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ON A DECOMPOSITION OF HARDY-HILBERT’S TYPE
INEQUALITY

R. LASHKARIPOUR* AND A. MOAZZEN

Communicated by Michel Waldschmidt

ABSTRACT. In this paper, two pairs of new inequalities are given,
which decompose two Hilbert-type inequalities.

1. Introduction

In 1908, H. Weyl [3] published the following Hilbert inequality : If
{an}, {bn} are real sequences, 0 < >_°° 1 a2 < ccand 0 < Y o7, b2 < oo,
then

(1.1) sz—i—n (Z 252)

where the constant factor 7 is the best possible. In 1925, G. H. Hardy
[1] extended (1.1) as: If p > 1, %—i—% =1, ap,b, >0,0<> 7 ah <
and 0 < Y >, bf < oo, then

(12) ZZ m+n sin?%)(iaﬁ>é<§:b%>;’

where the constant factor ( ) is the best possible. We refer to (1.2) as
P

N

the Hardy-Hilbert 1nequahty. In 2005, Yang [5] gave an extension of( 1.2)
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with a pair of conjugate exponents (p,q)(p > 1) and a parameter \ > 0
as: suppose that p > 1, %+% =1,¢, >0(r=p,q), pp+ ¢, = and u is
a differentiable strictly increasing function on (a,b) (—oo < a < b < 0 ),
such that u(a®) =0 and w(b™) = co and also f, g > 0 satisfy

b
0< / (u(z)PI=9) =1 (4 ()1 7P fP(2) da < oo,

b
0< / (u(y))71-9) 1 (o ()9 () dy < oo.

a

Then
~ f)gly)
1.3 // 5 dxd
(1.3) (o) + u(y))®
b 1
<K( [ utapt=e0m @) (@) do)?
1
x ()=o) g (y) dy)
where the constant factor K = ¢p,¢q) is the best possible. For

0<p<lwith{X:¢, >0 (r=pq),dp+ ¢g = A} # 0, inequality
(1.3) is reversed and the constant factor is still the best possible.

There are some kind of Hilbert-type inequalities. For instance, Dong-
mel Xin in [4] gave the following statement:
fp>1,1+4=1r>11+1=1X1>0and f,g >0 such that
© A
0< / P51 P (1) da < oo,
0
& A
0< / Y1737 g (y) dy < oo
0

Then we have

(1.4) /OOO/OOOW dxdy
< [Asj;lmr(/oooxpu—i)—lfp(x) dz)

1

X (/Ooqu(l‘i)_lgq(y) ay)”,

where the constant factor is the best possible.

D=
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Recently, Yang [6] by the identity

1 max{m,n} min{m,n}
= N
m+n (m +n)? + (m +n)? (m,n €N)

gave a decomposition of Hilbert’s inequality as follows

0o 0o 00 00 1
¥y IIEiLXi”:;;}ambn <G+ )t
n=1m=1 n=1 n=1

2. <= min{m,n} T > s 3

The sum of two best constant factors is 7 (the constant factor of Hilbert’s
inequality).

2. Main results

In this section, by the following identities we give two pairs of new
Hilbert-type inequalities which decompose inequalities (1.3) and (1.4),
respectively:

1 T Y

— —|— ,
(z+y)?  (z+y*M (v +y) ML

In(%) B ) In(3) v In(7)
S N S W WL P S N

At first, by using the idea of Lemma 2.3 at [2] one can easily prove the
following Lemma.

Lemma 2.1. Let 0 < ps <1 and 0 < sq¢ < 2 and A > 2 — min{p, ¢}.
Define a function ® by

1 =

@(s) = (B +ps,1 = ps) )" (B~ (1 - 4s).2 - 49)) ",

where B(m,n) is beta function. Then ®(s) attains its minimum at s =
2-2
Pq -
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Theorem 2.2. Assume that p > 1, A > 2 — min{p, ¢}, % + % =1 and

u,v are two strict increasing differentiable functions such that u(0) =
v(0) =0, u(o0) =wv(c0) = oo,

0s /om(u(x))l_A(U'(x))l_pfp(:f:) dx < oo,

0< /Oo(v(y))l_A(v’(y))l‘ng(y) dy < 0.
0
Then

J/ g/" e (£)aty) dedy

<KNM<AWW@»PVM@»PWW®dQ;

<[ o))

where ¢p(A) =1 — % and Ki(\) = ¢ i/\)ﬁ(qﬁp()\), ¢q(X\)). The constant
factor is the best possible.

