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EXTENSIONS OF STRONGLY α-REVERSIBLE RINGS

L. ZHAO AND X. ZHU∗

Communicated by Omid Ali Shehni Karamzadeh

Abstract. We introduce the notion of strongly α-reversible rings
which is a strong version of α-reversible rings, and investigate its
properties. We first give an example to show that strongly reversible
rings need not be strongly α-reversible. We next argue about the
strong α-reversibility of some kinds of extensions. A number of
properties of this version are established. It is shown that a ring R
is strongly right α-reversible if and only if its polynomial ring R[x]
is strongly right α-reversible if and only if its Laurent polynomial
ring R[x, x−1] is strongly right α-reversible. Moreover, we introduce
the concept of Nil-α-reversible rings to investigate the nilpotent
elements in α-reversible rings. Examples are given to show that
right Nil-α-reversible rings need not be right α-reversible.

1. Introduction

Throughout this paper, R denotes an associative ring with identity
and α denotes a nonzero and non-identity endomorphism, unless spec-
ified otherwise. In [3], Cohn introduced the notion of a reversible ring,
a ring R is said to be reversible if ab = 0 implies ba = 0 for a, b ∈ R.
Anderson-Camillo [1], observing the rings whose zero products com-
mute, used the term ZC2 for what is called reversible; while Krempa-
Niewieczerzal [10] took the term C0 for it. In [13], the reversible property
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of a ring is extended to polynomial rings as follows: a ring R is called
strongly reversible, if whenever polynomials f(x), g(x) ∈ R[x] satisfy
f(x)g(x) = 0, then g(x)f(x) = 0. A ring R is called reduced if it has
nonzero nilpotent elements. Every reduced ring is strongly reversible
and every strongly reversible ring is reversible by [13]. According to
[2], an endomorphism α of a ring R is called right (respectively, left)
reversible if whenever ab = 0 for a, b ∈ R, bα(a) = 0 (respectively,
α(b)a = 0). A ring R is called right (respectively, left) α-reversible if
there exists a right (respectively, left) reversible endomorphism α of R.
A ring is α-reversible if it is both left and right α-reversible.

Recall that if α is an endomorphism of a ring R, then the map R[x] →
R[x] defined by

∑m
i=0 aix

i →
∑m

i=0 α(ai)xi is an endomorphism of the
polynomial ring R[x] and clearly this map extends α. We shall also
denote the extended map R[x] → R[x] by α and the image of f(x) ∈ R[x]
by α(f(x)). We consider the α-reversibility over which polynomial rings
are α-reversible and call them strongly α-reversible rings, i.e., if α is
an endomorphism of R, then α is called strongly right (respectively,
left) reversible if whenever f(x), g(x) ∈ R[x] satisfy f(x)g(x) = 0, then
g(x)α(f(x)) = 0 (respectively, α(g(x))f(x) = 0). A ring R is called
strongly right (respectively, left) α-reversible if there exists a strongly
right (respectively, left) reversible endomorphism α of R. A ring is
strongly α-reversible if it is both strongly right and left α-reversible.

It is clear that if R is an Armendariz right α-reversible ring, then R is
strongly right α-reversible. It is shown in [13] that every reduced ring is
strongly reversible. We shall give an example to show that there exists a
reduced ring which is not strongly right α-reversible. Moreover, we shall
show that strongly reversible rings need not be strongly α-reversible in
general.

In [13, Corollary 3.6], it is claimed that if R is a reduced ring, then
the trivial extension T (R,R) of R by R is strongly reversible. We show
that if R is a reduced right α-reversible, then T (R,R) is strongly right
α-reversible. For an endomorphism α of a ring R, we prove that R
is strongly right α-reversible if and only if R[x] is strongly right α-
reversible. Moreover, we introduce the concept of Nil-α-reversible rings
to investigate the nilpotent elements in α-reversible rings. We do this
by considering the nilpotent elements instead of the zero element in
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α-reversible rings. This provides us with an opportunity to study α-
reversible rings in a general setting. We also investigate connections to
other related conditions. Examples to illustrate the concepts and results
are included.

2. Extensions of strongly α-reversible rings

Our focus in this section is to introduce the concept of a strongly
α-reversible ring and investigate its properties. Some examples needed
in the process are also given. We start with the following definition.

