
Bulletin of the Iranian Mathematical Society Vol. 38 No. 1 (2012), pp 159-168.

ON HEYTING ALGEBRAS AND DUAL
BCK-ALGEBRAS

Y. H. YON AND K. H. KIM∗

Communicated by Ali Enayat

Abstract. A Heyting algebra is a distributive lattice with im-
plication and a dual BCK-algebra is an algebraic system having
as models logical systems equipped with implication. The aim of
this paper is to investigate the relation of Heyting algebras be-
tween dual BCK-algebras. We define notions of i-invariant and
m-invariant on dual BCK-semilattices and prove that a Heyting
semilattice is equivalent to an i-invariant and m-invariant dual
BCK-semilattices, and show that a commutative Heyting algebra
is equivalent to a bounded implicative dual BCK-algebra.

1. Introduction

A Heyting semilattice is an algebraic system equipped with impli-
cation and conjunction. The prepositions of Heyting semilattices in
algebraic logic were clearly displayed by H. B. Curry([3]) and system-
atically studied in [7] and [8]. A dual BCK-algebra(DBCK-algebra)
is an algebraic system having as models logical systems equipped with
implication, which is the dual concept of BCK-algebra [4, 5], and it
is a generalization of Heyting algebra. Heyting algebras(or Brouwerian
lattices) were investigated by H. B. Curry[3] and G. Birkhoff [1], and
all the important rules of computation with implication are contained
in [3]. The notion of DBCK-algebra was studied and generalized in
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[2, 6, 11], and more relationships among Heyting semilattice, Hilbert
algebra, L-algebra and DBCK-algebra can be found in [9, 10].

In this paper, we define notions of i-invariant and m-invariant on
DBCK-semilattices and investigate the relation between Heyting al-
gebras and DBCK-algebras. We prove that a Heyting semilattice is
equivalent to an i-invariant and m-invariant DBCK-semilattices, and
show that a commutative Heyting algebra is equivalent to a bounded
implicative DBCK-algebra.

2. Preliminaries

A DBCK-algebra is an algebraic system (X, ◦, 1) satisfying the fol-
lowing axioms.

DBCK1. (x ◦ y) ◦ ((y ◦ z) ◦ (x ◦ z)) = 1,
DBCK2 x ◦ ((x ◦ y) ◦ y) = 1,
DBCK3. x ◦ x = 1,
DBCK4. x ◦ y = 1 and y ◦ x = 1 imply x = y,
DBCK5. x ◦ 1 = 1.

A DBCK-algebra is a poset with the binary relation “≤” defined by
x ≤ y if and only if x ◦ y = 1, and 1 is the greatest element.

A Heyting semilattice (or implicative semilattice) is a (meet-)semilattice
with a binary operation “◦” satisfying the axiom :

H. z ∧ x ≤ y if and only if z ≤ x ◦ y.

Proposition 2.1. [5, 6, 7, 8] A Heyting semilattice and DBCK-algebra
have the following common properties.

(CP1) x ◦ (y ◦ z) = y ◦ (x ◦ z),
(CP2) y ≤ x ◦ y
(CP3) x ≤ y implies z ◦ x ≤ z ◦ y and y ◦ z ≤ x ◦ z,
(CP4) x ≤ y ◦ z implies y ≤ x ◦ z,
(CP5) 1 ◦ x = x.

Proposition 2.2. [5, 6] A DBCK-algebra has the following properties.
(DP1) x ◦ y ≤ (y ◦ z) ◦ (x ◦ z),
(DP2) x ≤ (x ◦ y) ◦ y,
(DP3) x ◦ y ≤ (z ◦ x) ◦ (z ◦ y),
(DP4) (x ◦ y) ◦ y) ◦ y = x ◦ y.

In a DBCK-algebra, (x◦y)◦y is an upper bound of x and y by (DP2)
and (CP2).
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Proposition 2.3. [7, 8] A Heyting semilattice has a greatest element 1
and has the following properties.

(HP1) a ≤ b if and only if a ◦ b = 1,
(HP2) x ◦ x = 1,
(HP3) x ∧ (x ◦ y) = x ∧ y,
(HP4) x ◦ (y ∧ z) = (x ◦ y) ∧ (x ◦ z),
(HP5) x ◦ (y ◦ z) = (x ∧ y) ◦ z.