Proof. Put f(z) = F(x)(u/(2))7 and g(y) = G(y)(¢/(y))7. Then
/O /0 (u(zx) i(f) A f(x)g(y) dxdy
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! s
M= (x)v'(y) (U(:v))  dxdy.
u,\+1 vgyg P\ (y)
By substituting t = % one obtains

M = (/0 FP(x)ul=(z) da:) /Ooo(lf:gs)\ﬂdt

= 5= ps A+ ps) [ () AW @) ) d
0
providing 1 — ps > 0 and A 4 ps > 0. Similarly,

N =52 se A= 1+ sg) [ () A @) g (y) dy,

providing 2 —¢gs > 0 and A — 1+ ¢s > 0. So

/ / Wlf( 2)g(y) dady

< K( / @) A (@) () d

0

where

S =

Q|

([ e ey e ),
0
where ) )
K=07(1—-ps ,A+ps)Ba(2—sq,A\— 1+ sq).

We should choose the parameter s such that

{1—p3>0 and

A+ps>0

2—qgs>0
A—14¢gs > 0;

By Lemma 2.1 K attains its minimum at s = %. In this case,

K= (pa- 22 A+2_qA))’l’(ﬁ(2—2_pA, A- =222

So by the identity 1 — <=2 = X — (1 %), we have

K(\) = a0 Y 50,0, 0,0)).




106 Lashkaripour and Moazzen

If the inequality mentioned in Theorem 2.2 takes the form of equality,
then there exist constants c¢i, ¢o such that ¢;2 + ¢? %0 and

o1 () (' ()P () = eag () (0 (0))(0))* = e

almost everywhere on (0,00) X (0,00), where ¢ is constant. With-
out loss of generality, suppose that ¢; # 0, then one has fP(x) =
é(u’(x))p(u(x))A_Q, almost everywhere on (0, 00).
Now, we have
c [Fdu

/ @) W @) ) de = < [

C1 Jo u

which contradicts the fact that
0< / (u(x)) A (W (2)) P fP(x) dz < oco.
0

If the constant factor is not the best possible, then there is a positive
number K with K < K(\) such that

[T G oty < we ([t @y e )’

1

<( [ e gt )

Assume that 0 < e < g+ A —2 and

o 0<z<ul(1)
Jel@) = { (u(x))_ﬁT_u’(x) x>u (1)
and
()_{0 0<y<v (1)
T )T ) y =o' (1)

One can show that

| @)@ e = [ ew)' ) 1) dy
0 0

1

= -
On the other hand, we have

% () fo(2)g.(y)
/0 /o (ulz) + oy) M1 W
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24e—A

_ /u _1(1)(u(x))—1—6u’(x)< /@mdt) da

1 0 . et
> =(k(X) +o(1)) - /u_l(l)(u(a:)) 1 u'(z)(/o e dt) dz
= (kY +o0(1)) - 1 .
; (1= A — ZEd)(e— ) — Z5d)
Hence, we deduce that K > K(\) as € tends to zero. O

Similarly, one may prove the following theorem:

Theorem 2.3. Assume that p > 1, A > 2 — min{p, ¢}, % + % =1 and
u, v are two strict increasing differentiable functions such that u(0) =
v(0) =0, u(oc0) = v(o0) = 00,

0 < /0 ")) A0 ()7 2 () dr < o0

and
0< / (0()' (0 (1)) () dy < 0.
0

Then

/0 /o (u(x) —t(g()y))ur)\ f(z)g(y) dxdy
< K2()\)</OOO(U(:E))I_’\(u'(x))l_pfp(w) d:p)

RS

(| @) @) e a)
where ¢ (A) =1 — % and Ko(\) = %T()‘)ﬁ(gbp()\), ®q(N)). The constant
factor is the best possible.