Definition 2.1. An endomorphism α of a ring R is called strongly
right (respectively, left) reversible if whenever f(x), g(x) ∈ R[x] with
f(x)g(x) = 0, then g(x)α(f(x)) = 0 (respectively, α(g(x))f(x) = 0).
A ring R is called strongly right (respectively, left ) α-reversible if there
exists a strongly right (respectively, left ) reversible endomorphism α of
R. A ring is strongly α-reversible if it is both strongly right and left
α-reversible.

Clearly, every strongly α-reversible ring is α-reversible. It can be
easily checked that if R is a strongly reversible ring then it is a one-sided
strongly IR-reversible ring for identity endomorphism IR of R. It is easy
to see that every subring S with α(S) ⊆ S of a strongly α-reversible ring
is also strongly α-reversible.

The following example shows that there exists an endomorphism α of
a strongly reversible ring R such that R is not strongly right α-reversible.

Example 2.2. Let R = Z2⊕Z2, where Z2 is the ring of integers modulo
2. Since R is a commutative reduced ring, it is strongly reversible. Let
α : R → R be an endomorphism defined by α((a, b)) = (b, a). For f(x) =
(1, 0) + (1, 0)x and g(x) = (0, 1) + (0, 1)x, it is clear that f(x)g(x) = 0.
But g(x)α(f(x))=((0, 1) + (0, 1)x)((0, 1) + (0, 1)x) 6= 0, thus R is not
strongly right α-reversible.

Note. It is proved in [2] that the concepts of reversible rings and right
α-reversible rings are independent of each other. Since every strongly re-
versible ring is reversible, one may suspect that every strongly reversible
ring is right α-reversible. But this is not true by [2, Example 2.3]. We
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notice that Example 2.2 also shows that there exists a commutative re-
duced ring which is not strongly right α-reversible. But it is shown in
[13] that every reduced ring is strongly reversible.

Proposition 2.3. Let R be an Armendariz ring. Then R is right α-
reversible if and only if R is strongly right α-reversible.

Proof. It is straightforward. �

Let R be a ring and 4 a multiplicative monoid in R consisting of
central regular elements, and let 4−1R ={u−1a|u ∈ 4, a ∈ R}. Then
4−1R is a ring. For it, we have the following result for the strongly
right α-reversible property, relating to idempotents.

Proposition 2.4. Let R be a ring, e a central idempotent of R. Then
the following statements are equivalent:

(1) R is strongly right α-reversible.
(2) eR and (1-e)R are strongly right α-reversible.
(3) 4−1R is strongly right α-reversible.

Proof. (1)⇔(2) This is straightforward since subrings and finite direct
products of strongly right α-reversible rings are strongly right α-reversible.

(3)⇒(1) This is obvious since R is a subring of 4−1R.
(1)⇒(3) Let f(x) =

∑m
i=0 u−1

i aix
i, g(x) =

∑n
j=0 v−1

j bjx
j ∈ 4−1R[x]

with f(x)g(x) = 0. Then

F (x) = (umum−1 · · ·u0)f(x), G(x) = (vnvn−1 · · · v0)g(x) ∈ R[x].

Since R is strongly right α-reversible and F (x)G(x) = 0, this implies
that G(x)α(F (x)) = 0, and so g(x)α(f(x)) = 0. This is because 4
is a multiplicative monoid in R consisting of central regular elements
and ui, vj ∈ 4 for all i, j. This shows that 4−1R is strongly right
α-reversible. �

The ring of Laurent polynomials in x, with coefficients in a ring R,
consists of all formal sum

∑n
i=k mix

i with obvious addition and multipli-
cation, where mi ∈ R and k, n are (possibly negative) integers. Denote
it by R[x;x−1].
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Corollary 2.5. For a ring R, R[x ] is strongly right α-reversible if and
only if R[x;x−1] is strongly right α-reversible.

Proof. It suffices to establish necessity since R[x] is a subring of R[x;x−1].
Suppose that R[x] is strongly right α-reversible. Let 4 = {1, x, x2, · · ·},
then clearly4 is a multiplicative closed subset of R[x]. Since R[x;x−1] =
4−1R[x], it follows that R[x;x−1] is strongly right α-reversible by Propo-
sition 2.4.

�

Corollary 2.6. A commutative ring R is strongly right α-reversible if
and only if so is the total quotient ring of R.