A DBCK-algebra (X, ◦, 1) is said to be bounded if there exists an
element 0 in X such that 0 ◦ x = 1 for all x ∈ X. For any element x in
a bounded DBCK-algebra X, the element x ◦ 0 will be denoted by x∗

and x∗∗ = (x∗)∗.

Proposition 2.4. [6] A bounded DBCK-algebra has the following prop-
erties.

(1) 1∗ = 0 and 0∗ = 1,
(2) x ≤ x∗∗ and x∗∗∗ = x∗,
(3) x ◦ y ≤ y∗ ◦ x∗,
(4) x ≤ y implies y∗ ≤ x∗,
(5) x ◦ y∗ = y ◦ x∗.

A DBCK-algebra is said to be commutative if it satisfies (x ◦ y) ◦ y =
(y ◦ x) ◦ x for every x, y ∈ X.

Proposition 2.5. [6] A bounded commutative DBCK-algebra X has
the following properties.

(1) X is a lattice with x ∨ y = (x ◦ y) ◦ y and x ∧ y = (x∗ ∨ y∗)∗,
(2) x = x∗∗,
(3) x ◦ y = y∗ ◦ x∗.

3. Heyting semilattices and DBCK-semilattices

Definition 3.1. A DBCK-algebra X is called a DBCK-semilattice
if every finite subset of X has the greatest lower bound. A DBCK-
semilattice X is said to be implication-invariant, shortly i-invariant, if
x ∧ y = x ∧ (x ◦ y) for all x, y ∈ X, and meet-invariant, shortly m-
invariant, if x ◦ y = x ◦ (x ∧ y) for all x, y ∈ X.

Those axioms of the i-invariant and the m-invariant DBCK-semilattice
are independent, as the following examples show.

Example 3.2. (1) Let N5 = {0, a, b, c, 1} be a DBCK-semilattice with
a binary operation “◦” and Hasse diagram given by Figure 1. Then N5
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◦ 0 a b c 1
0 1 1 1 1 1
a b 1 b c 1
b a a 1 1 1
c 0 a b 1 1
1 0 a b c 1
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Figure 1. Cayley table and Hasse diagram of DBCK-
semilattice N5

is i-invariant but not m-invariant, in fact a ◦ (a ∧ c) = b 6= c = a ◦ c.
(2) Let X = {0, a, b, 1} be a DBCK-semilattice with a binary opera-

tion “◦” and Hasse diagram given by Figure 2. Then X is m-invariant

◦ 0 a b 1
0 1 1 1 1
a b 1 1 1
b a b 1 1
1 0 a b 1

r 1r br ar 0

Figure 2. Cayley table and Hasse diagram of DBCK-
semilattice X

but not i-invariant for a ∧ 0 = 0 6= a = a ∧ (a ◦ 0).

Theorem 3.3. Every Heyting semilattice is an i-invariant DBCK-
semilattice.

Proof. Suppose that X is a Heyting semilattice. Then DBCK3, DBCK4
and DBCK5 are trivial from (HP2) and (HP1). For any x, y ∈ X,
x ◦ ((x ◦ y) ◦ y) = (x ◦ y) ◦ (x ◦ y) = 1 by (CP1). It is DBCK2. By (HP1)
and (CP3), it implies that y ≤ (y ◦ z) ◦ z and x ◦ y ≤ x ◦ ((y ◦ z) ◦ z) =
(y ◦ z) ◦ (x ◦ z) for every x, y, z ∈ X, hence (x ◦ y) ◦ ((y ◦ z) ◦ (x ◦ z)) = 1.
Thus X is a DBCK-semilattice. Also, we have x ∧ y ≤ x ∧ (x ◦ y) by
(CP2). By axiom H, x ∧ (x ◦ y) ≤ y since x ◦ y ≤ x ◦ y. It implies
x ∧ (x ◦ y) ≤ x ∧ y. Hence x ∧ y = x ∧ (x ◦ y) and X is i-invariant. �

We have two types of distributive law on DBCK-semilattices with
respect to “◦” and “∧” respectively :

x ◦ (y ◦ z) = (x ◦ y) ◦ (x ◦ z) (self-distributive),

x ◦ (y ∧ z) = (x ◦ y) ∧ (x ◦ z) (meet-distributive).
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In DBCK-semilattice the following inequalities are true.
x ◦ (y ◦ z) ≥ (x ◦ y) ◦ (x ◦ z) and x ◦ (y ∧ z) ≤ (x ◦ y) ∧ (x ◦ z).

