BIVARIATE MEAN VALUE INTERPOLATION ON CIRCLES OF THE SAME RADIUS

KH. RAHSEPAR FARD

Communicated by Mohammad Asadzadeh

Abstract

We consider bivariate mean-value interpolation problem, where the integrals over circles are interpolation data. In this case the problem is described over circles of the same radius and with centers are on a straight line and it is shown that in this case the interpolation is not correct.

1. Introduction

Denote by $\Pi_{n}^{2}=\Pi_{n}\left(\mathbb{R}^{2}\right)$ the space of interpolation polynomials in 2 variables of total degree not exceeding n :

$$
\Pi_{n}^{2}=\left\{p(x, y)=\sum_{i+j \leq n} a_{i j} x^{i} y^{j}: i, j \in Z_{+}\right\}
$$

Set

$$
N=\operatorname{dim} \Pi_{\mathrm{n}}^{2}=\binom{\mathrm{n}+2}{2}
$$

Let us fix the set of distinct points

$$
\mathcal{X}_{s}=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{s}, y_{s}\right)\right\} \subset \mathbb{R}^{2}
$$

as the set of interpolation nodes.

[^0]The classic Lagrange interpolation problem $\left(\Pi_{n}^{2}, \mathcal{X}_{s}\right)$ is to find a unique polynomial $p \in \Pi_{n}^{2}$ such that

$$
\begin{equation*}
p\left(x_{k}, y_{k}\right)=c_{k}, k=1, \ldots, s, \tag{1.1}
\end{equation*}
$$

where $c_{k}, k=1, \ldots, s$ are real numbers.
Definition 1.1. The Lagrange interpolation problem $\left(\Pi_{n}^{2}, \mathcal{X}_{s}\right)$ is called correct if, for any real values $c_{k}, k=1, \ldots, s$, there exists a unique polynomial $p \in \Pi_{n}^{2}$ satisfying the conditions (1.1).

In other words, the Lagrange interpolation problem is to find a unique polynomial $p(x, y)=\sum_{i+j \leq n} a_{i j} x^{i} y^{j} \in \Pi_{n}^{2}$ which reduces the conditions (1.1) to the following linear system

$$
\begin{equation*}
p\left(x_{k}, y_{k}\right)=\sum_{i+j \leq n} a_{i j} x_{k}^{i} y_{k}^{j}=c_{k}, k=1, \ldots, s \tag{1.2}
\end{equation*}
$$

The correctness of interpolation means that the linear system (1.2) has a unique solution for arbitrary right hand side values. A necessary condition for this is that the number of unknowns is equal to the number of equations, i.e.,

$$
s=N .
$$

We know that in this case the linear system (1.2) has a unique solution for arbitrary values $\left\{c_{1}, \ldots, c_{s}\right\}$ if and only if the corresponding homogeneous system has only trivial solution. In other words we have:

Proposition 1.2. The interpolation problem $\left(\Pi_{n}^{2}, \mathcal{X}_{N}\right)$ is correct if and only if

$$
p \in \Pi_{n}^{2},\left.p\right|_{\mathcal{X}_{N}}=0 \Rightarrow p=0 .
$$

Equivalently: The interpolation problem $\left(\Pi_{n}^{2}, \mathcal{X}_{N}\right)$ is not correct if and only if

$$
\begin{equation*}
\exists p \in \Pi_{n}^{2} \backslash\{0\} \text { such that }\left.p\right|_{\mathcal{X}_{N}}=0 \tag{1.3}
\end{equation*}
$$

In this paper a mean-value interpolation problem is considered where interpolation parameters are integrals over circles. Here we are going to find a unique polynomial $p \in \Pi_{n}^{2}$ such thatt

$$
\begin{equation*}
\frac{1}{\mu_{2}\left(D_{k}\right)} \iint_{D_{k}} p(x, y) d x d y=c_{k}, k=1, \ldots, N \tag{1.4}
\end{equation*}
$$

where c_{k} 's are arbitrary given numbers, D_{k} 's are circles and $\mu_{2}\left(D_{k}\right)$ is the area of D_{k}. We denote this mean-value interpolation problem by
$\left(\Pi_{n}^{2}, \mathbb{D}\right)^{m \cdot v}$, where \mathbb{D} is the set of above circles:

$$
\mathbb{D}=\left\{D_{k}: k=1, \ldots, N\right\} .
$$

Similar to Definition 1.1 we call the problem $\left(\Pi_{n}^{2}, \mathbb{D}\right)^{m . v}$. correct if for any number $c_{k}, k=1, \ldots, N$ there exists a unique polynomial $p \in \Pi_{n}^{2}$ satisfying (1.4).

