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ON THE EXISTENCE AND UNIQUENESS OF
SOLUTION OF INITIAL VALUE PROBLEM FOR
FRACTIONAL ORDER DIFFERENTIAL EQUATIONS
ON TIME SCALES
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ABSTRACT. In this paper, at first the concept of Caputo fractional
derivative is generalized on time scales. Then the fractional order
differential equations are introduced on time scales. Finally, suffi-
cient and necessary conditions are presented for the existence and
uniqueness of solution of initial value problem including fractional
order differential equations.

1. Introduction

Mathematical models of some natural phenomena and physical prob-
lems have appeared as initial and boundary value problems including
fractional order of ordinary and partial differential equations. A. Louk-
shin and J.Morove in 1985 on modeling of irrevocability of metals [13]
and A. Nakhshev in the same year on modeling of liquids moving in un-
derground layers encountered with fractional order differential equations
[14]. Later, this kind of differential equations were used in electrochem-
istry, control and electromagnetic field theories [9, 11]. These important
applications caused that this kind of differential equations were studied
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by many mathematicians in recent years [7, 15, 16].

Hilger in 1990 introduced time scales to unify and extend the theory of
differential equation, difference equations and other differential systems
defined over nonempty closed subset of real line [12]. He proved the
existence and uniqueness of initial value problems including differential
equations on time scales. Some application of this kind of problems can
be found in [2, 1, 4, 3].

In this paper we try to extend fractional order differential equations
(dynamic equations) on time scales. For this, we need to define a frac-
tional differential operator on time scales. This is done via Caputo
differential operator. This generalization helps us to study relation be-
tween fractional difference equations and fractional differential equa-
tions. On the other hand, this extension also provides a background to
study boundary value problems including fractional order difference and
differential equations. One can use this relation for more investigations
and solving fractional difference equations on time scales.

We consider the following initial value problem:

(1.1) “A%(t) = f(t,y(t)), t € [to,to+al=JCT, 0<a<l
(1.2) y(to) = yo

where ¢A® is Caputo fractional derivative operator and the function
f:JxT — R is a right-dense continuous function. Next we present
sufficient and necessary conditions for the existence and uniqueness of
the problem (1.1)-(1.2)

2. Preliminaries

In this section, some notations, definitions and lemmas which will be
used in next section are recalled and introduced. At first, we use C'(J,R)
for a Banach space of continuous functions with the norm

1y llo= sup{ly(®)l, ¢ € J},

where J is an interval.

A time scale T is an arbitrary nonempty closed subset of the real num-
bers. The calculus on time scales was initiated by Aulbach and Hilger
[12, 3] in order to create a theory that can unify and extend discrete and
continuous analysis.



On the existence and uniqueness of solution of initial value problem 243

The real numbers R, the integers Z, the natural numbers N, the non-
negative integers Ny, the h-numbers (hZ = {hk : k € Z}, where h >
0 is a fixed real number), and the g-numbers (kg = ¢% U {0} = {¢" :
k € Z}U{0}, where ¢ > 1 is a fixed real number), are examples of time
scales, as are [0,1]U[2, 3], [0, 1]UN, and the Cantor set, where [0, 1] and
[2, 3] are intervals of real numbers.

Aulbach and Hilger introduced also dynamic equations (A-differential
equations) on time scales in order to unify and extend the theory of
ordinary differential equations, difference (h-difference) equations, and
g-difference equations. For a general introduction to the calculus of time
scales we refer the reader to the textbooks by Bohner and Peterson [6].
Here we give only those notations and facts connected to time scales,
which we need for our purpose in this paper.

Any time scale T is a complete metric space with the metric (distance)
d(t;s) = |t — s| for t,s € T. Consequently, according to the well-known
theory of general metric spaces, we have for T the fundamental concepts
such as open balls (intervals), neighborhoods of points, open sets, closed
sets, compact sets, and so on. In particular, for a given number N > 0,
the N-neighborhood Us(t) of a given point ¢ € T is the set of all points
s € T such that d(t,s) < N: By a neighborhood of a point t € T it is
meant an arbitrary set in T containing a N-neighborhood of the point t.
Also we have for functions f : T — R the concepts of limit, continuity,
and the properties of continuous functions on general complete metric
spaces (note that, in particular, any function f : Z — R is continuous
at each point of Z). The main task is to introduce and investigate the
concept of derivative for functions f : Z — R. This proves to be possible
due to the special structure of the metric space T. In the definition of
the derivative an important role is played by the so-called forward and
backward jump operators [4].