It is proved in [9, Proposition 2.4] that if R is an Armendariz ring,
then R is reversible if and only if R[x] is reversible if and only if R[x;x−1]
is reversible. Accordingly, we have the following immediate corollary.

Corollary 2.7. Let R be an Armendariz ring, then the following are
equivalent:

(1) R is right α-reversible.
(2) R is strongly right α-reversible.
(3) R[x;x−1] is strongly right α-reversible.

Given a ring R and a bimodule RMR, the trivial extension of R by M
is the ring T (R,M) = R

⊕
M with the usual addition and the following

multiplication (r1,m1)(r2,m2) = (r1r2, r1m2 + m1r2).

This is isomorphic to the ring of all matrices
(

r m
0 r

)
, where r ∈ R,

m ∈ M and the usual matrix operations are used.

For an endomorphism α of a ring R and the trivial extension T (R,R)
of R, α can be extended to the endomorphism ᾱ : T (R,R) → T (R,R)
defined by ᾱ((aij)) = (α(aij)).

The next example shows that even for a right α-reversible ring R,
T (R,R) need not be strongly right α-reversible.
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Example 2.8. Let Z4 be the ring of integers modulo 4. Consider the
ring

R =
{(

a b
0 a

)
|a, b ∈ Z4

}
.

Let α : R → R defined by

α

((
a b
0 a

))
=

(
a −b
0 a

)
.

Then R is right α-reversible by [2, Example 2.7]. But T (R,R) is not
strongly right α-reversible since T (R,R) is not right ᾱ-reversible by [2,
Example 2.17].

However, we have the following.

Proposition 2.9. Let R be a reduced ring. If R is right α-reversible,
then T (R,R) is strongly right α-reversible.

Proof. Let p(x) = (p0(x), p1(x)), q(x) = (q0(x), q1(x)) ∈ T (R,R)[x] with
p(x)q(x) = 0, we shall prove q(x)α(p(x)) = 0. So we have

p0(x)q0(x) = 0, (1)
p0(x)q1(x) + p1(x)q0(x) = 0. (2)

Since R is reduced, R[x] is reduced. Therefore, (1) implies q0(x)p0(x)
= 0. Multiplying (2) by q0(x) on the left we get p1(x)q0(x) = 0, and
so p0(x)q1(x) = 0. Let p(x) = Σn

i=0(ai, bi)xi, q(x) = Σm
j=0(aj , bj)xj ,

where p0(x) =
∑n

i=0 aix
i, p1(x) =

∑n
i=0 bix

i, q0(x) =
∑m

j=0 ajx
j and

q1(x) =
∑m

j=0 bjx
j . Since every reduced ring is an Armendariz ring, we

obtain that aiaj = 0, aibj = 0, biaj = 0 for all i, j by the preceding
results. With these facts and the fact that R is right α-reversible, we
have ajα(ai) = 0, ajα(bi) = 0, bjα(ai) = 0. Then q(x)α(p(x)) = 0,
implies that T (R, R) is strongly right α-reversible. �

Corollary 2.10. [13, Corollary 3.6] If R is a reduced ring, then
T (R,R) is a strongly reversible ring .

Recall that an endomorphism α of a ring R is said to be rigid if
aα(a) = 0 implies a = 0 for all a ∈ R. A ring R is said to be α-
rigid if there exists a rigid endomorphism α of R. We note that any
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rigid endomorphism of a ring is a monomorphism and α-rigid rings are
reduced. According to [4], a ring R is said to be α-compatible if for each
a, b ∈ R, ab = 0 ⇔ aα(b) = 0, where α is an endomorphism of R. The
notion of the α-compatible ring is a generalization of α-rigid rings to the
more general case where R is not assumed to be reduced.

Note that all reversible rings are McCoy rings by [12, Theorem 2].
Unlike the reversibility of a ring R, the next example shows that there
exists a right McCoy ring which is not right α-reversible.

Example 2.11. Let α be an endomorphism of a ring R. If R is an
α-rigid ring, then

S =


 a b c

0 a d
0 0 a

 |a, b, c, d ∈ R


is a right McCoy ring by [14, Example 2.2], but S is not right α-reversible
by [2, Example 2.20].