Note that for a Lebesgue integrable function f it is convenient to use this interpolation, while the Lagrange interpolation in this case is not suitable since values of f may not be determined. It is worth mentioning that even the mean-value interpolations where the interpolation parameters are obtained through integration over sets of n-dimensional Lebesgue measure zero, are not appropriate for integrable functions. (see, [1, p. 204], [2])

An example of correct interpolation problem is presented in [3]. To introduce it we need some preliminaries.

Definition 1.3. We call a set of lines in the plane to be in general position if any two lines intersect at a point and no three lines are coincident.

For a set of lines in general position we call cut-regions the bounded regions cut by the given set of lines.

As it is shown in [3] there are exactly N cut-regions if the lines L_{1}, \ldots, L_{n+3} are in general position, where $n \geq 0$.

In [3] we consider the following conjecture:
Conjecture 1.1. Suppose that the lines L_{1}, \ldots, L_{n+3} are in general position. Then, the mean-value interpolation with Π_{n}^{2} and N cut-regions is correct, i.e., for any c_{1}, \ldots, c_{N} there exists a unique polynomial $p \in \Pi_{n}^{2}$ such that

$$
\frac{1}{\mu_{2}\left(G_{k}\right)} \iint_{G_{k}} p d x d y=c_{k}, k=1, \ldots, N,
$$

where G_{k} 's are the cut- regions.
The Conjecture 1.1 was established in [3] in the case of $n=1$.
Another special case is considered in [4]. To introduce it let us take a set Δ to be a measurable set in \mathbb{R}^{2} with finite non-zero measure.

The following set is called λ-shift of \triangle

$$
\triangle^{\lambda}:=\left\{\mathbf{y}+\lambda: \mathbf{y} \in \triangle, \lambda \in \mathbb{R}^{n}\right\}
$$

Let us fix a set of N distinct nodes

$$
\Lambda:=\left\{\lambda_{i}: i=1, \ldots, N\right\} \subset \mathbb{R}^{2} .
$$

The following set is called the set of Λ-shifts of \triangle

$$
\Lambda(\triangle):=\left\{\triangle^{\lambda}: \lambda \in \Lambda\right\}
$$

Theorem 1.4. Suppose that $\mu_{2}(\triangle) \neq 0$. Then, the mean-value interpolation $\left(\Pi_{n}^{2}, \Lambda(\Delta)\right)^{m . v}$. is correct if and only if the Lagrange pointwise interpolation problem $\left(\Pi_{n}^{2}, \Lambda\right)$ is correct.

Consider an arbitrary set of N distinct balls of the same radius r : $\mathbb{B}:=\left\{B_{\mathbf{a}_{i}, r}: i=1, \ldots, N\right\}$. Let $A=\left\{\mathbf{a}_{i}: i=1, \ldots, N\right\}$ be the set of centers of the balls.

Corollary 1.5. The mean-value interpolation $\left(\Pi_{n}^{2}, \mathbb{B}\right)$ is correct if and only if the Lagrange pointwise interpolation $\left(\Pi_{n}^{2}, A\right)$ is correct.

Note that Theorem 1.4 and Corollary 1.5 are both proved in arbitrary dimension in [4].

In the next section we consider the bivariate mean-value interpolation for polynomials of arbitrary degree with regions obtained by circles of the same radius and with centers on a straight line. We conclude that in this case the problem is not correct. For other version of this interpolation see $[1,5]$.