Definition 2.1. Fort € T, define the forward jump operator o : T — T
by
o(t)=inf{s € T:s >t}

while the backward jump operator p: T — T is defined by
p(t) =sup{s e T:s <t}

In this definition, in addition we put o(max T) = max T, if there exists
a finite max T, and p(minT) = minT, if there exists a finite min T.
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Obviously both o(t) and p(t) are in T when ¢ € T. This is because of
our assumption that T is a closed subset of R. Let t € T. If o(t) > t,
we say that ¢ is right-scattered, while if p(t) < t we say that ¢ is left-
scattered. Also, if ¢ < maxT and o(t) = ¢, then ¢ is called right-dense,
and if ¢ > min T and p(¢) = ¢, then ¢ is called left-dense. Points that are
right-scattered and left-scattered at the same time are called isolated.

Definition 2.2. (Delta Derivative) Let f : T — R be a function and
t € T. Then the delta derivative (or A-derivative) of f at the point t is
defined to be the number f2(t) (provided it exists) with the property that
for each € > 0 there is a neighborhood U of t in T such that

Fo(t) = £(5) = FAO)[o(t) - s)| < elo(t) — s for all s € U

Definition 2.3. (Delta Integral) Let [a,b] be a closed bounded interval
in T. A function F : [a,b] — R is called a delta antiderivative of a
function f : [a;b) — R provided that F' is continuous on [a,b] and delta
differentiable on [a,b); and F2(t) = f(t) for all t € [a,b). Then we
define the A-integral from a to b of f by

b
/ ft)At = F(b) — F(a)

Definition 2.4. A function f : T — R is right-dense continuous (or
rd-continuous) provided that it is continuous at all right-dense points of
T and its left-sided limits exist (finite) at left-dense points of T: The
set of all right-dense continuous functions on T is denoted by Cyq(T).
Similarly, a function f: T — R is left-dense continuous provided that it
is continuous at all left-dense points of T and its right-sided limits exist
(finite) at right-dense points of T. The set of all left-dense continuous
functions on T is denoted by Ciq(T).

All rd-continuous bounded functions on [a, b) are delta integrable from
a to b. For a more general treatment of the delta integral on time scales
(Riemann and Lebesgue integration on time scales), see [10] and [4].
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Proposition 2.5. Suppose a,b € T, a < b and f(t) is continuous
onla,b], then we have

b b
| roat=lo@-af@+ [ foar
a o(a)
Proof. refer to [4] O

Proposition 2.6. Suppose T is a time scale and [a,b] C T, f is in-
creasing continuous function on [a,b]. If the extension of f is given in
the following form:

_ [ f(s) 5s€T
F(S)—{ f(t) ise(t,ot)¢T

Then we have

/abf(t)At < /abF(t)dt

Proof. Let r € [a,b] be a right-scattered point, then by making use of
proposition 2.5 we have

o(r)
/ f(B)AL = [o(r) — )£ (7).

Since f is a increasing function, consequently its extension F' will be
an increasing continuous function. Therefore, applying the mean value
theorem for integrals implies

o(r)
lo(r) = r]F(r) < / F(t)dt < [o(r) —r]F(o(r))
and

o(r)
lo(r) — rlf(r) < / F(t)dt < [o(r) — 1] (o(r)

/T 7 FOAL < / " F(t)dt.

therefore
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Now if [a, b] has only one right-scattered point s then by proposition
2.5 and previous definitions, we have

Avwm;zlvmm+2mvwm+A;ﬂmy

s o(s) b
S/F@ﬁ+/ F@ﬁ+/ F(t)dt.
a s o(s)

If the same proof is applied for n right-scattered points in [a, b] we obtain:

/ab FH)AL < /abF(t)dt.

0

Definition 2.7. Suppose T is a time scale, [a,b] C T and the function
h(z) is an integrable function on [a,b], then A-fractional integral of h is
defined by the following relation

t _Sa—l
AﬁMﬂ:/@F&)h@m,

where I'() is the Euler Gamma function.
Definition 2.8. Let h: T — R be a function. The Caputo A-fractional
derivative of h is defined by:

1 ! _Sn—a—l A"S S
m_a)/au AT (5)A

Here n = [o] + 1 and [a] denotes the integer part of .

(1) CAYA() =

It is easy to see that AIg“fIngh(t) =A Igjﬁh(t).

Remark 2.9. For T = R, the differential operator which was defined
in definition 2.8 is the same as the Caputo fractional derivative. For
this kind of operators some results about the existence and uniqueness of
solutions of initial and boundary value problems have been given in [5].
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3. Initial Value Problems on Time Scales

In this section we are going to give the solution of the initial value
problem including fractional order differential equations on time scales.
For this, suppose T is a time scale and J = [tg,to + a] C T, then the
function y € C(J,R) is a solution of problem (1.1)-(1.2), if we have

‘A%(t) = f(t,y) ;onJ
y(to) = o

For establishing this solution, we need to prove the following lemma
and theorem.

