Bulletin of the Iranian Mathematical Society Vol. 38 No. 1 (2012), pp 159-168.

ON HEYTING ALGEBRAS AND DUAL BCK-ALGEBRAS

Y. H. YON AND K. H. KIM^{*}

Communicated by Ali Enayat

ABSTRACT. A Heyting algebra is a distributive lattice with implication and a dual BCK-algebra is an algebraic system having as models logical systems equipped with implication. The aim of this paper is to investigate the relation of Heyting algebras between dual BCK-algebras. We define notions of *i*-invariant and *m*-invariant on dual BCK-semilattices and prove that a Heyting semilattice is equivalent to an *i*-invariant and *m*-invariant dual BCK-semilattices, and show that a commutative Heyting algebra is equivalent to a bounded implicative dual BCK-algebra.

1. Introduction

A Heyting semilattice is an algebraic system equipped with implication and conjunction. The prepositions of Heyting semilattices in algebraic logic were clearly displayed by H. B. Curry([3]) and systematically studied in [7] and [8]. A dual BCK-algebra(DBCK-algebra) is an algebraic system having as models logical systems equipped with implication, which is the dual concept of BCK-algebra [4, 5], and it is a generalization of Heyting algebra. Heyting algebras(or Brouwerian lattices) were investigated by H. B. Curry[3] and G. Birkhoff [1], and all the important rules of computation with implication are contained in [3]. The notion of DBCK-algebra was studied and generalized in

MSC(2010): Primary: 06D20; Secondary: 06A99, 06F35

Keywords: Heyting semilattice, Heyting algebra, dual BCK-algebra.

Received: 30 April 2009, Accepted: 21 June 2010

^{*}Corresponding author

^{© 2012} Iranian Mathematical Society.

¹⁵⁹

[2, 6, 11], and more relationships among Heyting semilattice, Hilbert algebra, *L*-algebra and *DBCK*-algebra can be found in [9, 10].

In this paper, we define notions of *i*-invariant and *m*-invariant on DBCK-semilattices and investigate the relation between Heyting algebras and DBCK-algebras. We prove that a Heyting semilattice is equivalent to an *i*-invariant and *m*-invariant DBCK-semilattices, and show that a commutative Heyting algebra is equivalent to a bounded implicative DBCK-algebra.

2. Preliminaries

A *DBCK-algebra* is an algebraic system $(X, \circ, 1)$ satisfying the following axioms.

DBCK1. $(x \circ y) \circ ((y \circ z) \circ (x \circ z)) = 1$, DBCK2 $x \circ ((x \circ y) \circ y) = 1$, DBCK3. $x \circ x = 1$, DBCK4. $x \circ y = 1$ and $y \circ x = 1$ imply x = y, DBCK5. $x \circ 1 = 1$.

A *DBCK*-algebra is a poset with the binary relation " \leq " defined by $x \leq y$ if and only if $x \circ y = 1$, and 1 is the greatest element.

A Heyting semilattice (or implicative semilattice) is a (meet-)semilattice with a binary operation " \circ " satisfying the axiom :

H. $z \wedge x \leq y$ if and only if $z \leq x \circ y$.

Proposition 2.1. [5, 6, 7, 8] A Heyting semilattice and DBCK-algebra have the following common properties.

 $\begin{array}{l} (CP1) \ x \circ (y \circ z) = y \circ (x \circ z), \\ (CP2) \ y \leq x \circ y \\ (CP3) \ x \leq y \ implies \ z \circ x \leq z \circ y \ and \ y \circ z \leq x \circ z, \\ (CP4) \ x \leq y \circ z \ implies \ y \leq x \circ z, \\ (CP5) \ 1 \circ x = x. \end{array}$

Proposition 2.2. [5, 6] A DBCK-algebra has the following properties. (DP1) $x \circ y \leq (y \circ z) \circ (x \circ z)$,

 $\begin{array}{l} (DP2) \ x \leq (x \circ y) \circ y, \\ (DP3) \ x \circ y \leq (z \circ x) \circ (z \circ y), \\ (DP4) \ (x \circ y) \circ y) \circ y = x \circ y. \end{array}$

In a *DBCK*-algebra, $(x \circ y) \circ y$ is an upper bound of x and y by (DP2) and (CP2).

