^{2\lambda}(y)} \, dx dy \\ &= \int_0^\infty \int_0^\infty \frac{u^\lambda(x) \ln\left(\frac{u(x)}{v(y)}\right) F(x) G(y) (u'(x))^{\frac{1}{q}} (v'(y))^{\frac{1}{p}}}{u^{2\lambda}(x) - v^{2\lambda}(y)} \, dx dy \\ &= \int_0^\infty \int_0^\infty \left(\frac{u^\lambda \ln(\frac{u}{v})}{u^{2\lambda} - v^{2\lambda}}\right)^{\frac{1}{p}} \times \frac{u^{\frac{(1 - \frac{\lambda}{p})}{q}}}{v^{\frac{(1 - \frac{\lambda}{p})}{p}}} F(x) (v')^{\frac{1}{p}} \\ &\qquad \times \left(\frac{u^\lambda \ln(\frac{u}{v})}{u^{2\lambda} - v^{2\lambda}}\right)^{\frac{1}{q}} \times \frac{v^{\frac{(1 - \frac{\lambda}{p})}{p}}}{v^{\frac{(1 - \frac{\lambda}{p})}{p}}} G(y) (u')^{\frac{1}{q}} \, dx dy \\ &\leq \left(\int_0^\infty \int_0^\infty \frac{u^\lambda \ln(\frac{u}{v})}{u^{2\lambda} - v^{2\lambda}} \frac{u^{(p-1)(1 - \frac{\lambda}{p})}}{v^{(1 - \frac{\lambda}{p})}} F^p(x) v'(y) \, dx dy\right)^{\frac{1}{p}} \\ &\qquad \times \left(\int_0^\infty \int_0^\infty \frac{u^\lambda \ln(\frac{u}{v})}{u^{2\lambda} - v^{2\lambda}} \frac{v^{(q-1)(1 - \frac{\lambda}{s})}}{u^{(1 - \frac{\lambda}{p})}} G^q(y) u'(x) \, dx dy\right)^{\frac{1}{q}} \end{split}$$

$$= M^{\frac{1}{p}} N^{\frac{1}{q}}.$$

Note that

$$M = \int_0^\infty \left(\int_0^\infty \frac{\ln(\frac{u}{v})}{u^{\lambda} \left(1 - \left(\frac{v}{u}\right)^{2\lambda}\right)} \frac{u^{(p-1)(1 - \frac{\lambda}{r})}}{v^{(1 - \frac{\lambda}{s})}} v'(y) \, dy \right) F^p(x) \, dx.$$

By substitution $t = \left(\frac{v(y)}{u(x)}\right)^{2\lambda}$, one obtains

$$M = \frac{1}{4\lambda^2} \int_0^\infty \left(\int_0^\infty \frac{\ln(t)}{t^{1 - \frac{1}{2s}} (t - 1)} dt \right) u^{p(1 - \frac{\lambda}{r}) - 1} F^p(x) dx$$
$$= \left[\frac{\pi}{2\lambda \sin(\pi (1 - \frac{1}{2s}))} \right]^2 \int_0^\infty (u(x))^{p(1 - \frac{\lambda}{r}) - 1} (u'(x))^{1 - p} f^p(x) dx.$$

By the same way one obtains

$$N = \left[\frac{\pi}{2\lambda \sin(\pi(1-\frac{1}{2s}))}\right]^2 \int_0^\infty (v(y))^{q(1-\frac{\lambda}{s})-1} (v'(y))^{1-q} g^q(y) \, dy.$$

If inequality mentioned in Theorem 2.5 takes the form of equality, then there exist constants c_1 , c_2 such that $c_1^2 + c_2^2 \neq 0$ and

$$c_1 f^p(x) (u'(x))^{-p} (u(x))^{2-\lambda} = c_2 g^q(y) (v'(y))^{-q} (v(y))^{2-\lambda} = c_1 g^q(y) (v'(y))^{-q} (v(y))^{2-\lambda}$$

almost everywhere on $(0,\infty) \times (0,\infty)$, where c is constant. Without loss of generality, suppose that $c_1 \neq 0$, then one has $f^p(x) = \frac{c}{c_1}(u'(x))^p(u(x))^{\lambda-2}$, almost everywhere on $(0,\infty)$.