Lemma 3.1. Let 0 < a <1, JCT, andlet f:J xR — R be the
function. Then the function y(t) is a solution of problem(1.1)-(1.2) if
and only if this function is a solution of the following integral equation:

t
/ (1 — )% F(s,y(s))As

y(t):yﬂﬁLm )

Proof. For y(t) from (2.1) we have:

1 ' —a, A A rl-a, A

t—s) @ As == 1,7 “y=(t).
1‘\(1 . Oé) \/;0( S) y (S) S to y ( )
Then the proof can be concluded from the relations:

AIReAg y(t) =2 IPAIIoYA (1) = y(t) — y(0)

CARy(t) =

and

y(t) = yo +2 IRAL y(t) = yo + r(la) /t (t—s)*"f(s,y(s))As.

U
Our first result is based on the Banach fixed point theorem [8].

Theorem 3.2. Suppose J = [to,to + a] C T . Then the initial value
problem (1.1)-(1.2) has a unique solution on J if the function f(t,y(t))
1 a Tight-dense continuous bounded function such that there exists

M > 0; |f(t,y(t)] < M on J and the Lipshitz condition

is holds.
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Proof. Let S be the set of rd-continuous functions and J C T. Fory € S,
define

y|| = sup [[y(t)]].
teJ

It is easy to see that S is a Banach space with this norm. The subset of
S(p) and the operator T are defined by

S(p) ={X €5 [|Xs]| < p},
and

T(y) =yo + / (t — )21 f(s,y(s))As.

F(Oé) to
According to proposition 2.5 we have:
t _
T < llwoll + g [t — )2 MAs
< lyoll + gy Sy (¢ = 9)° 71 As.

Since the (t — s)*~! is an increasing monotone function, by using
proposition 2.5 we can write:

t t
/ (t—5)2"1As < / (t—s)* lds.
to to
Consequently,

O] < ol + oy | =977 < ol + £y -
By considering
Ma®
I(a+1)
we conclude that T' is an operator from S(p) to S(p). Moreover, for
x,y € S(p) we have:

p = llyoll +

IT(@) - T < F(la) / (t = 971 f(s,2(5)) — F(5,5(s))] As
Llle—yllee [ oty
= T T /to“ A
LHx_yHOO ! _Sa—l s
< @) /to(t ) d
< =X e

F(a) @ T(a+1)
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If % < 1, then this will be a contraction map. This implies the

existence and uniqueness of solution of problem (1.1)-(1.2). O
Remark 3.3. If we let a = 1, then this problem is reduced to an initial
value problem on time scales for which the existence and uniqueness of
its solution has been studied in [12].

Theorem 3.4. Suppose f : J x R — R is a rd-continuous bounded
function such that there exists M > 0 with |f(t,y)] < M for all t €
J,y € R. Then the problem (1.1)-(1.2) has a solution on J.

Proof. We shall use Schauder’s fixed point theorem [8], to prove that T’
defined by (2.1) has a fixed point. The proof will be given in several
steps.

Step 1: T is continuous.
Let y,, be a sequence such that y, — y in C(J,R). Then for each t € J,

<L / (t— )Y (s.9m(s)) — F(5.9(5))| As

<L / (t — 5)* L sup |£ (5, yn(5)) — (5, 5(s))| As

seJ

Wt vl [ ot
Wl = HaOlls [ oot
< FCyn() = FE YDl a®
- I'«) o'
< Gy ()) = FGy)eo
- I'a+1) ’

Since f is a continuous function, we have

T O-T@ Ol < g1 () =Tyl O .

Step 2: The mao 7" sends bounded sets into bounded sets in C(J, R).
Indeed, it is enough to show that for any p, there exists a positive con-
stant [, such that for each y € B, = {y € C(J,R) : ||y||oc < p}, we have
ITW)]loo <.
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By hypothesis for each t € J we have,

T(w)(0)] < F(la) / (t — )2 (s, 5(s))| As
M e e M [t et
§r<a>/t0<’f ) A§r<a>/to“ )"
Ma® Ma®

IN

al(@) TD(a+1) L

Step 3: The map T sends bounded sets into equicontinuous sets of
C(J,R).

Let t1,t2 € J,t1 <ty and let B, be a bounded set of C'(J,R) as in Step
2, and let y € B, . Then

T(y)(t2) — T(y)(t1)]
< | (= )77 (s, y() A = [ (12 = )7L (5, 5(5)As
< s (= 5)°7 = (t2 = 9)2 7+ (2 — 5)°7Y) f(s,y(s)) As —
(12 = )7 (s, y(s)As|

< %‘ (b= )0 = (12 — )2 ) As + [ (12 — s)a—lAs)

to ((tl - S)Oﬁl — (tQ — S)afl)ds + fttf (t2 _ s)aflds‘
< stz = 1) + (B — 1) — (B2 = t0)*] + gy (b2 — 1)
= My (2 — 1) + magp (B = 10)% = (t2 = 10)°]

As t1 — to, the right-hand side of the above inequality tends to zero.
As a consequence of Steps 1 to 3 together with the Arzela-Ascoli the-
orem, we can conclude that 7' : C(J,R) — C(J,R) is continuous and
completely continuous.

