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ON CO-NOETHERIAN DIMENSION OF RINGS

A. HAGHANY AND M. R. VEDADI*

Communicated by Siamak Yassemi

ABSTRACT. We define and study co-Noetherian dimension of rings
for which the injective envelope of simple modules have finite Krull-
dimension. This is a Morita invariant dimension that measures
how far the ring is from being co-Noetherian. The co-Noetherian
dimension of certain rings, including commutative rings, are deter-
mined. It is shown that the class W, of rings with co-Noetherian
dimension < n is closed under homomorphic images and finite nor-
malizing extensions, and that for each n there exist rings with co-
Noetherian dimension n. The possible relations between Krull and
co-Noetherian dimensions are investigated, and examples are pro-
vided to show that these dimensions are independent of each other.

1. Introduction and Preliminaries

Throughout rings have nonzero identity elements and modules are
unitary. Unless otherwise stated, we shall consider right hand proper-
ties, e.g., right modules, right Noetherian, etc. The category of all right
R-modules is denoted by Mod-R. Dualizing the notion of finitely gener-
ated (f.g.), Vamos [12] defined finitely embedded (f.e.) module Mg by the
condition E(M) = @ E(S;) where each S; is simple. In [8], Jans called
aring R co-Noetherian if factors of f.e. modules are f.e., and proved that
R is co-Noetherian if and only if all f.e. modules are Artinian. More
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recently the term finitely embedded is replaced by finitely cogenerated,
and the books [2, 13] contain detailed accounts of this notion. We shall
define in §2, the co-Noetherian dimension of a ring R in terms of the
Krull dimension of finitely cogenerated R-modules. A useful characteri-
zation of co-Noetherian rings states that R is co-Noetherian if and only
if for every Mp, the intersection of submodules N with M /N Artinian,
is zero; see [8] and [7]. Our first result, Theorem 2.1 (stated below) is
a generalization of this fact. Hirano in [7, Theorem 2.2], proved that if
R is co-Noetherian and S is a finite normalizing extension of R, then
S is also co-Noetherian. This result is generalized in Theorem 2.2 for
rings of higher co-Noetherian dimension. We use formal triangular ma-
trix rings to prove in Theorem 2.4 that for a given positive integer n
there exists a ring R with co-Noetherian dimension n. Co-Noetherian
dimension of certain rings is investigated in Proposition 2.6 and, for a
commutative ring R, it is shown in Theorem 2.5 that the co-Noetherian
dimension (when it exists) is equal to Suppex{ K.dim(R/P)} where
X is a suitable subset of Spec(R). In the final part of the paper the
existence of rings with infinite co-Noetherian dimension is shown and,
by way of examples, some possible relations which may exist between
co-Noetherian dimension and Krull dimension of rings are illustrated.
We now state some terminology that will be used in the paper, and the
reader is referred to [10] and [11] which deal in depth with Krull dimen-
sion. However, note the following:

Standing hypothesis. Throughout the paper we shall only deal with
modules that have finite Krull dimension, and the symbol “ K.dim ”
will stand for Krull dimension. When we write K.dim(M), it is tacitly
assumed that M dose have Krull dimension which is n for some non-
negative integer n.

For each non-negative integer n, and M €Mod-R, let 7,,(Mg) = NN,
where the intersection runs through the set of R-submodules N of M
with K.dim(M/N) < n. Let W, denote the class of rings R with the
property that all finitely cogenerated R-modules have Krull dimension
at most n. Thus W; is the class of co-Noetherian rings.

For Mg let 7(Mpg) = NN, where the intersection runs through the set
of R-submodules N such that M /N has Krull dimension. Moreover, WW
will denote the class of rings R such that E(Sg) has Krull dimension for
all simple modules S € Mod-R. If there is no confusion, we simply write
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Tn (M) (respectively 7(M)) instead of 7,,(Mg) (respectively 7(Mpg)).

Next, we present some facts on formal triangular matrix rings for later
use.

Let A and B be rings, pM 4 a bimodule and R = [ ]@ 2, ] the for-
mal triangular matrix ring. We apply the equivalence of category Mod-
R with the category of triples (X,Y’)s, and use methods of [4]. Thus if
V is a right R-module it is often identified with the triple (Vey,Ves)s

where (Ve1) 4, (Vea)p are obtained from the idempotents e; = [ é 8 ] ;

€y = [ 8 (1) ] Here, f is an A-linear map :Ves ® g M — Vey, given by

the rule f(vea ® m) = vey [ T?l 8 ] = vey [ 7?1 8 } e1. Hence, it is eas-

ily verified (or use the description of maximal right ideals of R in [6]) that
if Vg is simple then either V = (X,0)p or V = (0,Y)o where X4 and Y35
are simple. We are interested in triples that can represent an injective en-
velope of the simple module V. In fact, if V= (0,Y")y then E(V) = (0,
E(Y))o, and if V = (X,0)q, then E(V) =[E(X), Homa(M, E(X))]s
where 0 : Homa (M, E(X)) @ M — E(X) with §(n ® m)) = n(m) for
all n € Homa (M, E(X)), m € M; see [4] or [6] for details.