2. Mean-value interpolation with circles

Let us consider mean-value interpolation with polynomials of arbitrary degree and the regions, obtained the above circles, i.e., the problem $\left(\Pi_{n}^{2}, \mathbb{D}\right)^{m . v}$.
Theorem 2.1. Suppose that among regions of the interpolation problem $\left(\Pi_{n}^{2}, \mathbb{D}\right)^{m . v}$. there are $n+2$ circles with the same radius whose centers lie on a straight line, where $n \geq 1$. Then the mean-value interpolation problem $\left(\Pi_{n}^{2}, \mathbb{D}\right)^{\text {m.v. }}$ is not correct.

Proof. Let $L: y=\alpha x+\beta$ be the straight line of the centers of circles. Suppose that the $N-(n+2)$ other regions are arbitrary. Let also that the centers of $n+2$ circles D_{l} on the line L be the points $\left(\gamma_{l}, \gamma_{l} \alpha+\beta\right), l=$ $1, \ldots, n+2$. Let us verify separately that theorem holds for $n=1$. We have

$$
\iint_{D_{l}} p(x, y) d x d y=\iint_{D_{l}}\left[a_{0,0}+a_{1,0} x+a_{0,1} y\right] d x d y=
$$

$$
\begin{equation*}
=\pi r^{2}\left[a_{1,0} \gamma_{l}+a_{0,1} \gamma_{l}^{0}\left(\gamma_{l} \alpha+\beta\right)+a_{0,0}\right], l=1,2,3, \tag{2.1}
\end{equation*}
$$

then the corresponding coefficients matrix for the respective system (2.1) is

$$
A=\left(\begin{array}{ccc}
1 & \gamma_{1} & \gamma_{1} \alpha+\beta \\
1 & \gamma_{2} & \gamma_{2} \alpha+\beta \\
1 & \gamma_{3} & \gamma_{3} \alpha+\beta
\end{array}\right)
$$

Therefore $\operatorname{det} \mathrm{A}=0$ and the interpolation problem is not correct.
Now we turn to the case of general $n(n \geq 2)$. Consider an arbitrary polynomial $p \in \Pi_{n}^{2}$. We have

$$
\begin{gathered}
\iint_{D_{l}} p(x, y) d x d y=r^{2} \iint_{D: x^{2}+y^{2} \leq 1} p\left(r x+\gamma_{l}, r y+\left(\alpha \gamma_{l}+\beta\right)\right) d x d y \\
\iint_{D_{l}} p(x, y) d x d y=r^{2} \iint_{D: x^{2}+y^{2} \leq 1} p\left(r x+\gamma_{l}, r y+\left(\alpha \gamma_{l}+\beta\right)\right) d x d y \\
=r^{2} \iint_{D} \sum_{i+j \leq n} a_{i j}\left(r x+\gamma_{l}\right)^{i}\left(r y+\left(\alpha \gamma_{l}+\beta\right)\right)^{j} d x d y=r^{2} \\
\left\{\int \int _ { D } \left[a_{n, 0} \gamma_{l}^{n}+a_{n-1,1} \gamma_{l}^{n-1} \cdot\left(\gamma_{l} \alpha+\beta\right)\left(\gamma_{l}\right)^{i}(r x)^{n-i} d x d y+a_{n-1,1}\right.\right. \\
\iint_{D}\left(r y+\left(\alpha \gamma_{l}+\beta\right)\right) \cdot \sum_{i=0}^{n-2}\binom{n-1}{i}\left(\gamma_{l}\right)^{i}(r x)^{n-1-i} d x d y+\cdots+a_{0, n} \\
\left.\iint_{D} \sum_{i=0}^{n-1}\binom{n}{i}\left(\alpha \gamma_{l}+\beta\right)^{i}(r y)^{n-i} d x d y\right]+\iint_{D} \sum_{i+j<n} a_{i j} \\
\left.\cdot\left(r x+\gamma_{l}\right)^{i}\left(r y+\left(\gamma_{l} \alpha+\beta\right)\right)^{j} d x d y\right\}, l=1, \ldots, n+2 .
\end{gathered}
$$