Proposition 3.4. Let X be a DBCK-semilattice. Then
(1) If X satisfies the self-distributive law, then X is i-invariant,
(2) If X satisfies the meet-distributive law, then X is m-invariant.

Proof. (1) Suppose that X satisfies the self-distributive law and x, y ∈
X. Let u = x∧ (x ◦ y). Then it is clear that x∧ y ≤ x∧ (x ◦ y) = u since
y ≤ x ◦ y. Also u ≤ x and u ≤ x ◦ y. It imply that u ◦ x = 1 and

1 ◦ (u ◦ y) = (u ◦ x) ◦ (u ◦ y) = u ◦ (x ◦ y) = 1

by hypothesis. It follows that u ◦ y = 1 and u ≤ y. Hence u is a lower
bound of x and y, i.e., u ≤ x ∧ y. Therefore x ∧ (x ◦ y) = u = x ∧ y.

(2) If X satisfies meet-distributive, then x◦(x∧y) = (x◦x)∧(x◦y) =
1 ∧ (x ◦ y) = x ◦ y for any x, y ∈ X, �

Proposition 3.5. Let X be a DBCK-semilattice. Then X is i-invariant
if and only if it satisfies x ∧ (x ◦ y) ≤ y for all x, y ∈ X.

Proof. Suppose that X is i-invariant. Then x ∧ (x ◦ y) = x ∧ y ≤ y.
Conversely, suppose that x∧ (x◦y) ≤ y for all x, y ∈ X. Then it is clear
that x∧ (x◦y) is a lower bound of x and y. It implies x∧ (x◦y) ≤ x∧y.
Also x ∧ y ≤ x ∧ (x ◦ y) since y ≤ x ◦ y. Hence x ∧ (x ◦ y) = x ∧ y. �

Theorem 3.6. Let X be a DBCK-semilattice. Then the following are
equivalent.

(1) X is i-invariant and m-invariant.
(2) X satisfies x ◦ (y ◦ z) = (x ∧ y) ◦ z for all x, y, z ∈ X.
(3) X is a Heyting semilattice.

Proof. ((1)⇒(2)) Suppose that X is i-invariant, m-invariant and x, y, z ∈
X. Let u = x ◦ (y ◦ z). Then by definition of i-invariant, we have

(x ∧ y) ∧ u = y ∧ [x ∧ (x ◦ (y ◦ z))] = y ∧ [x ∧ (y ◦ z)]

= x ∧ [y ∧ (y ◦ z)] = x ∧ (y ∧ z) = (x ∧ y) ∧ z.

It implies that by (CP2) and definition of m-invariant,

u ≤ (x∧y)◦u = (x∧y)◦((x∧y)∧u) = (x∧y)◦((x∧y)∧z) ≤ (x∧y)◦z.

Hence x ◦ (y ◦ z) ≤ (x∧ y) ◦ z. To show that (x∧ y) ◦ z ≤ x ◦ (y ◦ z), let
v = (x ∧ y) ◦ z. Then by definition of i-invariant,

(x ∧ y) ∧ v = (x ∧ y) ∧ [(x ∧ y) ◦ z] = (x ∧ y) ∧ z
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and by definition of m-invariant,

x ∧ v ≤ y ◦ (x ∧ v) = y ◦ (y ∧ (x ∧ v)) = y ◦ ((x ∧ y) ∧ v)

= y ◦ ((x ∧ y) ∧ z) ≤ y ◦ z.

It implies v ≤ x◦v = x◦(x∧v) ≤ x◦(y◦z). Hence (x∧y)◦z = x◦(y◦z).
(2)⇒(3) Suppose that X satisfies x ◦ (y ◦ z) = (x ∧ y) ◦ z for all

x, y, z ∈ X. Then we have

x ∧ y ≤ z ⇐⇒ (x ∧ y) ◦ z = 1 ⇐⇒ x ◦ (y ◦ z) = 1 ⇐⇒ x ≤ y ◦ z.

Hence X is a Heyting semilattice.
(3)⇒(1) Suppose that (X, ◦,∧, 1) is a Heyting semilattice. Then it is

an i-invariant DBCK-semilattice by Theorem 3.3, and it is m-invariant
by (HP4) and Proposition 3.4(2). �

Proposition 3.7. Let X be a DBCK-semilattice. Then the following
properties are equivalent.

(1) X is i-invariant and m-invariant.
(2) X satisfies the self-distributive and the meet-distributive law.

Proof. It is clear that (2) implies (1) by (1) and (2) of Proposition 3.4.
Conversely, suppose that X is i-invariant, m-invariant and x, y, z ∈ X.