The trivial extension T (R, R) of a ring R can be extended to a ring

S =


 a b c

0 a d
0 0 a

 |a, b, c, d ∈ R


and an endomorphism α of a ring R is also extended to the endomor-
phism ᾱ : S → S defined by ᾱ(aij) = (α(aij)).

Note that Example 2.11 also shows that the ring S constructed above
is not strongly right α-reversible, even if R is an α-rigid ring. However,
we have the following proposition.

Proposition 2.12. Let R be a reduced ring. If R is right α-reversible,
then

M =


 a 0 b

0 a c
0 0 a

 |a, b, c, d ∈ R


is strongly right α-reversible.

Proof. For

 a1 0 b1

0 a1 c1

0 0 a1

 ,

 a2 0 b2

0 a2 c2

0 0 a2

 ∈ M . We can denote
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their addition and multiplication by

(a1, b1, c1) + (a2, b2, c2) = (a1 + a2, b1 + b2, c1 + c2),
(a1, b1, c1)(a2, b2, c2) = (a1a2, a1b2 + b1a2, a1c2 + c1a2),

respectively. So every polynomial in M [x] can be expressed in the form
of (f0, f1, f2) for some f ,

is in R[x].

Let p(x) = (p0(x), p1(x), p2(x)), q(x) = (q0(x), q1(x), q2(x)) ∈ M [x]
with p(x)q(x) = 0. Then
p(x)q(x) = (p0(x)q0(x), p0(x)q1(x)+p1(x)q0(x), p0(x)q2(x)+p2(x)q0(x)).
So we have the following system of equations:

(1) p0(x)q0(x) = 0,
(2) p0(x)q1(x) + p1(x)q0(x) = 0,
(3) p0(x)q2(x) + p2(x)q0(x) = 0.

Use the fact that R[x] is reduced. From Eq. (1), we get q0(x)p0(x) =
0. If we multiply Eq. (2) on the right side by p0(x), then p0(x)q1(x)p0(x)+
p1(x)q0(x)p0(x) = 0. Hence p0(x)q1(x) = 0 and so p1(x)q0(x) = 0. Also
if we multiply Eq. (3) on the right side by p0(x), then p0(x)q2(x)p0(x)+
p2(x)q0(x)p0(x) = 0. So p0(x)q2(x) = 0 and hence p2(x)q0(x) = 0. Let

p(x) =
n∑

i=0

 ai 0 bi

0 ai ci

0 0 ai

xi, q(x) =
m∑

j=0

 a′j 0 b′j
0 a′j c′j
0 0 a′j

xj ∈ M [x],

where p0(x) =
∑n

i=0 aix
i, p1(x) =

∑n
i=0 bix

i, p2(x) =
∑n

i=0 cix
i, q0(x) =∑m

j=0 a′jx
j , q1(x) =

∑m
j=0 b′jx

j and q2(x) =
∑m

j=0 c′jx
j . Since every re-

duced ring is an Armendariz ring, we obtain that aia
′
j = 0, aib

′
j =

0, bia
′
j = 0, aic

′
j = 0, cia

′
j = 0 for all i, j by the preceding results.

With these facts and the fact that R is right α-reversible, we have
a′jα(ai) = 0, b′jα(ai) = 0, a′jα(bi) = 0, c′jα(ai) = 0, a′jα(ci) = 0. Con-
sequently, we get the equation:

q(x)α(p(x)) = (q0(x), q1(x), q2(x))α(p0(x), p1(x), p2(x))
= (q0(x)α(p0(x)), q1(x)α(p0(x)) + q0(x)α(p1(x)), q2(x)α(p0(x))+
q0(x)α(p2(x))) = 0.

Therefore, M is strongly right α-reversible. �
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Corollary 2.13. If R is a reduced ring, then

M =


 a 0 b

0 a c
0 0 a

 |a, b, c, d ∈ R


is a strongly reversible ring.

We next show that R[x] is strongly right α-reversible if and only if R
is.

Proposition 2.14. Let α be an endomorphism of a ring R. Then
R is strongly right α-reversible if and only if R[x] is strongly right α-
reversible.