160

Proposition 2.3. [7, 8] A Heyting semilattice has a greatest element 1 and has the following properties.

 $\begin{array}{l} (HP1) \ a \leq b \ if \ and \ only \ if \ a \circ b = 1, \\ (HP2) \ x \circ x = 1, \\ (HP3) \ x \wedge (x \circ y) = x \wedge y, \\ (HP4) \ x \circ (y \wedge z) = (x \circ y) \wedge (x \circ z), \\ (HP5) \ x \circ (y \circ z) = (x \wedge y) \circ z. \end{array}$

A *DBCK*-algebra $(X, \circ, 1)$ is said to be *bounded* if there exists an element 0 in X such that $0 \circ x = 1$ for all $x \in X$. For any element x in a bounded *DBCK*-algebra X, the element $x \circ 0$ will be denoted by x^* and $x^{**} = (x^*)^*$.

Proposition 2.4. [6] A bounded DBCK-algebra has the following properties.

(1) $1^* = 0$ and $0^* = 1$, (2) $x \le x^{**}$ and $x^{***} = x^*$, (3) $x \circ y \le y^* \circ x^*$, (4) $x \le y$ implies $y^* \le x^*$, (5) $x \circ y^* = y \circ x^*$.

A *DBCK*-algebra is said to be *commutative* if it satisfies $(x \circ y) \circ y = (y \circ x) \circ x$ for every $x, y \in X$.

Proposition 2.5. [6] A bounded commutative DBCK-algebra X has the following properties.

(1) X is a lattice with $x \lor y = (x \circ y) \circ y$ and $x \land y = (x^* \lor y^*)^*$, (2) $x = x^{**}$, (3) $x \circ y = y^* \circ x^*$.

3. Heyting semilattices and *DBCK*-semilattices

Definition 3.1. A DBCK-algebra X is called a DBCK-semilattice if every finite subset of X has the greatest lower bound. A DBCKsemilattice X is said to be implication-invariant, shortly i-invariant, if $x \wedge y = x \wedge (x \circ y)$ for all $x, y \in X$, and meet-invariant, shortly minvariant, if $x \circ y = x \circ (x \wedge y)$ for all $x, y \in X$.

Those axioms of the i-invariant and the m-invariant DBCK-semilattice are independent, as the following examples show.

Example 3.2. (1) Let $N_5 = \{0, a, b, c, 1\}$ be a DBCK-semilattice with a binary operation " \circ " and Hasse diagram given by Figure 1. Then N_5

Yon and Kim

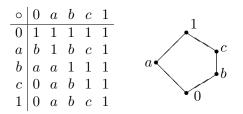


FIGURE 1. Cayley table and Hasse diagram of DBCK-semilattice N_5

is i-invariant but not m-invariant, in fact $a \circ (a \wedge c) = b \neq c = a \circ c$. (2) Let $X = \{0, a, b, 1\}$ be a DBCK-semilattice with a binary operation " \circ " and Hasse diagram given by Figure 2. Then X is m-invariant

0	0	a	b	1
		1		
a	b	1	1	1
b	a	$\begin{array}{c} 1 \\ b \end{array}$	1	1
1	0	a	b	1

FIGURE 2. Cayley table and Hasse diagram of $DBCK\mbox{-}$ semilattice X

but not *i*-invariant for $a \land 0 = 0 \neq a = a \land (a \circ 0)$.

Theorem 3.3. Every Heyting semilattice is an *i*-invariant DBCK-semilattice.

Proof. Suppose that X is a Heyting semilattice. Then DBCK3, DBCK4 and DBCK5 are trivial from (HP2) and (HP1). For any $x, y \in X$, $x \circ ((x \circ y) \circ y) = (x \circ y) \circ (x \circ y) = 1$ by (CP1). It is DBCK2. By (HP1) and (CP3), it implies that $y \leq (y \circ z) \circ z$ and $x \circ y \leq x \circ ((y \circ z) \circ z) = (y \circ z) \circ (x \circ z)$ for every $x, y, z \in X$, hence $(x \circ y) \circ ((y \circ z) \circ (x \circ z)) = 1$. Thus X is a *DBCK*-semilattice. Also, we have $x \wedge y \leq x \wedge (x \circ y)$ by (CP2). By axiom H, $x \wedge (x \circ y) \leq y$ since $x \circ y \leq x \circ y$. It implies $x \wedge (x \circ y) \leq x \wedge y$. Hence $x \wedge y = x \wedge (x \circ y)$ and X is *i*-invariant. \Box