Now, we have

$$\int_0^\infty (u(x))^{1-\lambda} (u'(x))^{1-p} f^p(x) \, dx = \frac{c}{c_1} \int_0^\infty \frac{du}{u},$$

which contradicts

$$0 < \int_0^\infty (u(x))^{1-\lambda} (u'(x))^{1-p} f^p(x) \, dx < \infty.$$

If the constant factor is not the best possible, then there is a positive number K with $K < \left[\frac{\pi}{2\lambda\sin(\pi(1-\frac{1}{2s}))}\right]^2$ such that

$$\int_0^\infty \int_0^\infty \frac{u^{\lambda} \ln\left(\frac{u(x)}{v(y)}\right) f(x) g(y)}{u^{2\lambda}(x) - v^{2\lambda}(y)} dx dy$$

$$< K \left(\int_0^\infty (u(x))^{p(1-\frac{\lambda}{r})-1} (u'(x))^{1-p} f^p(x) dx\right)^{\frac{1}{p}}$$

$$\times \Big(\int_0^\infty (v(y))^{q(1-\frac{\lambda}{s})-1} (v'(y))^{1-q} g^q(y) \, dy \Big)^{\frac{1}{q}}.$$

Assume that $0 < \epsilon < (\frac{s+1}{s})\lambda q$ and

$$f_{\epsilon}(x) = \begin{cases} 0 & 0 \le x < u^{-1}(1) \\ (u(x))^{\frac{\lambda}{r} - 1 - \frac{\epsilon}{p}} u'(x) & x \ge u^{-1}(1) \end{cases}$$

and

$$g_{\epsilon}(y) = \begin{cases} 0 & 0 \le y < v^{-1}(1) \\ (v(y))^{\frac{\lambda}{s} - 1 - \frac{\epsilon}{q}} v'(y) & y \ge v^{-1}(1) \end{cases}.$$

One can show that

$$\int_0^\infty (u(x))^{p(1-\frac{\lambda}{r})-1} (u'(x))^{1-p} f_{\epsilon}^p(x) dx$$

$$= \int_0^\infty (v(y))^{q(1-\frac{\lambda}{s})-1} (v'(y))^{1-q} g_{\epsilon}^q(y) dy$$

$$e = \frac{1}{\epsilon}.$$

On the other hand, we have

$$\int_{0}^{\infty} \int_{0}^{\infty} \frac{u^{\lambda} \ln\left(\frac{u(x)}{v(y)}\right) f_{\epsilon}(x) g_{\epsilon}(y)}{u^{2\lambda}(x) - v^{2\lambda}(y)} dx dy$$

$$= \int_{u^{-1}(1)}^{\infty} \frac{(u(x))^{-1-\epsilon} u'(x)}{4\lambda^{2}} \left(\int_{\frac{1}{u^{2\lambda}(x)}}^{\infty} \frac{\ln(z)}{z^{\alpha}(z-1)} dz\right) dx$$

$$> \frac{1}{\epsilon} \left(\left[\frac{\pi}{2\lambda \sin(\pi(1-\frac{1}{2s}))}\right]^{2} + o(1)\right) - \int_{u^{-1}(1)}^{\infty} \frac{(u(x))^{-1-\epsilon} u'(x)}{4\lambda^{2}}$$

$$\times \left(\int_{0}^{\frac{1}{u^{2\lambda}(x)}} z^{-\alpha} dz\right) dx$$

$$= \frac{1}{\epsilon} \left(\left[\frac{\pi}{2\lambda \sin(\pi(1-\frac{1}{2s}))}\right]^{2} + o(1)\right) - \frac{1}{4\lambda^{2}(1-\alpha)(\epsilon+2\lambda(1-\alpha))},$$
where ϵ is the formula the state of ϵ and ϵ is the state of ϵ is the state of ϵ in ϵ .

where $\alpha = \frac{\epsilon}{2\lambda q} + 1 - \frac{1}{2s}$. Hence, we deduces that $K > \left[\frac{\pi}{2\lambda \sin(\pi(1-\frac{1}{2s}))}\right]^2$ as ϵ tends to zero.