Then by Theorem 3.6(2) and definition of i-invariant,

x ◦ (y ◦ z) = (x ∧ y) ◦ z = [x ∧ (x ◦ y)] ◦ z

= [(x ◦ y) ∧ x] ◦ z = (x ◦ y) ◦ (x ◦ z).

Hence X satisfies the self-distributive law. Also, X is a Heyting semi-
lattice by Theorem 3.6. Hence X satisfies (HP4), i.e., X satisfies the
meet-distributive law. �

Corollary 3.8. A semilattice X is a Heyting semilattice if and only if
it is a DBCK-semilattice satisfying the self-distributive and the meet-
distributive law.

Proof. It is clear from Theorem 3.6 and Proposition 3.7. �

A filter of a DBCK-algebra X is a non-empty subset F of X satisfying
(1) 1 ∈ F , and (2) x ∈ F and x ◦ y ∈ F implies y ∈ F . A filter of a
semilattice X is a non-empty subset F of X satisfying (1) x∧ y ∈ F for
all x, y ∈ F , and (2) x ∈ F and x ≤ y implies y ∈ F .

Proposition 3.9. If X is an i-invariant DBCK-semilattice, then every
filter of X as a semilattice is a filter of X as a DBCK-algebra.
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Proof. Suppose that F is a filter of X as a semilattice. Then it is clear
that 1 ∈ F since F 6= ∅ and 1 ∈ X. Let x ∈ F and x ◦ y ∈ F . Then
x ∧ y = x ∧ (x ◦ y) ∈ F and x ∧ y ≤ y. Hence y ∈ F . �

Proposition 3.10. If X is a m-invariant DBCK-semilattice, then
every filter of X as a DBCK-algebra is a filter of X as a semilattice.

Proof. Let F be a filter of X as a DBCK-algebra and x, y ∈ F . Since
y ≤ x ◦ y, y ◦ (x ◦ y) = 1 ∈ F and y ∈ F , hence x ◦ y ∈ F . Also, since
x ◦ (x ∧ y) = x ◦ y ∈ F and x ∈ F , x ∧ y ∈ F . If x ∈ F and x ≤ y, then
x ∈ F and x ◦ y = 1 ∈ F , hence y ∈ F . Hence F is a filter of X as a
semilattice. �

Corollary 3.11. Let X be an i-invariant and m-invariant DBCK-
semilattice. Then F is a filter of X as DBCK-algebra if and only if it
is a filter of X as a semilattice.

4. On Implicative DBCK-algebras

A bounded lattice (X,∨,∧, 0, 1) is called a Heyting algebra if there
is a binary operation “◦” on X satisfying the axiom H. Every Heyting
algebra is a Heyting semilattice and satisfies all properties of Proposition
2.1 and 2.3. Conversely, every bounded Heyting semilattice X with x∨y
for all x, y ∈ X is a Heyting algebra.

Definition 4.1. A DBCK-algebra X is said to be implicative if it sat-
isfies x = (x ◦ y) ◦ x for all x, y ∈ X.

Definition 4.2. A Heyting algebra is said to be commutative if it sat-
isfies (x ◦ y) ◦ y = (y ◦ x) ◦ x for every x, y ∈ X.

Proposition 4.3. Let X be a Heyting algebra. Then X is commutative
if and only if it satisfies x = (x ◦ y) ◦ x for all x, y ∈ X.

Proof. Suppose that X is commutative and x, y ∈ X. Then it is clear
that x ≤ (x ◦ y) ◦ x by (CP2), and by commutativity and (HP5),

[(x ◦ y) ◦ x] ◦ x = [x ◦ (x ◦ y)] ◦ (x ◦ y) = [(x ∧ x) ◦ y] ◦ (x ◦ y)

= (x ◦ y) ◦ (x ◦ y) = 1

It follows (x ◦ y) ◦ x ≤ x. Hence x = (x ◦ y) ◦ x.
Conversely, Suppose that X satisfies x = (x ◦ y) ◦ x for all x, y ∈ X.

Then y = (y ◦ x) ◦ y. Since x ◦ y ≤ x ◦ y, x ≤ (x ◦ y) ◦ y by (CP4). It
follows that

(y ◦ x) ◦ x ≤ (y ◦ x) ◦ ((x ◦ y) ◦ y) = (x ◦ y) ◦ ((y ◦ x) ◦ y) = (x ◦ y) ◦ y
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by (CP1). Interchanging the role of x and y, we have (x◦y)◦y ≤ (y◦x)◦x.
Hence (x ◦ y) ◦ y = (y ◦ x) ◦ x, and X is commutative. �

Proposition 4.4. Let X be a bounded implicative DBCK-algebra. Then
it has the following properties.