We have two types of distributive law on DBCK-semilattices with respect to " \circ " and " \wedge " respectively :

 $\begin{aligned} x \circ (y \circ z) &= (x \circ y) \circ (x \circ z) \quad \text{(self-distributive)}, \\ x \circ (y \wedge z) &= (x \circ y) \wedge (x \circ z) \quad \text{(meet-distributive)}. \end{aligned}$

In DBCK-semilattice the following inequalities are true.

 $x \circ (y \circ z) \ge (x \circ y) \circ (x \circ z)$ and $x \circ (y \wedge z) \le (x \circ y) \wedge (x \circ z)$.

Proposition 3.4. Let X be a DBCK-semilattice. Then

- (1) If X satisfies the self-distributive law, then X is i-invariant,
- (2) If X satisfies the meet-distributive law, then X is m-invariant.

Proof. (1) Suppose that X satisfies the self-distributive law and $x, y \in X$. Let $u = x \land (x \circ y)$. Then it is clear that $x \land y \leq x \land (x \circ y) = u$ since $y \leq x \circ y$. Also $u \leq x$ and $u \leq x \circ y$. It imply that $u \circ x = 1$ and

$$1 \circ (u \circ y) = (u \circ x) \circ (u \circ y) = u \circ (x \circ y) = 1$$

by hypothesis. It follows that $u \circ y = 1$ and $u \leq y$. Hence u is a lower bound of x and y, i.e., $u \leq x \wedge y$. Therefore $x \wedge (x \circ y) = u = x \wedge y$.

(2) If X satisfies meet-distributive, then $x \circ (x \wedge y) = (x \circ x) \wedge (x \circ y) = 1 \wedge (x \circ y) = x \circ y$ for any $x, y \in X$,

Proposition 3.5. Let X be a DBCK-semilattice. Then X is i-invariant if and only if it satisfies $x \land (x \circ y) \leq y$ for all $x, y \in X$.

Proof. Suppose that X is *i*-invariant. Then $x \land (x \circ y) = x \land y \leq y$. Conversely, suppose that $x \land (x \circ y) \leq y$ for all $x, y \in X$. Then it is clear that $x \land (x \circ y)$ is a lower bound of x and y. It implies $x \land (x \circ y) \leq x \land y$. Also $x \land y \leq x \land (x \circ y)$ since $y \leq x \circ y$. Hence $x \land (x \circ y) = x \land y$. \Box

Theorem 3.6. Let X be a DBCK-semilattice. Then the following are equivalent.

- (1) X is *i*-invariant and *m*-invariant.
- (2) X satisfies $x \circ (y \circ z) = (x \wedge y) \circ z$ for all $x, y, z \in X$.
- (3) X is a Heyting semilattice.

Proof. $((1)\Rightarrow(2))$ Suppose that X is *i*-invariant, *m*-invariant and $x, y, z \in X$. Let $u = x \circ (y \circ z)$. Then by definition of *i*-invariant, we have

$$\begin{aligned} (x \wedge y) \wedge u &= y \wedge [x \wedge (x \circ (y \circ z))] = y \wedge [x \wedge (y \circ z)] \\ &= x \wedge [y \wedge (y \circ z)] = x \wedge (y \wedge z) = (x \wedge y) \wedge z. \end{aligned}$$

It implies that by (CP2) and definition of *m*-invariant,

$$u \leq (x \wedge y) \circ u = (x \wedge y) \circ ((x \wedge y) \wedge u) = (x \wedge y) \circ ((x \wedge y) \wedge z) \leq (x \wedge y) \circ z$$

Hence $x \circ (y \circ z) \leq (x \wedge y) \circ z$. To show that $(x \wedge y) \circ z \leq x \circ (y \circ z)$, let $v = (x \wedge y) \circ z$. Then by definition of *i*-invariant,

$$(x \land y) \land v = (x \land y) \land [(x \land y) \circ z] = (x \land y) \land z$$

and by definition of m-invariant,

$$\begin{aligned} x \wedge v &\leq y \circ (x \wedge v) = y \circ (y \wedge (x \wedge v)) = y \circ ((x \wedge y) \wedge v) \\ &= y \circ ((x \wedge y) \wedge z) \leq y \circ z. \end{aligned}$$

It implies $v \le x \circ v = x \circ (x \wedge v) \le x \circ (y \circ z)$. Hence $(x \wedge y) \circ z = x \circ (y \circ z)$.