Remark 2.4. By A = ¢,(\)+¢4(X), the sum of two best constant factors
in Theorems 2.2 and 2.3 is $(¢p, ¢q), the best constant factor in inequal-
ity (1.3). So the above mentioned two theorems are decompositions of
inequality (1.3) due to Yang.
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Theorem 2.5. If p > 1, %4—% =1, r > 1, %—1—% = 1 and u,v
are two strictly increasing differentiable functions, u(0) = v(0) = 0,
u(o00) = v(oo) =00, A >0 and f,g >0 and

/Ooo(u(x))”(li“(ﬂ’(%))”’f”(x) dx < oo,

/ooo(v(y))q(l_2)_1(0’(31))1“19‘1(?;) dy < oc.
Then

z)
/ / u2>\ UZ(/\y()y)) f(x)g(y) dzdy

< [2)\sin(ﬂ'7(rl — 1))}2(/OOO(U(w))p(l—?)—1(u’(x))1—pfp(x) dx)

2s

<( /Ooo@(y))q“—?>-1<v'<y>>1—ng<y> ay)".

The constant factor is the best possible.

=

Proof. et f(z) = F(x)(u/(x))1 and g(y) = G(y)(v'(y))7 , then

/ /oou i Zj(zji)f(m)g(y) i

—v2\(y)

= /OO/OOU L (Zg / dxdy
o Jo UQ’\(ﬂf) - UQ’\(ZJ)

A111 1 u q 1

p AN

/ / u2/\—v2’\ X Tl F(z)(v')»
v P
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1 1
=M»rNa.
Note that

o[

n(%) wP-D(1=2)

. L(1-2)
g> )

By substitution ¢ = (U(y ) one obtains

V' (y) dy) FP(z)dx.

—_

u

gl

S

(z)

g [y
0 t2(t—1

{2)\ 51n(7r(1 — ))r /OOO(U(HS))P(I—ﬁ)—l(u/(x))l—pfp(x) der.
23

By the same way one obtains

B [2)\ sin(m(

If inequality mentioned in Theorem 2.5 takes the form of equality,
then there exist constants ¢, ¢z such that ¢12 + ¢2 =# 0 and

er P () (' (2)) P (u(@))* = cag?(y) (V' (1)) U (0(y))* 7 = ¢
almost everywhere on (0,00) x (0,00), where ¢ is constant. With-
out loss of generality, suppose that ¢; # 0, then one has fP(x) =
é(u’(w))p(u(m))’\_Q, almost everywhere on (0, 00).
Now, we have

s 2 Oov q(1=3)=1 (o 1—q g
) ) et ) g iy

which contradicts
0< / (u(x)) A (' ()P fP(x) dr < oco.
0

If the constant factor is not the best possible, then there is a positive
2

number K with K < [m such that

o0 U ln f(fc)g(y)
[t gy e

< K( [t @) )’
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1

([ D) ) )

(y
Assume that 0 < e < (51)\g and

_Jo 0<z<ul(1)
= { (ule)) ) v > ()
and
()_{0 0<y<v (1)
I ) i) y > vl (1)

One can show that
/Ooo<u<:c>>p“—?>—1(u’<x>>1—pf5<x> da

- /0 ) D () g8 () dy
1

On the other hand, we have

oo U e( ) e( )
[ ] —m gy
© (u(z)) T (2 0 n(z
:/Jm)( ( ))4)\2 ( )(/ 1 zal(z(—)l) dZ) dx

1 ™ 2 * (u(@) ' ()
(rmi ] +em) -/ :
e \L2Xsin(n(1 — 5;)) u=1(1) 4\
1
W (z) _
X z %z ) dx
(] )
1 0 2 1
= — + 1 — s
€ ({2)\ sin(m(1 — 213))} ol )> AX2(1 — a)(e+2X(1 — o))
2
where a0 = ﬁ +1-— 2—18 Hence, we deduces that K > [W}
as € tends to zero. O

By the same manner, one may prove the following theorem:
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Theorem2.6.[fp>1,% ézl,r>1,%—|—%=landu,v
are two strictly increasing differentiable functions, u(0) = v(0) = 0,

u(00) = v(00) =00, A >0 and f,g > 0 and

/OOOW(x))p( “T W () PSP (x) dir < oo,

A

/ooo(v(y))q“_s)_l(v’(y))l‘ng(y) dy < oo.
Then

s oo () In (4
/0 /o u2AZ,;) —(v?(i/zy)) f(z)g(y) dvdy

S e e @ )

B =

<
2Asin(m(1 — &
1

([ @D W) ) dy)’

The constant factor is the best possible.

Remark 2.7. One may easily verify that
T 2 s 2 T 2
[2)\sin(7r(1 — 215))] * [2)\sin(ﬂ'(1 — i))} B [ )\Sin(:)] '

So the above mentioned two theorems are decompositions of the
inequality (1.4).
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