Given an arbitrary R-module L = (C, D), according to [5],
K.dim(Lr) = Max {K.dim(C}y), K.dim(Dp)}. In particular, we have
K.dim(Rg) = Max {K.dim(A® M) 4, K.dim(Bp)}, and for the simple R-
modules V' of the form (0,Y") we have K.dim(E(V))r = K.dim(E(Y))p
while for the simple R-modules V' of the form (X, 0)o,

K.dim(E(V))r = Max {K.dim(E(X)) 4, K.dim[Hom 4 (M,E(X)]5}.

2. Co-Noetherian dimension

In this section we use the notation introduced in §1. Let R € W. If
there exists an integer n > 1 such that R € W,,\W,,_1, we say that R has
co-Noetherian dimension n, and write co-N.dim(R) = n. If on the other
hand, R € W,, for all m, we say that R has infinite co-Noetherian di-
mension, and write co-N.dim(R) = oco. Finally, we set co-N.dim(R) = 0
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whenever R is co-Noetherian. We begin with the following result that
characterizes when a ring R belongs to W,, or to W.

Theorem 2.1. If n > 0 and R is a ring, then R € W, (respectively
R € W) if and only if for all M € Mod-R, 7,(M) = 0 (respectively
T(M) = 0).

Proof. First suppose that 7,(M) = 0 for all M € Mod-R. Let M be an
f.e. R-module. Because 7,(M) = 0 and M is f.e., there exist submodules
N;(i =1,---,t) such that N{_; N; = 0 and the Krull dimension of each
M/N; is at most n. It follows that M embedding in @:_,(M/N;) has
Krull dimension at most n, as desired. For the converse, let {S; | i € I'}
be a complete set of non-isomorphic simple R-modules. The module
C = ®icrE(S;) is a co-generator for Mod-R, hence if 0 # Mpg is given,
there are a set A and an embedding f : M — ], cp Co where Cy = C
for all @ € A. For i € I, let m(,; be the projection of [Ipen Ca into
the summand E(S;) of C,. By assumption that the Krull dimension
of each E(S;) is at most n, we see that K.dim(M/ker(m(q;)f)) < n.
Clearly, 7,(M) C Nqker(mq,)f) = 0. A slight modification of the
above argument will prove the other statement. O

Theorem 2.2. All classes W, as well as W, are closed under Morita
equivalence, homomorphic images, and finite normalizing extensions.

Proof. That W and each W, is closed under Morita equivalence follows
from the standard techniques of Morita theory since “simple”, “essen-
tial monomorphism”, “ injective” and “Krull dimension” are all Morita
invariant properties. Next we prove that W, (n > 1) is closed under
homomorphic images. Suppose that R € W,,, I is a proper ideal of R,
S is a simple R/I-module and E :=E(Sg). It is well known that the set
E" := {e € E | el = 0} is the injective envelope of Sg/;. Hence
K.dim(E}%/I) = K.dim(E}) < K.dim(Eg) < n. This shows that R/I €
Whi. We now prove that if R € W,, and T is a finite normalizing ex-
tension of R, then T' € W,,. In view of Theorem 2.1, we need to show
that 7,(Mr) = 0 whenever M is a nonzero T-module. By assump-
tion T' = Ziﬁ:l a; R with a; normalizing R. If N is an R-submodule of
M, then according to [10]; p345 Na; ' = {m € M | ma; € N} is an
R-submodule of M and the group monomorphism M/Na;' — M/N
given by m + N ai_l — ma; + N induces a lattice embedding of the R-

submodules of M/Na; ' into the R-submodules of M/N. If



On co-Noetherian dimension of rings 117

b(N) =ni_,Na; ', then b(N) is the largest T-submodule of M contained
in N and there is an R-monomorphism M /b(N) < @;(M/Na;*'). Con-
sequently, if K.dim(M/N)gr < n we deduce that K.dim[M/b(N)|r <
n, hence K.dim[M/b(N)]7 < n. Now by hypothesis and Theorem 1,
Tn(Mg) = 0, thus it follows that 7,,(M7) = 0. The proof of the implica-
tion “Re W =T € W ” is now evident. g

Immediate consequences are given in the following.