 $(2)\Rightarrow(3)$ Suppose that X satisfies $x \circ (y \circ z) = (x \wedge y) \circ z$ for all $x, y, z \in X$. Then we have

$$x \wedge y \leq z \iff (x \wedge y) \circ z = 1 \iff x \circ (y \circ z) = 1 \iff x \leq y \circ z.$$

Hence X is a Heyting semilattice.

 $(3) \Rightarrow (1)$ Suppose that $(X, \circ, \wedge, 1)$ is a Heyting semilattice. Then it is an *i*-invariant *DBCK*-semilattice by Theorem 3.3, and it is *m*-invariant by (HP4) and Proposition 3.4(2).

Proposition 3.7. Let X be a DBCK-semilattice. Then the following properties are equivalent.

- (1) X is *i*-invariant and *m*-invariant.
- (2) X satisfies the self-distributive and the meet-distributive law.

Proof. It is clear that (2) implies (1) by (1) and (2) of Proposition 3.4. Conversely, suppose that X is *i*-invariant, *m*-invariant and $x, y, z \in X$. Then by Theorem 3.6(2) and definition of *i*-invariant,

$$\begin{aligned} x \circ (y \circ z) &= (x \wedge y) \circ z = [x \wedge (x \circ y)] \circ z \\ &= [(x \circ y) \wedge x] \circ z = (x \circ y) \circ (x \circ z). \end{aligned}$$

Hence X satisfies the self-distributive law. Also, X is a Heyting semilattice by Theorem 3.6. Hence X satisfies (HP4), i.e., X satisfies the meet-distributive law. \Box

Corollary 3.8. A semilattice X is a Heyting semilattice if and only if it is a DBCK-semilattice satisfying the self-distributive and the meetdistributive law.

Proof. It is clear from Theorem 3.6 and Proposition 3.7. \Box

A filter of a DBCK-algebra X is a non-empty subset F of X satisfying (1) $1 \in F$, and (2) $x \in F$ and $x \circ y \in F$ implies $y \in F$. A filter of a semilattice X is a non-empty subset F of X satisfying (1) $x \wedge y \in F$ for all $x, y \in F$, and (2) $x \in F$ and $x \leq y$ implies $y \in F$.

Proposition 3.9. If X is an i-invariant DBCK-semilattice, then every filter of X as a semilattice is a filter of X as a DBCK-algebra.

Proof. Suppose that F is a filter of X as a semilattice. Then it is clear that $1 \in F$ since $F \neq \emptyset$ and $1 \in X$. Let $x \in F$ and $x \circ y \in F$. Then $x \wedge y = x \wedge (x \circ y) \in F$ and $x \wedge y \leq y$. Hence $y \in F$.

Proposition 3.10. If X is a m-invariant DBCK-semilattice, then every filter of X as a DBCK-algebra is a filter of X as a semilattice.

Proof. Let F be a filter of X as a DBCK-algebra and $x, y \in F$. Since $y \leq x \circ y, y \circ (x \circ y) = 1 \in F$ and $y \in F$, hence $x \circ y \in F$. Also, since $x \circ (x \wedge y) = x \circ y \in F$ and $x \in F, x \wedge y \in F$. If $x \in F$ and $x \leq y$, then $x \in F$ and $x \circ y = 1 \in F$, hence $y \in F$. Hence F is a filter of X as a semilattice.

Corollary 3.11. Let X be an i-invariant and m-invariant DBCKsemilattice. Then F is a filter of X as DBCK-algebra if and only if it is a filter of X as a semilattice.

4. On Implicative *DBCK*-algebras

A bounded lattice $(X, \lor, \land, 0, 1)$ is called a *Heyting algebra* if there is a binary operation " \circ " on X satisfying the axiom H. Every Heyting algebra is a Heyting semilattice and satisfies all properties of Proposition 2.1 and 2.3. Conversely, every bounded Heyting semilattice X with $x \lor y$ for all $x, y \in X$ is a Heyting algebra.