(1) X is commutative,
(2) x = x∗ ◦ x for every x ∈ X,
(3) x ∨ y = y ∨ x = x∗ ◦ y for every x, y ∈ X.

Proof. (1) We can prove it by the same way with the converse part of
Proposition 4.3.

(2) If X is a bounded implicative DBCK-algebra, then x∗ ◦ x =
(x ◦ 0) ◦ x = x for any x ∈ X.

(3) Let X is a bounded implicative DBCK-algebra and x, y ∈ X.
Then 0 ≤ y and x ◦ 0 ≤ x ◦ y by (CP3). It implies x ≤ (x ◦ y) ◦ y ≤
(x ◦ 0) ◦ y = x∗ ◦ y by (DP2) and (CP3). Since y ≤ x∗ ◦ y by (CP2),
x∗ ◦ y is an upper bound of x and y. Hence x ∨ y ≤ x∗ ◦ y. Also, by
(DP1) and (2) of this proposition, we have that

x∗ ◦ y ≤ (y ◦ x) ◦ (x∗ ◦ x) = (y ◦ x) ◦ x.

Since X is commutative by (1) of this proposition, (y ◦ x) ◦ x = y ∨ x by
Proposition 2.5(1), and it implies x∗◦y ≤ y∨x. Hence y∨x = x∗◦y. �

If X is a bounded implicative DBCK-algebra, then it is a DBCK-
semilattice, hence we can consider the notions of i-invariant and m-
invariant of X.

Theorem 4.5. If X is a bounded implicative DBCK-algebra, then it is
i-invariant and m-invariant.

Proof. Suppose that X is a bounded implicative DBCK-algebra and
x, y ∈ X. Then X is commutative by Proposition 4.4(1) and we have

x∗ ∨ (x ◦ y)∗ = x∗∗ ◦ (x ◦ y)∗ (by Proposition 4.4(3))

= x ◦ (x ◦ y)∗ (by Proposition 2.5(2))

= (x ◦ y) ◦ x∗ (by Proposition 2.4(5))

= (y∗ ◦ x∗) ◦ x∗ (by Proposition 2.5(3))

= y∗ ∨ x∗ (by Proposition 2.5(1)).
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Hence x ∧ (x ◦ y) = (x∗ ∨ (x ◦ y)∗)∗ = (x∗ ∨ y∗)∗ = x ∧ y by Proposition
2.5(1) and X is i-invariant. Also we have that

x ◦ (x ∧ y) = x ◦ (x∗ ∨ y∗)∗ (by Proposition 2.5(1))

= (x∗ ∨ y∗) ◦ x∗ (by Proposition 2.4(5))

= (y ◦ x∗) ◦ x∗ (by Proposition 4.4(3) and 2.5(2))

= y ∨ x∗ (by Proposition 2.5(1))

= y∗ ◦ x∗ (by Proposition 4.4(3))

= x ◦ y (by Proposition 2.5(3))

Hence X is m-invariant. �

Corollary 4.6. If X is a bounded implicative DBCK-algebra, then it
is a Heyting algebra.

Proof. If X is a bounded implicative DBCK-algebra, then X is a bounded
lattice, and it is Heyting algebra by Theorem 4.5 and 3.6. �

The converse of Corollary 4.6 is not true in general, as the following
example shows.

Example 4.7. Let X be a bounded chain with |X| ≥ 3. We define a
binary operation “◦” on X by

x ◦ y =

{
1 if x ≤ y

y, otherwise.

Then X is a Heyting algebra which is not implicative DBCK-algebra.
In fact, for any element x ∈ X with 0 < x < 1, (x◦0)◦x = 0◦x = 1 6= x.

Theorem 4.8. A semilattice X is a commutative Heyting algebra if and
only if it is a bounded implicative DBCK-algebra.

Proof. If X is a commutative Heyting algebra, then X is an implicative
DBCK-algebra by Proposition 4.3 and Theorem 3.3.

Conversely, if (X, ◦, 0, 1) is a bounded implicative DBCK-algebra,
then X is commutative Heyting algebra by Proposition 4.4(1) and Corol-
lary 4.6. �
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