Therefore, by separating the highest degree in γ_{l} and expanding the above sums, we have

$$
\begin{aligned}
& \iint_{D_{l}} p(x, y) d x d y=\pi r^{2}\left[a_{n, 0} \gamma_{l}^{n}+\ldots+a_{0, n} \gamma_{l}^{0}\left(\gamma_{l} \alpha+\beta\right)^{n}\right]+r^{2}\left\{\left[a_{0,0}\right.\right. \\
& \left.\iint_{D} d x d y+a_{2,0} r^{2} \iint_{D} x^{2} d x d y+\cdots+a_{0, n} r^{n} \iint_{D} y^{n} d x d y\right] \times 1+ \\
& {\left[a_{1,0} \iint_{D} d x d y+2 a_{2,0} r \iint_{D} x d x d y+\cdots+n a_{n, 0} r^{n-1} \iint_{D} x^{n-1}\right.} \\
& d x d y] \times \gamma_{l}+\left[a_{0,1} \iint_{D} d x d y+a_{1,1} r \iint_{D} x d x d y+2 a_{2,0} r \iint_{D} y d x d y\right.
\end{aligned}
$$

$$
\begin{gathered}
\left.+\cdots+r^{n-1} a_{0, n} \iint_{D} y^{n-1} d x d y\right] \times\left(\gamma_{l} \alpha+\beta\right)+\cdots+\left[a_{0, n-1} .\right. \\
\left.\left.\iint_{D} d x d y+n r a_{0, n} \iint_{D} y d x d y\right] \times\left(\gamma_{l} \alpha+\beta\right)^{n-1}\right\}, l=1,2, \ldots, n+2 .
\end{gathered}
$$

Let us put

$$
A_{n, 0}=a_{n, 0}, \cdots, A_{0, n}=a_{0, n},
$$

also denote the above brackets by

$$
A_{i, j}, i, j=0, \ldots, n-1
$$

respectively, i.e.,

$$
\begin{gathered}
A_{0,0}=a_{0,0} \iint_{D} d x d y+a_{2,0} r^{2} \iint_{D} x^{2} d x d y+ \\
\cdots+a_{0, n} r^{n} \iint_{D} y^{n} d x d y \\
A_{1,0}=a_{1,0} \iint_{D} d x d y+2 a_{2,0} r \iint_{D} x d x d y+ \\
\cdots+n a_{n, 0} r^{n-1} \iint_{D} x^{n-1} d x d y \\
A_{0,1}=a_{0,1} \iint_{D} d x d y+a_{1,1} r \iint_{D} x d x d y+2 a_{2,0} r \iint_{D} y d x d y+ \\
\cdots+r^{n-1} a_{0, n} \iint_{D} y^{n-1} d x d y, \ldots, \\
A_{0, n-1}= \\
a_{0, n-1} \iint_{D} d x d y+n r a_{0, n} \iint_{D} y d x d y .
\end{gathered}
$$

Namely $A_{i, j}$ is a coefficient of γ_{l}^{k} or $\left(\gamma_{l} \alpha+\beta\right)^{k}, k=0, \ldots, n-1$. Then $A_{i, j}$ is a linear combination of $a_{i, j}$ which contains the coefficients of γ_{l}^{k} or $\left(\gamma_{l} \alpha+\beta\right)^{k}$ in the above relations. It is important to know that all coefficients before γ_{l}^{k} or $\left(\gamma_{l} \alpha+\beta\right)^{k}$ are zero. We denote the coefficients of any $a_{i, j}, i, j=0, \ldots, n-1$ by $\zeta_{i, j, k}, i, j,=0, \ldots, n, k=1, \ldots, n-1$. Then

$$
\begin{gathered}
A_{0,0}=\pi a_{0,0}+a_{2,0} \zeta_{2,0,1}+\ldots+a_{0, n} \zeta_{0, n, 1} \\
A_{1,0}=\pi a_{1,0}+a_{2,0} \zeta_{2,0,2}+\ldots+a_{n, 0} \zeta_{n, 0,2} \\
\quad, \ldots, A_{0, n-1}=\pi a_{0, n-1}+a_{0, n} \zeta_{0, n, n-1},
\end{gathered}
$$