Definition 4.1. A DBCK-algebra X is said to be implicative if it satisfies $x = (x \circ y) \circ x$ for all $x, y \in X$.

Definition 4.2. A Heyting algebra is said to be commutative if it satisfies $(x \circ y) \circ y = (y \circ x) \circ x$ for every $x, y \in X$.

Proposition 4.3. Let X be a Heyting algebra. Then X is commutative if and only if it satisfies $x = (x \circ y) \circ x$ for all $x, y \in X$.

Proof. Suppose that X is commutative and $x, y \in X$. Then it is clear that $x \leq (x \circ y) \circ x$ by (CP2), and by commutativity and (HP5),

$$[(x \circ y) \circ x] \circ x = [x \circ (x \circ y)] \circ (x \circ y) = [(x \wedge x) \circ y] \circ (x \circ y)$$
$$= (x \circ y) \circ (x \circ y) = 1$$

It follows $(x \circ y) \circ x \leq x$. Hence $x = (x \circ y) \circ x$.

Conversely, Suppose that X satisfies $x = (x \circ y) \circ x$ for all $x, y \in X$. Then $y = (y \circ x) \circ y$. Since $x \circ y \leq x \circ y$, $x \leq (x \circ y) \circ y$ by (CP4). It follows that

$$(y \circ x) \circ x \leq (y \circ x) \circ ((x \circ y) \circ y) = (x \circ y) \circ ((y \circ x) \circ y) = (x \circ y) \circ y$$

by (CP1). Interchanging the role of x and y, we have $(x \circ y) \circ y \leq (y \circ x) \circ x$. Hence $(x \circ y) \circ y = (y \circ x) \circ x$, and X is commutative.

Proposition 4.4. Let X be a bounded implicative DBCK-algebra. Then it has the following properties.

- (1) X is commutative,
- (2) $x = x^* \circ x$ for every $x \in X$,
- (3) $x \lor y = y \lor x = x^* \circ y$ for every $x, y \in X$.

Proof. (1) We can prove it by the same way with the converse part of Proposition 4.3.

(2) If X is a bounded implicative *DBCK*-algebra, then $x^* \circ x = (x \circ 0) \circ x = x$ for any $x \in X$.

(3) Let X is a bounded implicative DBCK-algebra and $x, y \in X$. Then $0 \leq y$ and $x \circ 0 \leq x \circ y$ by (CP3). It implies $x \leq (x \circ y) \circ y \leq (x \circ 0) \circ y = x^* \circ y$ by (DP2) and (CP3). Since $y \leq x^* \circ y$ by (CP2), $x^* \circ y$ is an upper bound of x and y. Hence $x \vee y \leq x^* \circ y$. Also, by (DP1) and (2) of this proposition, we have that

$$x^* \circ y \le (y \circ x) \circ (x^* \circ x) = (y \circ x) \circ x.$$

Since X is commutative by (1) of this proposition, $(y \circ x) \circ x = y \lor x$ by Proposition 2.5(1), and it implies $x^* \circ y \le y \lor x$. Hence $y \lor x = x^* \circ y$. \Box

If X is a bounded implicative DBCK-algebra, then it is a DBCK-semilattice, hence we can consider the notions of *i*-invariant and *m*-invariant of X.

Theorem 4.5. If X is a bounded implicative DBCK-algebra, then it is *i*-invariant and *m*-invariant.

Proof. Suppose that X is a bounded implicative DBCK-algebra and $x, y \in X$. Then X is commutative by Proposition 4.4(1) and we have

$$\begin{aligned} x^* \lor (x \circ y)^* &= x^{**} \circ (x \circ y)^* & \text{(by Proposition 4.4(3))} \\ &= x \circ (x \circ y)^* & \text{(by Proposition 2.5(2))} \\ &= (x \circ y) \circ x^* & \text{(by Proposition 2.4(5))} \\ &= (y^* \circ x^*) \circ x^* & \text{(by Proposition 2.5(3))} \\ &= y^* \lor x^* & \text{(by Proposition 2.5(1)).} \end{aligned}$$

