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BIVARIATE MEAN VALUE INTERPOLATION ON
CIRCLES OF THE SAME RADIUS

KH. RAHSEPAR FARD

Communicated by Mohammad Asadzadeh

Abstract. We consider bivariate mean-value interpolation prob-
lem, where the integrals over circles are interpolation data. In this
case the problem is described over circles of the same radius and
with centers are on a straight line and it is shown that in this case
the interpolation is not correct.

1. Introduction

Denote by Π2
n = Πn(R2) the space of interpolation polynomials in 2

variables of total degree not exceeding n:

Π2
n = {p(x, y) =

∑
i+j≤n

aijx
iyj : i, j ∈ Z+}.

Set

N = dimΠ2
n =

(
n + 2

2

)
.

Let us fix the set of distinct points

Xs = {(x1, y1), . . . , (xs, ys)} ⊂ R2

as the set of interpolation nodes.
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The classic Lagrange interpolation problem (Π2
n,Xs) is to find a unique

polynomial p ∈ Π2
n such that

p(xk, yk) = ck, k = 1, . . . , s,(1.1)

where ck, k = 1, . . . , s are real numbers.

Definition 1.1. The Lagrange interpolation problem (Π2
n,Xs) is called

correct if, for any real values ck, k = 1, . . . , s, there exists a unique poly-
nomial p ∈ Π2

n satisfying the conditions (1.1).

In other words, the Lagrange interpolation problem is to find a unique
polynomial p(x, y) =

∑
i+j≤n aijx

iyj ∈ Π2
n which reduces the conditions

(1.1) to the following linear system

(1.2) p(xk, yk) =
∑

i+j≤n

aijx
i
ky

j
k = ck, k = 1, ..., s.

The correctness of interpolation means that the linear system (1.2) has
a unique solution for arbitrary right hand side values. A necessary con-
dition for this is that the number of unknowns is equal to the number
of equations, i.e.,

s = N.

We know that in this case the linear system (1.2) has a unique solu-
tion for arbitrary values {c1, . . . , cs} if and only if the corresponding
homogeneous system has only trivial solution. In other words we have:

Proposition 1.2. The interpolation problem (Π2
n,XN ) is correct if and

only if
p ∈ Π2

n, p |XN
= 0 ⇒ p = 0.

Equivalently: The interpolation problem (Π2
n,XN ) is not correct if

and only if

(1.3) ∃p ∈ Π2
n\{0} such that p |XN

= 0.

In this paper a mean-value interpolation problem is considered where
interpolation parameters are integrals over circles. Here we are going to
find a unique polynomial p ∈ Π2

n such thatt

(1.4)
1

µ2(Dk)

∫ ∫
Dk

p(x, y)dxdy = ck, k = 1, . . . , N,

where ck’s are arbitrary given numbers, Dk’s are circles and µ2(Dk) is
the area of Dk. We denote this mean-value interpolation problem by
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(Π2
n, D)m.v., where D is the set of above circles:

D = {Dk : k = 1, . . . , N}.
Similar to Definition 1.1 we call the problem (Π2

n, D)m.v. correct if for
any number ck, k = 1, . . . , N there exists a unique polynomial p ∈ Π2

n

satisfying (1.4).
Note that for a Lebesgue integrable function f it is convenient to

use this interpolation, while the Lagrange interpolation in this case is
not suitable since values of f may not be determined. It is worth men-
tioning that even the mean-value interpolations where the interpolation
parameters are obtained through integration over sets of n−dimensional
Lebesgue measure zero, are not appropriate for integrable functions.
(see, [1, p. 204], [2])

An example of correct interpolation problem is presented in [3]. To
introduce it we need some preliminaries.

Definition 1.3. We call a set of lines in the plane to be in general
position if any two lines intersect at a point and no three lines are coin-
cident.

For a set of lines in general position we call cut-regions the bounded
regions cut by the given set of lines.

As it is shown in [3] there are exactly N cut-regions if the lines
L1, . . . , Ln+3 are in general position, where n ≥ 0.

In [3] we consider the following conjecture:

Conjecture 1.1. Suppose that the lines L1, ..., Ln+3 are in general po-
sition. Then, the mean-value interpolation with Π2

n and N cut-regions is
correct, i.e., for any c1, . . . , cN there exists a unique polynomial p ∈ Π2

n

such that
1

µ2(Gk)

∫ ∫
Gk

pdxdy = ck, k = 1, . . . , N,

where Gk’s are the cut- regions.