where $\zeta_{i, j, k}$'s are real numbers. Hence, new variables are written by $a_{i, j}, i, j=0, \ldots, n$. Also, in any new variable we have exactly one $a_{i, j}, i, j=0, \ldots, n-1$ that is not repeated in other sums and also its
coefficient is not zero. Thus by backward recursive relation one can find the following linear system

$$
\begin{gathered}
a_{0, n-1}=\frac{1}{\pi}\left(A_{0, n-1}-A_{0, n} \eta_{0, n, n-1}\right), \ldots, \\
a_{0,0}=\frac{1}{\pi}\left(A_{0,0}-A_{1,0} \eta_{1,0, n-1}-\cdots-A_{0, n} \eta_{0, n, n-1}\right),
\end{gathered}
$$

where $\eta_{i, j, k}, i, j,=0, \ldots, n, k=1, \ldots, n-1$ are real numbers. Therefore the two corresponding linear system are equivalent.

Now if we consider the linear systems with the variables $A_{i, j}$ then the $(n+2) \times N$ corresponding coefficients matrix of this linear system is as follows:

$$
T=\left(\begin{array}{cccc}
c_{0,1} & c_{1,1} \gamma_{1} & \cdots & \left(\gamma_{1} \alpha+\beta\right)^{n} \\
\cdot & \cdot & \cdots & \cdot \\
\cdot & \cdot & \cdots & \cdot \\
c_{0, n+2} & c_{1, n+2} \gamma_{n+2} & \cdots & \left(\gamma_{n+2} \alpha+\beta\right)^{n}
\end{array}\right)
$$

where $c_{i, l} i=0, \ldots, N-n-2$ are real numbers and $l=1, \ldots, n+2$. In view of the case $n=1$ in the above matrix by using the elementary operations after expanding the expressions

$$
\left(\gamma_{l} \alpha+\beta\right)^{j}, j=1, \ldots, n \text { and } l=1, \ldots, n+2,
$$

the coefficients matrix can be reduced to the following matrix

$$
R=\left(\begin{array}{cccccccc}
1 & \gamma_{1} & 0 & \cdots & \gamma_{1}^{n} & 0 & \cdots & 0 \\
\cdot & \cdot & . & \cdots & . & . & \cdot & \cdot \\
\cdot & \cdot & . & \cdots & . & . & \cdot & \cdot \\
1 & \gamma_{n+2} & 0 & \cdots & \gamma_{n+2}^{n} & 0 & \cdots & 0
\end{array}\right) .
$$

We know that the elementary operations do not change the rank of matrix. Consequently, in degree n the rank of the corresponding matrix is equal to $n+1$ whenever $l=1, \ldots, n+2$. Namely in this submatrix one row is a linear combination of other rows. Therefore in the square linear system the rank of coefficients matrix is less than or equal to $N-1$ whenever the number of unknowns is N.

References

[1] B. Bojanov, H. Hakopian and A. Sahakian, Spline Functions and Multivariate Interpolation, Kluwer Academic Publishers, Dordrecht, 1993.
[2] Hakop A. Hakopian, Multivariate interpolation II of Lagrange and Hermite type, Stud. Math. 80 (1984), $77-88$.
[3] Kh. Rahsepar Fard, An approach to interpolation by integration, Proc. of the Yerevan State Univ. Phys. and Math. Sci. 2 (2009), 21 -25.
[4] Kh. Rahsepar Fard, Mean value multivariate interpolation with shifted sets, East J. Approx., accepted.
[5] Kh. Rahsepar Fard, rectangularity pointwise and mean value Interpolation, The 23rd Int. Conference of the Jangjeon Math. Soc. (Iran - S. Korea), Feb. 8-10, 2010, Ahvaz, Iran.

Kheirollah Rahsepar Fard

Department of Computer Engineering, University of Qom, P.O. Box 3716146611, Qom, Iran

Email: rahseparfard@gmail.com

[^0]: MSC(2010): Primary: 65F05; Secondary: 46L05, 11 Y50.
 Keywords: Bivariate, correct, mean-value interpolation.
 Received: 5 May 2010, Accepted: 22 September 2010.
 (c) 2012 Iranian Mathematical Society.