Proof. Assume that R is strongly right α-reversible. Let p(y) = f0 +
f1y+· · ·+fmym, q(y) = g0+g1y+· · ·+gnyn be in R[x][y] with p(y)q(y) =
0. We also let fi = ai0+ai1x+· · ·+awix

wi , gj = bj0+bj1x+· · ·+bvix
vj for

each 0 ≤ i ≤ m and 0 ≤ j ≤ n, where ai0 , ai1 , · · · , awi , bj0 , bj1 , bvj ∈ R.
We claim that R[x] is strongly right α-reversible. Take a positive in-
teger k such that k > max{deg(fi), deg(gj)} for any 0 ≤ i ≤ m and
0 ≤ j ≤ n, where the degree is as polynomials in R[x] and the degree of
zero polynomial is taken to be zero. Let p(xk) = f0+f1x

k + · · ·+fmxmk,
q(xk) = g0 + g1x

k + · · · + gnxnk in R[x]. Then the set of coefficients of
the f ,

is (respectively, g,
js) is equal the set of coefficients of p(xk) (re-

spectively, q(xk)). Since p(y)q(y) = 0, x commutes with elements of
R in the polynomial ring R[x], p(xk)q(xk) = 0. Since R is strongly
right α-reversible, q(xk)α(p(xk)) = 0, and hence R[x] is strongly right
α-reversible. The converse is obvious since R is a subring of R[x]. �

Corollary 2.15. Let R be a ring. Then R is strongly reversible if and
only if R[x] is strongly reversible.

The next corollary gives more examples of strongly right α-reversible
rings.

Corollary 2.16. Let α be an endomorphism of a ring R, then the fol-
lowing are equivalent:

(1) R is strongly right α-reversible.
(2) R[x] is strongly right α-reversible.
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(3) R[x;x−1] is strongly right α-reversible.

Let A(R, α) or A be the subset {x−irxi|r ∈ R, i ≥ 0} of the skew
Laurent polynomial ring R[x, x−1;α], where α : R → R is an injective
ring endomorphism of a ring R (see [8] for more details). Elements
of R[x, x−1;α] are finite sums of elements of the form x−irxj , where
r ∈ R and i, j are non-negative integers. Multiplication is subject to
xr = α(r)x and rx−1 = x−1α(r) for all r ∈ R.

Note that for each j ≥ 0, x−irxi = x−(i+j)αj(r)x(i+j). It follows that
the set A(R,α) of all such elements forms a subring of R[x, x−1;α] with

x−irxi + x−jsxj = x−(i+j)(αj(r) + αi(s))x(i+j)

(x−irxi)(x−jsxj) = x−(i+j)(αj(r)αi(s))x(i+j)

for r, s ∈ R and i, j ≥ 0. Note that α is actually an automorphism of
A(R,α).

Let A(R, α) be the ring defined above, then for the endomorphism α in
A(R,α), the map A(R,α)[t] → A(R,α)[t] defined by

∑m
i=0(x

−irxi)ti →∑m
i=0(x

−iα(r)xi)ti is an endomorphism of the polynomial ring A(R,α)[t].

Proposition 2.17. Let A(R, α) be an Armendariz ring. If R is right
α-reversible, then A(R,α) is strongly right α-reversible.

Proof. Let f(t) =
∑m

i=0(x
−irxi)ti, g(t) =

∑n
j=0(x

−jsxj)tj ∈ A(R,α)[t]
with f(t)g(t) = 0. Since A(R,α) is Armendariz, (x−irxi)(x−jsxj) = 0,
and so x−(i+j)(αj(r)αi(s))x(i+j) = 0. This implies that αj(r)αi(s) = 0.
Then we obtain αi(s)αj+1(r) = 0 since R is right α-reversible. Then

g(t)α(f(t))
= (

∑n
j=0(x

−jsxj)tj)(
∑m

i=0(x
−iα(r)xi)ti)

=
∑m+n

k=0 (x−jsxj)(x−iα(r)xi)tk

=
∑m+n

k=0 (x−(i+j)(αi(s)αj(α(r))x(i+j))tk

=
∑m+n

k=0 (x−(i+j)(αi(s)αj+1(r))x(i+j))tk.

Since αi(s)αj+1(r) = 0, this yields g(t)α(f(t)) = 0, and thus A(R,α)
is strongly right α-reversible. �
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Corollary 2.18. Let A(R,α) be an Armendariz ring. If R is reversible,
then A(R,α) is strongly reversible.