Corollary 2.3. (i) Let A and B be Morita equivalent rings under the
category equivalence o : Mod-A — Mod-B. If M € Mod-A and n > 1,
then a1, (M)) ~ 7 (a(M)) and a(7(M)) ~ 7(a(M)). Furthermore co-
N.dim(A) = co-N.dim(B).

(i) If R € W, I is a proper ideal of R and T is a finite normalizing ex-
tension of R, then co-N.dim(R) > Max {co-N.dim(R/I), co-N.dim(T)}.

Theorem 2.4. For each integer n > 1, there exists a ring with co-
Noetherian dimension n

Proof. Given a positive integer n, let A be any commutative Noetherian
local ring with K.dim(A4) = n. If P is the unique maximal ideal of A,
let M = E(A/P). It is well-known that M, is Artinian. Put B =
End(M,), which by a classical result of Matlis [9] is isomorphic to A,
the P-adic completion of A, and consequently by [3, Proposition 10.16],

B is also a local ring. Now consider the formal triangular matrix ring

R = ]\144 g . Up to isomorphisms, the only simple modules over R
are Vi = (A/P,0)o and Vo = (0, B/J(B))o. Thus we have the following
descriptions: E(V1) = (E(A/P), Homa (M, E(A/P))s, and E(V2) = (0,
E(B/J(B))o. It follows that K.dim(Rr) = n = Sup{ K.dim(E(VR)) | Vg
is simple}. Thus we deduce that co-N.dim(R) = n. O

Our next result determines the co-Noetherian dimension of commu-
tative rings when they exist. For any ring R, let
Assp(R) ={ P | P €Ass(N) where N is a sub-factor of E(S) for some
simple Sg}.

Theorem 2.5. Co-N.dim(R) = Sup{ K.dim(R/P) where P € Assg(R)}

for every commutative ring R in W.
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Proof. Let co-N.dim(R) = n. Note that if P € Ass(N) for some Ng, then
there exists a cyclic submodule C of N such that P = anng(C'). It follows
that R/P embeds in N. Thus K.dim(N) > K.dim(R/P) (if they exist).
Now since R € W, Sup{K.dim (E(S)) | Sk is simple} = n. Hence n >
Sup{K.dim(R/P) | P € Assg(R)}. On the other hand, if S is a simple
R-module, then by a known result, K.dim(E(S)) = Sup{K.dim(C) | C
is a critical R-module contained in a sub-factor of E(S)}; see [11, 4.19]
or Corollary 3.2.12. Since for every critical R-module C, K.dim(zR) =
K.dim(C) for all 0 # x € C, we can conclude that K.dim(E(S)) = Sup{
K.dim(C) | C is a critical cyclic R-module contained in a sub-factor of
E(S)}. The result is now clear by the well known fact that critical cyclic
R-modules have the form R/P for some P € Spec(R); see for example
[1, Lemma 3.5]. O

We already know that any commutative Noetherian ring is necessar-
ily co-Noe-therian. Thus there are plenty of commutative rings R with
co-N.dim(R) < K.dim(R). Our next result provides a class of rings that
are not necessarily commutative, yet for them the strict inequality holds.

Proposition 2.6. (i) Let R be a semiprime right Goldie ring. If R
has non-zero Krull dimension, then either R ¢ W or co-N.dim(R) <
K.dim(R).

(it) Let R be a right semi-Artinian ring. Then either R ¢ W or co-
N.dim(R) = 0.

Proof. Let R € W and S be a simple R-module.

(i) Let K.dim(R) = n > 1. By hypothesis, K.dim(E(S)) and, hence
K.dim(E(S)/S) exist. Let z € E(S)/S. Thus xR ~ R/A for some essen-
tial right ideal A of R. Because R is semiprime right Goldie, A contains a
regular element ¢ of R. Thus we have K.dim(R/A) < K.dim(R/cR) <n
by [10, Lemma 6.3.9]. It follows that K.dim(E(S)/S) < n — 1 by [10,
Lemma 6.2.17]. Consequently, one obtains

co-N.dim(R) = Sup{ K.dim(E(Sg)) | Sg is simple} <n —1 < n.

(ii) Let B = the sum of all Artinian submodules of E(S). Then since
E(S) has Krull dimension so dose B. It follows that B is an Artinian
R-module. Now if E(S)/B is non-zero, it contains a simple submodule
L/B by our assumption on R. But then L is an Artinian submodule of
E(S) and so L C B, a contradiction. Therefore, E(S) = B is an Artinian
R-module, proving that co-N.dim(R) = 0. O
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Corollary 2.7. Let R be a ring with Krull-dimension and P be a prime
ideal of R. If co-N.dim(R/P) = K.dim(R/P), then P is a mazximal ideal
of R.