The Conjecture 1.1 was established in [3] in the case of n = 1.
Another special case is considered in [4]. To introduce it let us take a
set 4 to be a measurable set in R2 with finite non-zero measure.

The following set is called λ-shift of 4
4λ := {y + λ : y ∈ 4, λ ∈ Rn}.

Let us fix a set of N distinct nodes

Λ := {λi : i = 1, . . . , N} ⊂ R2.
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The following set is called the set of Λ-shifts of 4
Λ(4) := {4λ : λ ∈ Λ}.

Theorem 1.4. Suppose that µ2(4) 6= 0. Then, the mean-value inter-
polation (Π2

n,Λ(∆))m.v. is correct if and only if the Lagrange pointwise
interpolation problem (Π2

n,Λ) is correct.

Consider an arbitrary set of N distinct balls of the same radius r :
B := {Bai,r : i = 1, . . . , N}. Let A = {ai : i = 1, . . . , N} be the set of
centers of the balls.

Corollary 1.5. The mean-value interpolation (Π2
n, B) is correct if and

only if the Lagrange pointwise interpolation (Π2
n, A) is correct.

Note that Theorem 1.4 and Corollary 1.5 are both proved in arbitrary
dimension in [4].

In the next section we consider the bivariate mean-value interpolation
for polynomials of arbitrary degree with regions obtained by circles of the
same radius and with centers on a straight line. We conclude that in this
case the problem is not correct. For other version of this interpolation
see [1, 5].

2. Mean-value interpolation with circles

Let us consider mean-value interpolation with polynomials of arbi-
trary degree and the regions, obtained the above circles, i.e., the problem
(Π2

n, D)m.v..

Theorem 2.1. Suppose that among regions of the interpolation problem
(Π2

n, D)m.v. there are n + 2 circles with the same radius whose centers
lie on a straight line, where n ≥ 1. Then the mean-value interpolation
problem (Π2

n, D)m.v. is not correct.

Proof. Let L : y = αx + β be the straight line of the centers of circles.
Suppose that the N − (n + 2) other regions are arbitrary. Let also that
the centers of n+2 circles Dl on the line L be the points (γl, γlα+β), l =
1, ..., n + 2. Let us verify separately that theorem holds for n = 1. We
have ∫ ∫

Dl

p(x, y)dxdy =
∫ ∫

Dl

[a0,0 + a1,0x + a0,1y]dxdy =
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(2.1) = πr2[a1,0γl + a0,1γ
0
l (γlα + β) + a0,0], l = 1, 2, 3,

then the corresponding coefficients matrix for the respective system (2.1)
is

A =

 1 γ1 γ1α + β
1 γ2 γ2α + β
1 γ3 γ3α + β

 .

Therefore detA = 0 and the interpolation problem is not correct.
Now we turn to the case of general n(n ≥ 2). Consider an arbitrary

polynomial p ∈ Π2
n. We have∫ ∫

Dl

p(x, y)dxdy = r2

∫ ∫
D:x2+y2≤1

p(rx + γl, ry + (αγl + β))dxdy

∫ ∫
Dl

p(x, y)dxdy = r2

∫ ∫
D:x2+y2≤1

p(rx + γl, ry + (αγl + β))dxdy

= r2

∫ ∫
D

∑
i+j≤n

aij(rx + γl)i(ry + (αγl + β))jdxdy = r2

{
∫ ∫

D
[an,0γ

n
l + an−1,1γ

n−1
l · (γlα + β)(γl)i(rx)n−idxdy + an−1,1∫ ∫

D
(ry + (αγl + β)).

n−2∑
i=0

(
n− 1

i

)
(γl)i(rx)n−1−idxdy + · · ·+ a0,n

∫ ∫
D

n−1∑
i=0

(
n

i

)
(αγl + β)i(ry)n−idxdy] +

∫ ∫
D

∑
i+j<n

aij

·(rx + γl)i(ry + (γlα + β))jdxdy}, l = 1, . . . , n + 2.