166

Hence $x \wedge (x \circ y) = (x^* \vee (x \circ y)^*)^* = (x^* \vee y^*)^* = x \wedge y$ by Proposition 2.5(1) and X is *i*-invariant. Also we have that

$$x \circ (x \wedge y) = x \circ (x^* \vee y^*)^* \quad \text{(by Proposition 2.5(1))}$$
$$= (x^* \vee y^*) \circ x^* \quad \text{(by Proposition 2.4(5))}$$
$$= (y \circ x^*) \circ x^* \quad \text{(by Proposition 4.4(3) and 2.5(2))}$$
$$= y \vee x^* \quad \text{(by Proposition 2.5(1))}$$
$$= y^* \circ x^* \quad \text{(by Proposition 4.4(3))}$$
$$= x \circ y \quad \text{(by Proposition 2.5(3))}$$

Hence X is m-invariant.

Corollary 4.6. If X is a bounded implicative DBCK-algebra, then it is a Heyting algebra.

Proof. If X is a bounded implicative DBCK-algebra, then X is a bounded lattice, and it is Heyting algebra by Theorem 4.5 and 3.6.

The converse of Corollary 4.6 is not true in general, as the following example shows.

Example 4.7. Let X be a bounded chain with $|X| \ge 3$. We define a binary operation " \circ " on X by

$$x \circ y = \begin{cases} 1 & \text{if } x \leq y \\ y, & \text{otherwise.} \end{cases}$$

Then X is a Heyting algebra which is not implicative DBCK-algebra. In fact, for any element $x \in X$ with 0 < x < 1, $(x \circ 0) \circ x = 0 \circ x = 1 \neq x$.

Theorem 4.8. A semilattice X is a commutative Heyting algebra if and only if it is a bounded implicative DBCK-algebra.

Proof. If X is a commutative Heyting algebra, then X is an implicative DBCK-algebra by Proposition 4.3 and Theorem 3.3.

Conversely, if $(X, \circ, 0, 1)$ is a bounded implicative *DBCK*-algebra, then X is commutative Heyting algebra by Proposition 4.4(1) and Corollary 4.6.

Acknowledgments

This research was supported by a grant from the Academic Research Program of Chungju National University in 2010.

References

- G. Birkhoff, Lattice Theory, American Mathematical Society Colloquium Publications, Providence, R.I., 1967.
- [2] R. A. Borzooei and S. Khosravi Shoar, Implication algebras are equivalent to the dual implicative BCK-algebras, *Sci. Math. Jpn.* 63 (2006), no. 3, 429–431.
- [3] H. B. Curry, Foundations of Mathematics Logics, McGraw-Hill, New York, 1963.
- [4] K. Iséki, An algebra related with a propositional calculus, Proc. Japan Acad. Ser. A Math. Sci. 42 (1966) 26–29.
- [5] K. Iséki and S. Tanaka, An introduction to the theory of BCK-algebras, *Mathematica Japonica* 23 (1978) 1–26.
- [6] K. H. Kim and Y. H. Yon, Dual BCK-algebra and MV-algebra, Sci. Math. Jpn. 66 (2007), no. 2, 247–253.
- [7] W. C. Nemitz, Implicative semi-lattices, Trans. Amer. Math. Soc. 117 (1965) 128-142.
- [8] J. Picado, A. Pultr and A. Tozzi, Ideals in Heyting semilattices and open homomorphisms, *Quaest. Math.* **30** (2007), no. 4, 391–405.
- [9] W. Rump, Semidirect products in algebraic logic and solutions of the quantum Yang-Baxter equation, J. Algebra Appl. 7 (2008), no.4, 471–490.
- [10] W. Rump, A general Glivenko theorem, Algebra Universalis 61 (2009), no. 3-4, 455–473.
- [11] A. Walendziak, On commutative BE-algebras, Sci. Math. Jpn. 69 (2009), no. 2, 281–284.

Yong Ho Yon

Engineering Education Innovation Center, Mokwon University, P.O. Box 302-729, Daejeon, Korea Email: yhyon@mokwon.ac.kr

Kyung Ho Kim

Department of Mathematics, Chungju National University, P.O. Box 380-702, Chungju, Korea Email: ghkim@cjnu.ac.kr