By the same manner, one may prove the following theorem:

Theorem 2.6. If p > 1, $\frac{1}{p} + \frac{1}{q} = 1$, r > 1, $\frac{1}{r} + \frac{1}{s} = 1$ and u, v are two strictly increasing differentiable functions, u(0) = v(0) = 0, $u(\infty) = v(\infty) = \infty$, $\lambda > 0$ and $f, g \ge 0$ and

$$\int_0^\infty (u(x))^{p(1-\frac{\lambda}{r})-1} (u'(x))^{1-p} f^p(x) \, dx < \infty,$$

$$\int_0^\infty (v(y))^{q(1-\frac{\lambda}{s})-1} (v'(y))^{1-q} g^q(y) \, dy < \infty.$$

Then

$$\int_{0}^{\infty} \int_{0}^{\infty} \frac{v^{\lambda}(y) \ln\left(\frac{u(x)}{v(y)}\right)}{u^{2\lambda}(x) - v^{2\lambda}(y)} f(x) g(y) \, dx dy$$

$$< \left[\frac{\pi}{2\lambda \sin(\pi(1 - \frac{1}{2r}))}\right]^{2} \left(\int_{0}^{\infty} (u(x))^{p(1 - \frac{\lambda}{r}) - 1} (u'(x))^{1 - p} f^{p}(x) \, dx\right)^{\frac{1}{p}}$$

$$\times \left(\int_{0}^{\infty} (v(y))^{q(1 - \frac{\lambda}{s}) - 1} (v'(y))^{1 - q} g^{q}(y) \, dy\right)^{\frac{1}{q}}.$$

The constant factor is the best possible.

Remark 2.7. One may easily verify that

$$\left[\frac{\pi}{2\lambda\sin(\pi(1-\frac{1}{2s}))}\right]^2 + \left[\frac{\pi}{2\lambda\sin(\pi(1-\frac{1}{2r}))}\right]^2 = \left[\frac{\pi}{\lambda\sin(\frac{\pi}{r})}\right]^2.$$

So the above mentioned two theorems are decompositions of the inequality (1.4).

REFERENCES

- [1] G. H. Hardy, Note on a theorem of Hilbert concerning series of positive terms, *Proc. London Math. Soc.* **23** (1925), no. 2, 45–46.
- [2] L. He, W. Jia and M. Gao, A Hardy-Hilbert's type inequality with gamma function and its applications, *Integral Transforms Spec. Funct.*, 17 (2006), no. 5, 355–363.
- [3] H. Weyl, Singuläre Integralgleichungen mit besonderer Berücksichtigung des Fourierschen Integraltheorems, *Inaugural-Dissertation*, Grmöttingen, Germany, 1908
- [4] D. Xin, Best generalization of Hardy-Hilbert's inequality with multi-parameters, J. Inequal. Pure Appl. Math. 7 (2006), no. 4, 1–8.
- [5] B. Yang, A relation to Hardy-Hilbert's integral inequality and Mulholand's inequality, J. Inequal. Pure Appl. Math. 6 (2005), no. 4, 1–11.
- [6] B. Yang, On a decomposition of Hilbert's inequality, J. Inequal. Pure Appl. Math. 10 (2009), no. 1, 1–18.

R. Lashkaripour

Department of Mathematics, University of Sistan and Baluchestan, P.O. Box 98135-674, Zahedan, Iran

Email: lashkari@hamoon.usb.ac.ir

A. Moazzen

Department of Mathematics, University of Sistan and Baluchestan, P.O. Box 98135674, Zahedan, Iran

Email: ar.moazzen@yahoo.com