Therefore, by separating the highest degree in γl and expanding the
above sums, we have∫ ∫

Dl

p(x, y)dxdy = πr2[an,0γ
n
l + ... + a0,nγ0

l (γlα + β)n] + r2{[a0,0∫ ∫
D

dxdy + a2,0r
2

∫ ∫
D

x2dxdy + · · ·+ a0,nrn

∫ ∫
D

yndxdy]× 1+

[a1,0

∫ ∫
D

dxdy + 2a2,0r

∫ ∫
D

xdxdy + · · ·+ nan,0r
n−1

∫ ∫
D

xn−1

dxdy]× γl + [a0,1

∫ ∫
D

dxdy + a1,1r

∫ ∫
D

xdxdy + 2a2,0r

∫ ∫
D

ydxdy
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+ · · ·+ rn−1a0,n

∫ ∫
D

yn−1dxdy]× (γlα + β) + · · ·+ [a0,n−1·∫ ∫
D

dxdy + nra0,n

∫ ∫
D

ydxdy]× (γlα + β)n−1}, l = 1, 2, ..., n + 2.

Let us put
An,0 = an,0, · · · , A0,n = a0,n,

also denote the above brackets by

Ai,j , i, j = 0, . . . , n− 1

respectively, i.e.,

A0,0 = a0,0

∫ ∫
D

dxdy + a2,0r
2

∫ ∫
D

x2dxdy+

· · ·+ a0,nrn

∫ ∫
D

yndxdy,

A1,0 = a1,0

∫ ∫
D

dxdy + 2a2,0r

∫ ∫
D

xdxdy+

· · ·+ nan,0r
n−1

∫ ∫
D

xn−1dxdy

A0,1 = a0,1

∫ ∫
D

dxdy + a1,1r

∫ ∫
D

xdxdy + 2a2,0r

∫ ∫
D

ydxdy+

· · ·+ rn−1a0,n

∫ ∫
D

yn−1dxdy, . . . ,

A0,n−1 = a0,n−1

∫ ∫
D

dxdy + nra0,n

∫ ∫
D

ydxdy.

Namely Ai,j is a coefficient of γk
l or (γlα + β)k, k = 0, . . . , n − 1. Then

Ai,j is a linear combination of ai,j which contains the coefficients of γk
l

or (γlα + β)k in the above relations. It is important to know that all
coefficients before γk

l or (γlα + β)k are zero. We denote the coefficients
of any ai,j , i, j = 0, . . . , n − 1 by ζi,j,k, i, j,= 0, . . . , n, k = 1, . . . , n − 1.
Then

A0,0 = πa0,0 + a2,0ζ2,0,1 + . . . + a0,nζ0,n,1,

A1,0 = πa1,0 + a2,0ζ2,0,2 + . . . + an,0ζn,0,2

, . . . , A0,n−1 = πa0,n−1 + a0,nζ0,n,n−1,

where ζi,j,k’s are real numbers. Hence, new variables are written by
ai,j , i, j = 0, . . . , n. Also, in any new variable we have exactly one
ai,j , i, j = 0, . . . , n − 1 that is not repeated in other sums and also its
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coefficient is not zero. Thus by backward recursive relation one can find
the following linear system

a0,n−1 =
1
π

(A0,n−1 −A0,nη0,n,n−1), . . . ,

a0,0 =
1
π

(A0,0 −A1,0η1,0,n−1 − · · · −A0,nη0,n,n−1),

where ηi,j,k, i, j,= 0, . . . , n, k = 1, . . . , n−1 are real numbers. Therefore
the two corresponding linear system are equivalent.

Now if we consider the linear systems with the variables Ai,j then the
(n + 2)×N corresponding coefficients matrix of this linear system is as
follows:

T =


c0,1 c1,1γ1 · · · (γ1α + β)n

. . · · · .

. . · · · .
c0,n+2 c1,n+2γn+2 · · · (γn+2α + β)n

 ,

where ci,l i = 0, . . . , N − n − 2 are real numbers and l = 1, ..., n + 2.
In view of the case n = 1 in the above matrix by using the elementary
operations after expanding the expressions

(γlα + β)j , j = 1, . . . , n and l = 1, . . . , n + 2,

the coefficients matrix can be reduced to the following matrix

R =


1 γ1 0 · · · γn

1 0 · · · 0
. . . · · · . . . .
. . . · · · . . . .
1 γn+2 0 · · · γn

n+2 0 · · · 0

 .

We know that the elementary operations do not change the rank of
matrix. Consequently, in degree n the rank of the corresponding matrix
is equal to n + 1 whenever l = 1, . . . , n + 2. Namely in this submatrix
one row is a linear combination of other rows. Therefore in the square
linear system the rank of coefficients matrix is less than or equal to N−1
whenever the number of unknowns is N . �
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