Recall that a ring R is called right Ore if given a, b ∈ R with b regular,
there exist a1, b1 ∈ R with b1 regular such that ab1 = ba1. It is well-
known that R is a right Ore ring if and only if the classical right quotient
ring Q(R) of R exists. Let F be a field and R = F{x, y} the free algebra
in two indeterminates over F . For x and y, there is no a, b ∈ R such that
y−1x = ab−1(xy−1 = b−1a). So the domain R cannot have its classical
right (left) quotient ring.

If we suppose that the classical right quotient ring Q(R) of R exists.
Then for an automorphism α of R and any ab−1 ∈ Q(R) where a, b ∈ R
with b regular, the induced map ᾱ : Q(R) → Q(R) defined by ᾱ(ab−1) =
α(a)α(b)−1 is also an endomorphism.

Proposition 2.19. Let R be a right Ore ring and Q the classical right
quotient ring of R. If R[x] is an α-compatible ring, then R is strongly
right α-reversible if and only if Q is strongly right α-reversible.

Proof. Assume that R is strongly right α-reversible. Let f(x) = Σm
i=0αix

i,
g(x) = Σn

j=0βjx
j ∈ Q[x] with f(x)g(x) = 0. Then by [11, Proposition

2.1.16], we may assume that αi = aiu
−1 and βj = bjv

−1 with ai, bj ∈ R
for all i, j and some regular u, v ∈ R. Moreover, for each j, there ex-
ists cj ∈ R and regular s ∈ R such that u−1bj = cjs

−1 also by [11,
Proposition 2.1.16]. Suppose f1(x) = Σm

i=0aix
i, g1(x) = Σn

j=0bjx
j and

g2(x) = Σn
j=0cjx

j . From f(x)g(x) = 0, we have the following equa-
tion: f(x)g(x) = Σm

i=0Σ
n
j=0αiβjx

i+j = Σm
i=0Σ

n
j=0ai(u−1bj)v−1xi+j =

Σm
i=0Σ

n
j=0aicj(vs)−1xi+j = f1(x)g2(x)(vs)−1 = 0, which implies that

f1(x)g2(x) = 0.

Since f1(x)g2(x) = 0, we get α(f1(x)g2(x)) = 0, i.e., α(f1(x))α(g2(x))
= 0. This implies that α(f1(x))g2(x) = 0 since R[x] is an α-compatible
ring. Since R is strongly right α-reversible and α is an automorphism
of R, it follows that R[x] is semicommutative by [2, Proposition 2.5].
Therefore, α(f1(x))ug2(x) = α(f1(x))g1(x)s = 0, and hence we have
α(f1(x))g1(x) = 0. Using [11, Proposition 2.1.16] again, for each i there
exists di ∈ R and regular element t ∈ R such that v−1α(ai) = dit

−1.
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Since α is an automorphism of R, there exists ki ∈ R such that di = α(ki)
for each i. Let f2(x) = Σm

i=0kix
i, then

α(f1(x))tg1(x) = Σi+j=kα(ai)tbjx
i+j = Σi+j=kvdibjx

i+j

= vα(f2(x))g1(x) = 0.

This shows that α(f2(x))g1(x) = 0. Since R is strongly right α-reversible,
we have g1(x)α(α(f2(x))) = 0. Therefore, g1(x)α(f2(x)) = 0 since R[x]
is an α-compatible ring. Then

g(x)α(f(x)) = (Σn
j=0βjx

j)(Σm
i=0α(αi)xi)

= (Σn
j=0bjv

−1xj)(Σm
i=0α(ai)α(u)−1xi)

= Σi+j=kbj(v−1α(ai))α(u)−1xi+j

= Σi+j=kbjdi(α(u)t)−1xi+j

= g1(x)α(f2(x))(α(u)t)−1 = 0.

Therefore, Q is strongly right α-reversible. �

In particular, we obtain the following.

Corollary 2.20. [13, Theorem 3.9] Let R be a right Ore ring and Q
the classical right quotient ring of R. Then R is strongly reversible if
and only if Q is strongly reversible.

3. Related topics

Now we investigate a weak form of α-reversible rings in the sense of
the following definition. We call them Nil-α-reversible rings. We do
this by considering the nilpotent elements instead of the zero element
in α-reversible rings. For a ring R, we denote by nil(R) the set of all
nilpotent elements of R.