Proof. By [10, Proposition 6.3.5], R/P is a prime right Goldie ring.
Hence, K.dim(R/P) must be zero by Proposition 2.6(i). It follows that
R/P is a right Artinian ring and hence P is a maximal ideal of R. [

We note that the converse to the above Corollary is not true in gen-
eral. For instance, if R = K|z, D] is the Cozzens’s example where K is a
universal field with derivation D, then it is well known that R is a simple
principal right (and left) ideal domain with a unique (up to isomorphism)
simple injective R-module and K.dim(R) = 1 # co-N.dim(R).

3. Examples and concluding remarks

This section is devoted to explore possible relations between Krull di-
mension and co-Noetherian dimension of rings. If R is a ring, provided
that for R both Krull dimension and co-Noetherian dimension exist, we
have co-N.dim(R) < K.dim(R). The proof of Theorem 2.4 shows that
equality can occur.

Example 3.1. If p is a fixed prime number, the ring [ ZZ % is not
pOO

of the type used in the proof of Theorem 2.4, yet for it the Krull di-
mension coincides with the co-Noetherian dimension and this common
value is 1. This example also shows that the semiprime condition in
Proposition 2.6(i) cannot be deleted.

The following examples show that in general co-Noetherian dimension
and Krull dimension of a ring are independent of each other.

Example 3.2. There is an Artinian ring with a simple module whose
injective envelope has no Krull dimension: Let B C A denote Cohn’s
division rings such that Ap has finite dimension while the left B-module

A has infinite dimension. Then the ring R = [ 4 is right Artinian

0
A B
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and the injective envelope of the simple R-module (A, 0)y has no Krull
dimension. Thus R ¢ W, so co-N.dim(R) is not defined.

Example 3.3. It is well-known that the first Weyl algebra A = A;(k)
over a field of characteristic zero is a simple Noetherian domain of Krull
dimension 1, and that it is not co-Noetherian, as shown in [7, Example
2.1]. Thus by Proposition 2.6(i), for A even the co-Noetherian dimension
cannot exist. This fact in particular shows that in general, co-Noetherian
dimension is not well behaved under Ore ring extension. Now set R =

A 0
M k
It is clear that R does not have Krull-dimension. Moreover, as A is a
homomorphic image of R, by Corollary 2.3, we deduce that R does not
have co-Noetherian dimension.

where M is an infinite direct sum of any non-zero A-module.

Example 3.4. We construct a co-Noetherian ring that has no Krull
dimension. Let A = C[z], and consider an infinite sequence of pair-
wise non-isomorphic simple A-modules {S;}i>1. Put M = &,5; and

A 0
M C
R-module. Then E(V) = (E(5),Homa(M,E(S")))s. We have T :=
Homy (M, E(S")) ~ [[;>; Homu(S;,E(S")). If S; % S’ for all 4, then
T = 0. Suppose S; ~ S’ for some j. In this case, we have:

T ~ Homx(S;,E(S;j)) — Homu(S;, ;) =C

Thus in any case T is a finite dimensional C-space. Since E(S’) is an
Artinian A-module, we deduce that E(V') is an Artinian R-module. All
other simple R-modules are of the form (0,C)p which is Artinian and
injective. Therefore R is co-Noetherian.

consider the ring R = Suppose V = (5’,0)¢ is a simple

Remark 3.5. (i) It is possible to modify the definition of co-Noetherian
dimension by restricting to those simple modules whose injective en-
velopes do have Krull-dimensions (not necessarily finite). Then for any
ring this new dimension exists, it is less than or equal to the global Krull-
dimension of the ring in the sense of Albu and Smith [11], and results
similar to Theorems 2.1 and 2.2 hold. But when this new dimension is
zero (as it is the case for the first Weyl algebra over a field with zero
characteristic) the ring is not necessarily co-Noetherian. Hence it can-
not measure distance from being co-Noetherian. On the other hand, our
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construction of rings with co-Noetherian dimension n cannot be carried
over to the case of infinite ordinal numbers. These considerations indi-
cate the reason for our Standing Hypothesis. But allowing modules with
arbitrary Krull dimensions the following problem is naturally imposed:

Open Problem. Given an arbitrary ordinal number ~y, does there exist a
ring R with a simple module S such that E(S) has Krull-dimension ~?

9 113

(ii) By using “ Noetherian dimension ”, it is possible to define “ co-
Artinian dimension ” of a ring and prove results analogous to Theorems
2.1 and 2.2 However, one must first prove the existence of rings with
arbitrary co-Artinian dimensions.
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