Step 4: A priori bounds.
Now it remains to show that the set

Q={yeC(JR):y=AT(y),0 <A< 1}
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is bounded set.
Let y € Q, then y = AT (y) for some 0 < A < 1: Thus, for each ¢t € J we
have

I o
v = A e / (t— )27 f(s,(s)) As

We can complete this step by considering the estimation in step 2.
As a consequence of Schauder’s fixed point theorem, we conclude that
T has a fixed point which is a solution of the problem (1.1)-(1.2). O

Acknowledgments

The authors are extremely grateful to the referee for useful suggestions
that improved the content of the paper.

REFERENCES

[1] R. P. Agarwal and M. Boner, Basic calculus on time scales and some of its
applications, Result. Math. 35 (1999), 3-22.

[2] R. P. Agarwal, M. Bohner, A. Peterson and D. O’'Regan, Dynamic equations on
time scales, J. Comput. Appl. Math. 141 (2002), no. 1-2, 1-26.

[3] B. Aulbach and S. Hilger, Linear dynamic processes with inhomogeneous time
scale, in: G.A. Leonov, V. Reitmann, W. Timmermann (Eds.), Nonlinear
Dynamics and Quantum Dynamical Systems, Math. Research. Bd. Akademie-
Verlag, Berlin. 59 (1990), 9-20.

[4] R. P. Agarwal, M. Bohner, A. Peterson and D. O'Regan, Advances in Dynamic
Equations on Time Scales, Birkhaurser, Boston, 2003.

[5] M. Benchohra, S. Hamani and S. K. Ntouyas, Boundary value problems for
differential equations with fractional order, Surv. Math. Appl. 3 (2008), 1-12.

[6] M. Bohner and A. Peterson, Dynamic Equations on Time Scales, An Introduction
with Applications, Birkh&duser Boston, Inc., Boston, MA, 2003.

[7] A. Carpinteri and F. Mainardi, Eds, Fractional calculus: Some basic problems
in continuum and statistical mechanics, in Fractals and Fractional Calculus in
Continuum Mechanics, Springer-Verlag, Wien. (1997), 291-348.

[8] J. Cronin, Differential Equations, Introduction and Qualitative Theory, Marcel
Dekker, Inc., New York, 1994.

[9] K. Diethelm and A.D. Freed, Fractional calculus in biomechanics: A 3D vis-
coelastic model using regularized fractional-derivative kernels with application
to the human calcaneal fat pad. Biomech. Model. Mechanobiology. 5 (2006),
203-215.

[10] G. Sh. Guseinov, Integration on time scales, J. Math. Anal. Appl. 285 (2003),
107-127.



259
[11]
[12]
[13)
[14]
[15]

[16]

Ahmadkhanlu and Jahanshahi

R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific Pub-
lishing Company, Inc., River Edge, NJ, 2000.

S. Hilger, Analysis on measure chains-a unified approach to continuous and dis-
crete calculus, Result. Math. 18 (1990), 18-56.

A. A. Lokshin, Yu. V. Suvorova, The Mathematical Theory of Wave Propagation
in Media with Memory, Moskov. Gos. Univ., Moscow, 1982.

A. M. Nakhashev, BVPs with non-local conditions and relation it to fractional
derivative equation, J. Diff. Equation 21 (1985), no. 1, 1-10.

K. B. Oldham and J. Spanier, The Fractional Calculus, Mathematics in Science
and Engineering, Vol. 111. Academic Press, New York-London, 1974.

1. Podlubny, Fractional differential equations. An introduction to fractional deriv-
atives, fractional differential equations, to methods of their solution and some
of their applications, Mathematics in Science and Engineering, 198, Academic
Press, Inc., San Diego, CA, 1999.

Asghar Ahmadkhanlu

Department of Mathematics, Azarbayjan University of Tarbiat Moallem, 35 Km
Tabriz-Maragheh Road, P.O. Box 53714-161, Tabriz, Iran

Email: s.a.ahmadkhanlu@azaruniv.edu

Mohamad Jahanshahi
Department of Mathematics, Azarbayjan University of Tarbiat Moallem, 35 Km
Tabriz-Maragheh Road, P.O. Box 53714-161, Tabriz, Iran

Email: jahanshahi®@azaruniv.edu



	1. Introduction
	2. Preliminaries
	3. Initial Value Problems on Time Scales
	References