Definition 3.1. Let R be a ring and α an endomorphism of R. Then
R is said to be a right (respectively, left) Nil-α-reversible ring if ab = 0
implies that r1br2α(a)r3 ∈ nil(R) (respectively, r1α(b)r2ar3 ∈ nil(R))
for all a, b ∈ R and r1, r2, r3 ∈ R. A ring is Nil-α-reversible if it is both
right and left Nil-α-reversible.

In particular, if α ≡ IR, then we call the ring weakly reversible since
reversible rings are clearly weakly reversible. We shall observe briefly, see
Example 3.7, that weakly reversible rings are not necessarily reversible.



Extensions of strongly α-reversible rings 287

According to [9], a ring R is called semicommutative if ab = 0 implies
aRb = 0 for all a, b ∈ R. It is well-known that reversible rings are semi-
commutative. Unlike the situation of reversible rings, the next example
shows that there exists a semicommutative ring R such that R is not
right α-reversible, and hence R is not strongly right α-reversible.

Example 3.2. Let α be a an endomorphism of an α-rigid ring R and
let

S =


 a b c

0 a d
0 0 a

 |a, b, c, d ∈ R

 .

Since every α-rigid ring is reduced, it follows that S is a semicommuta-
tive ring by [9, Proposition 1.2]. But S is not right α-reversible by [2,
Example 2.20].

Clearly, every semicommutative right α-reversible ring is right Nil-α-
reversible. It is proved in [2, Proposition 2.5] that if α is a monomor-
phism of a ring R, then every right α-reversible ring is semicommutative.
In this case, we know that if α is a monomorphism of R, then every
right α-reversible ring is right Nil-α-reversible. We shall give example
to show that there exists a right Nil-α-reversible ring which is not right
α-reversible. It is easy to see that every subring S with α(S) ⊆ S of an
Nil-α-reversible ring is also Nil-α-reversible.

The following example shows that there exists an endomorphism α
of a ring R such that R is a right Nil-α-reversible ring which is not
reversible.

Example 3.3. Let Z be the ring of integers. Consider the ring

R =
{(

a b
0 c

)
|a, b, c ∈ Z

}
.

Let α : R → R be an endomorphism defined by

α

((
a b
0 c

))
=

(
a 0
0 0

)
.
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It is easy to see that R is not reversible (see, e.g., [2, Example 2.2]).

If AB = 0 for A =
(

a1 b1

0 c1

)
and B =

(
a2 b2

0 c2

)
in R, then we get

a1a2 = 0 and c1c2 = 0. Let Ci =
(

ci di

0 ei

)
be some elements in R,

where ci, di, ei ∈ R and i = 1, 2, 3. It can be easily checked that

C1BC2α(A)C3 = 0,

which implies that R is right Nil-α-reversible.

Let Tn(R) be the ring of n-by-n upper triangular matrices over R.
Note that an endomorphism α of a ring R can also be extended to the
endomorphism ᾱ : Tn(R) → Tn(R) defined by ᾱ((aij)) = (α(aij)). The
following proposition gives more examples of right Nil-α-reversible rings
by matrix extensions.

Proposition 3.4. If R is a right Nil-α-reversible ring, then for any n,
Tn(R) is right Nil-α-reversible.

Proof. Let Ai1 = (ai1
ij), Ai2 = (ai2

ij) ∈ Tn(R) with Ai1Ai2=0, and let
Bjk

= (bjk
ij ) ∈ Tn(R), k = 1, 2, 3. Then we have ai1

ii a
i2
ii = 0 for any

1 ≤ i ≤ n. Since R is right Nil-α-reversible, there exists mi ∈ N

such that (bj1
ii a

i2
ii b

j2
ii α(ai1

ii )b
j3
ii )

mi = 0 for any i, i = 1, 2, · · · , n. Let
m = max{m1,m2, · · · ,mn}, then ((Bj1Ai2Bj2α(Ai1)Bj3)

m)n = 0, this
implies that Tn(R) is right Nil-α-reversible.

The next example shows that there exists a right Nil-α-reversible ring
which is not right α-reversible. �

Example 3.5. Let R be the ring in Example 2.8. Then R is right
α-reversible by [2, Example 2.7]. We claim that T (R,R) is right Nil-
α-reversible. In fact, since α is a monomorphism, this implies that R
is a semicommutative ring by [2, Proposition 2.5], and hence R is a
right Nil-α-reversible ring. Therefore, T (R,R) is right Nil-α-reversible
by Proposition 3.4. But T (R,R) is not right α-reversible by [2, Example
2.17], and so T (R,R) is not strongly right α-reversible.
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For an endomorphism α of R, we define the map R[x;x−1] → R[x;x−1]
by the same endomorphism as in the polynomial ring R[x] above. The
next two results extend the class of right Nil-α-reversible rings.

Proposition 3.6. Let R be a ring, then R[x] is right Nil-α-reversible if
and only if R[x;x−1] is right Nil-α-reversible.

Proof. It is sufficient to show the necessity. Let f(x), g(x) ∈ R[x;x−1]
with f(x)g(x) = 0, and let hi(x) ∈ R[x;x−1] be some elements with
i = 1, 2, 3. Then there exists s ∈ N such that

f1(x) = f(x)xs, g1(x) = g(x)xs and h′i(x) = hi(x)xs ∈ R[x], i =
1, 2, 3.

Since R[x] is right Nil-α-reversible and f1(x)g1(x) = 0 by the hypoth-
esis, there exists n ∈ N such that (h′1(x)g1(x)h′2(x)α(f1(x))h′3(x))n = 0.
Then we have

(h1(x)g(x)h2(x)α(f(x))h3(x))n = (x−5s(h′1(x)g1(x)h′2(x)α(f1(x))h′3(x)))n

= (x−5s)n(h′1(x)g1(x)h′2(x)α(f1(x))h′3(x))n = 0. This shows that
R[x;x−1] is right Nil-α-reversible. �

Since every reversible ring is semicommutative, it is clear that every
reversible ring is weakly reversible. The next example shows that there
exists a weakly reversible ring which is not reversible.

Example 3.7. Let R be a reduced ring and let

S =
{(

a b
0 c

)
|a, b, c ∈ R

}
.

Note that for A =
(

0 1
0 0

)
and B =

(
1 0
0 0

)
in S, we have AB =

0 but
BA 6= 0, so S is not reversible.

On the other hand, let A =
(

a1 b1

0 c1

)
and B =

(
a2 b2

0 c2

)
in S

with AB = 0, then a1a2 = 0 and c1c2 = 0. Let

Ci =
(

di ei

0 fi

)
∈ S,

where di, ei, fi ∈ R, i = 1, 2, 3. Since every reduced ring is weakly re-
versible, there exist n1, n2 ∈ N such that
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(d1a2d2a1d3)n1 = (f1c2f2c1f3)n2 = 0

for all di, fi ∈ R, i=1, 2, 3. It follows from the following equation that S
is weakly reversible:

(C1BC2AC3)max{n1,n2}+2 = 0.

For an automorphism α of R and any u−1a ∈ 4−1R where u ∈ ∆, a ∈
R with u central regular, the induced map ᾱ : 4−1R → 4−1R defined
by ᾱ(u−1a) = α(u)−1α(a) is also an endomorphism. In general, we can
get the following result.

Proposition 3.8. Let δ be an automorphism of a ring R. Then R is
right Nil-δ-reversible if and only if 4−1R is right Nil-δ-reversible.

Proof. It suffices to show the necessity. Let αβ = 0 with α = u−1a, β =
v−1b, u, v ∈ 4 and a, b ∈ R, and let ri = w−1

i ci be any element of
4−1R, i = 1, 2, 3, wi ∈ 4, ci ∈ R. Since 4 is contained in the center
of R, we have 0 = αβ = u−1av−1b = (u−1v−1)ab = (vu)−1ab, and so
ab = 0. But R is right Nil-δ-reversible, so there exists n ∈ N such that
(c1bc2δ(a)c3)n = 0. Then we obtain the following:

(w−1
1 c1v

−1bw−1
2 c2δ(u−1a)w−1

3 c3)n

= ((w−1
1 v−1w−1

2 (δu)−1w−1
3 )(c1bc2δ(a)c3))n

= ((w3δ(u)w2vw1)−1)n(c1bc2δ(a)c3)n

= (r1βr2δ(α)r3)n = 0

This implies that 4−1R is right Nil-δ-reversible. �

Corollary 3.9. Let δ be an automorphism of a commutative ring R.
Then R is right Nil-δ-reversible if and only if so is the total quotient
ring of R.
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